Atomic Structure Part 5

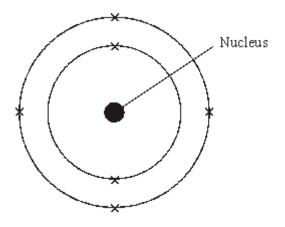
Q1.

Iron ore contains iron oxide.

Calculate the relative formula mass of iron oxide, Fe ₂ O ₃ .	
Relative atomic masses: O = 16; Fe = 56.	
Answer =	
Calculate the percentage by mass of iron in iron oxide.	
Percentage of iron =	%
Calculate the mass of iron that could be extracted from 1000 kg of iron oxide.	
Use your answer to part (c) (ii) to help you with this calculation.	
Mass of iron =	kg
	Relative atomic masses: O = 16; Fe = 56. Answer = Calculate the percentage by mass of iron in iron oxide. Percentage of iron = Calculate the mass of iron that could be extracted from 1000 kg of iron oxide.

Q2.

The table shown below was devised by John Newlands in 1864. He arranged the elements in order of their relative atomic masses. He found a repeating pattern, with elements having similar properties in the vertical columns (Groups). He called this pattern the 'Law of Octaves', because elements with similar properties seemed to be repeated every eighth element.


(Total 5 marks)

Н	Li	Be	В	С	Ν	0
F	Na	Mg	Al	Si	Р	S
CI	K	Ca	Cr	Ti	Mn	Fe
Co/Ni	Cu	Zn	Υ	In	As	Se
Br	Rb	Sr	Ce/La	Zr	Di/Mo	Ro/Ru
Pd	Ag	Cd	U	Sn	Sb	Te
	Cs	Ba/V	Ta	W	Nb	Au
Pt/Ir	TI	Pb	Th	Hg	Bi	Os

(a) Many scientists were critical of Newlands' Law of Octaves. Suggest why other scientists were critical of the Law of Octaves.

								_
					eev's Peri			
Mendel	Group	Group	Group	Group	er of relativ	Group	Group	Group
Period 1	H H	2	3	4	5	6	7	8
Period 2	Li	Be	В	С	N	0	F	
Period 3	Na	Mg	A1	Si	P	S	C1	
Period 4	K Cu	Ca Zn	?	Ti ?	V As	Cr Se	Mn Br	Fe Co Ni
Period 5	Rb Ag	Sr Cd	Y In	Zr Sn	Nb Sb	Mo Te	? I	Ru Rh Pd
Give to	wo ways ii		endeleev's	s table imp	s. oroved on			_
								_

Q3.The diagram represents the electronic structure of an atom of an element.

The periodic table on the Data Sheet may help you with this question.

(a)	Name this element.	
		(1)
(b)	Complete this sentence.	
	The nucleus of an atom contains neutrons and	
		(1) (Total 2 marks)

Q4.

Niobium is a typical transition metal.

Put a tick (\checkmark) next to each of the **four** properties in the table that you would expect for Niobium.

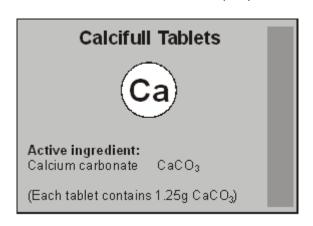
Property	
brittle	
conducts heat	
dull	
forms coloured compounds	
high melting point	
low boiling point	
strong	
very reactive	

(Total 4 marks)

Q5.

The periodic table on the Data Sheet may help you to answer this question.

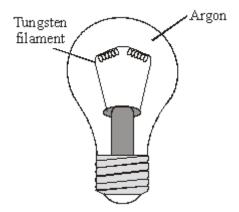
(a) Newlands and Mendeleev both designed periodic tables in which the elements were put in the order of their relative atomic masses.


When the elements are put in this order a few of them are placed incorrectly when compared with a modern periodic table.

and
Explain why placing these two elements in the order of their relative atomic masses would not be correct.
a modern periodic table the elements are put in order of their stemic (proten)
e modern periodic table the elements are put in order of their atomic (proton) pers.
ain how the positions of the elements in the periodic table are linked to the ronic structure of their atoms.

(2) (Total 4 marks)

Q6.


Calcium carbonate tablets are used to treat people with calcium deficiency.

Calculate the relative formula mass (M_r) of calcium carbonate.						
	Relative atomic masses: C = 12; O = 16; Ca = 40.					
-						
	Relative formula mass =					
	Calculate the percentage of calcium in calcium carbonate, CaCO ₃ .					
-	Percentage of calcium = %					
	Calculate the mass of calcium in each tablet.					
_	Mass of calcium = g					
	An unwanted side effect of this medicine is that it can cause the patient to have wind' (too much gas in the intestine).					
	The equation below represents the reaction between calcium carbonate and hydrochloric acid (the acid present in the stomach).					
	$CaCO_3$ (s) + 2HCl (aq) \rightarrow CaCl ₂ (aq) + H ₂ O (l) + CO ₂ (g)					
	Suggest why the patient may suffer from 'wind'.					

Q7.

The diagram shows an electric light bulb.

When electricity is passed through the tungsten filament it gets very hot and gives out light.

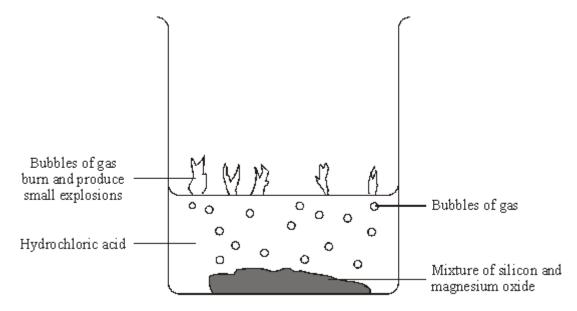
why argon is used in the light bulb. Explain your answer in terms of the onic structure of an argon atom.

Q8.

Silicon is an important element used in the electronics industry.

(a) Silicon can be made by heating a mixture of sand (silicon dioxide) with magnesium powder.

The equation for this reaction is shown below.


$$SiO_2$$
 (s)+ 2Mg (s) \rightarrow 2MgO (s) + Si (s)

Calculate the mass of silicon dioxide needed to make 1 g of silicon.

Relative atomic masses: O = 16; Si = 28

(3)

(b) The resulting mixture of magnesium oxide and silicon is added to a beaker containing hydrochloric acid. The silicon is then filtered from the solution.

(i) The magnesium oxide reacts with the hydrochloric acid and forms magnesium chloride (MgCl₂) solution and water.

magnesium oxide + hydrochloric acid \rightarrow magnesium chloride solution + water

Write a balanced symbol equation for this reaction, including state symbols.

(2)

(ii) The gases produced are a mixture of several silicon hydrides.

One of the gases produced in the reaction is the silicon hydride with the formula SiH_4 . The structure of this molecule is similar to methane, CH_4 .

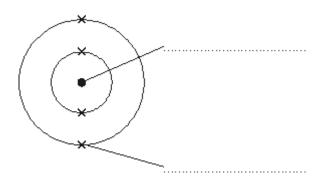
Draw a diagram to show the bonding in a molecule of SiH₄. Represent the electrons as dots and crosses and only show the outer shell (energy level) electrons.

and 0.15 g of hydrogen. Calculate the formula of this silicon hydride. You muto gain full marks. Relative atomic masses: H = 1; Si = 28 (iv) The silicon hydrides react immediately they come in the air. They burst into flames with a small explosion Which letter, A to H , best describes this reaction?	ak existii				low	slow	D E
and 0.15 g of hydrogen. Calculate the formula of this silicon hydride. You muto gain full marks. Relative atomic masses: H = 1; Si = 28 (iv) The silicon hydrides react immediately they come in the air. They burst into flames with a small explosion Which letter, A to H, best describes this reaction? Energy involved in breaking and forming bonds The energy released from forming new bonds is greater than the energy needed to break existing bonds	ak existiı		יט י		1		
and 0.15 g of hydrogen. Calculate the formula of this silicon hydride. You muto gain full marks. Relative atomic masses: H = 1; Si = 28 (iv) The silicon hydrides react immediately they come in the air. They burst into flames with a small explosion Which letter, A to H, best describes this reaction? Energy involved in breaking and forming bonds Activation energy The energy released from forming new bonds is greater than the energy needed	bonds is greater than the energy needed		eak existing bonds		fast	С	
and 0.15 g of hydrogen. Calculate the formula of this silicon hydride. You muto gain full marks. Relative atomic masses: H = 1; Si = 28 (iv) The silicon hydrides react immediately they come in the air. They burst into flames with a small explosion Which letter, A to H, best describes this reaction? Energy involved in breaking and forming bonds Activation energy			ono	ds is greater than the energy needed	high	slow	В
and 0.15 g of hydrogen. Calculate the formula of this silicon hydride. You muto gain full marks. Relative atomic masses: H = 1; Si = 28 (iv) The silicon hydrides react immediately they come in the air. They burst into flames with a small explosion Which letter, A to H, best describes this reaction? Energy involved in breaking and Activatio						fast	Α
and 0.15 g of hydrogen. Calculate the formula of this silicon hydride. You muto gain full marks. Relative atomic masses: H = 1; Si = 28 (iv) The silicon hydrides react immediately they come in the air. They burst into flames with a small explosion		Energ	E		Activation energy	Rate of reaction	Letter
and 0.15 g of hydrogen. Calculate the formula of this silicon hydride. You muto gain full marks.	e air. The	the ai	t	he air. They burst into flames with a sn	nall explosion and		
and 0.15 g of hydrogen. Calculate the formula of this silicon hydride. You mu		· ·					
				•	Iride. You must sl	how all your w	orking
iii) A sample of a different silicon hydride was found to		and 0			was round to con	taiii 1.4 y 01 51	ilicon

Torming bonds	energy	reaction	
		fast	Α
The energy released from forming new bonds is greater than the energy needed	high	slow	В
to break existing bonds		fast	С
	low	slow	D
		fast	E
The energy needed to break existing bonds	high	slow	F
is greater than the energy released from forming new bonds			
Torring new borids	low	fast	G
		slow	Н

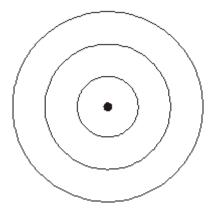
Letter	 	_	
			(1)

The structure of silicon is similar to the structure of diamond. (c)


Describe the structure of silicon and explain why it has a high melting point. You may draw a diagram if this helps.

(4		
(Total 15 marks		

Q9.


(a) The diagram represents an atom of beryllium. Use words from the box to label the diagram.

electron ion isotope	molecule	nucleus
----------------------	----------	---------

(2)

(b) Use crosses (x) to complete the diagram to show the electronic structure of a magnesium atom. The atomic (proton) number of magnesium is 12.

(2)

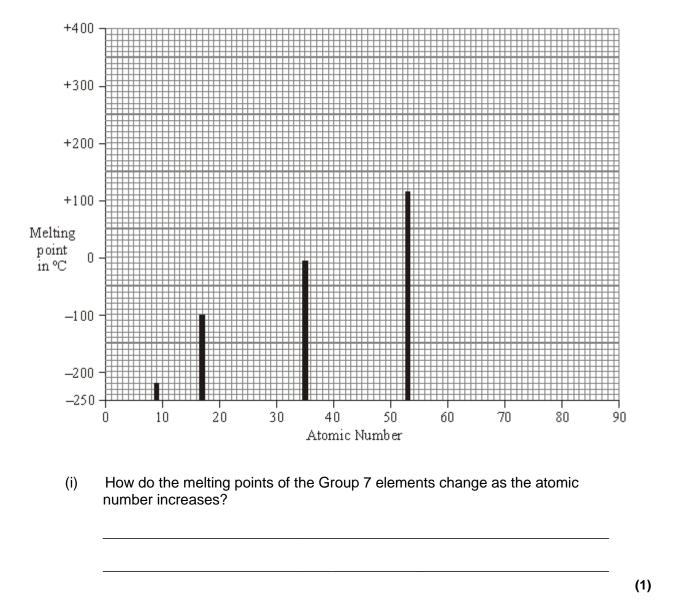
(Total 4 marks)

Q10.

The diagram shows an outline of the periodic table.

					A					
									В	
С										D
			E							
							F			

Choose your answers **only** from the letters shown on the table above.


The periodic table on the Data Sheet may help you to answer this question.

Which element, **A** to **F**:

(a)	is in Group 3;	
(b)	is a metal which floats on water and reacts violently to and hydrogen gas;	(1) make an alkaline solution
(c)	is a gas which burns with a squeaky pop?	(1)
		(1) (Total 3 marks)

Q11.

(a) The bar graph shows the melting points of the elements in Group 7 plotted against their atomic numbers.

(ii) The melting point of astatine (atomic number = 85) is not shown on the bar graph. Estimate the melting point of astatine.

 °C

(1)

(1)

Draw a bar for this value on the bar graph.

(b) The water from wells in Japan contains bromide ions.

Bromine is extracted from this water. The bromine is displaced by adding another Group 7 element.

(i) Place a tick (v) next to the name of **one** Group 7 element that could be used to displace bromine from this water.

1	•	į

	-	
(iii)	One sample of this water contained 2 g of bromine per litre of water.	` '
	How many litres of this water would be needed to make 1 kg of bromine? (1 kg = 1000 g)	

_____ litres (1) (Total 6 marks)

Q12.

(ii)

A student investigated some instant soup.

(a) Instant soup contains a food additive which has the formula:

State why you have chosen this element.

NaH₂PO₄

Give the names of all the elements in this compound.

The periodic table on the Data Sheet may help you to answer this question.

(2)

(b) The student investigated the reaction which takes place when soup powder is added to cold water.

The student thought that the reaction might be exothermic.

(i) What is meant by the term *exothermic* reaction?

- 4	'	
-	71	

(11)	exothermic.
	To gain full marks in this question you should write your ideas in good English. Put them into a sensible order and use the correct scientific words.

(4)

(Total 8 marks)

Q13.

Mendeleev constructed a periodic table in 1869.

In his periodic table:

- most of the elements were put in order of increasing relative atomic mass;
- elements with similar properties were put into groups;
- Mendeleev changed the order of some elements to put them with similar elements;
- spaces were left for elements that Mendeleev thought would be discovered in the future.

One space was in Group 3 between the elements aluminium and indium.

Group 3
Boron
Aluminium
?
Indium
Thallium

Mendeleev called this undiscovered element 'eka-aluminium'. This element is now known

as gallium. In 1871, he also predicted some of the properties of gallium.

The table shows the properties of aluminium and indium, along with some of the predictions made by Mendeleev for gallium.

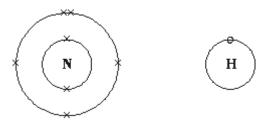
	Appearance	Metal or non-metal	Boiling point in °C	Density in g per cm3	Relative atomic mass
Aluminium	silvery white	metal	2467	2.7	27
Predicted properties of gallium	silvery white	metal	?	?	68
Indium	silvery white	metal	2080	7.31	115

)	Suggest two reasons why other scientists in 1871 did not accept Mendeleev's periodic table.	
	Reason 1	
	Reason 2	_
)	Suggest why the discovery of gallium in 1875 convinced other scientists that Mendeleev's table was correct.	(2
		_
	(Total 3	 (1 3 marks

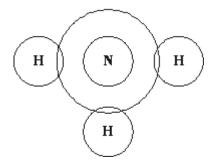
Q14.

Transition elements and their compounds have many uses.

Iron oxide and cobalt oxide have been added to the glazes on pottery for hundreds of years.


(a) State why transition metal oxides are added to pottery glazes.

oxid	e the table of ions on the Data Sheet to help you work out the formula of iron(III) e.
Cob	palt oxide is reacted with hydrogen to form cobalt.
i)	Balance the equation for this reaction.
	$Co_3O_4 + \dots H_2 \rightarrow 3Co + \dots H_2O$
ii)	Cobalt is mixed with other transition metals to make alloys.
	These alloys are used to make cutting tools which remain sharp at very high temperatures. They can cut through other metals.
	Drill bit
	Suggest two properties of transition metals that make them suitable for making cutting tools.
	1
	2.


Q15.

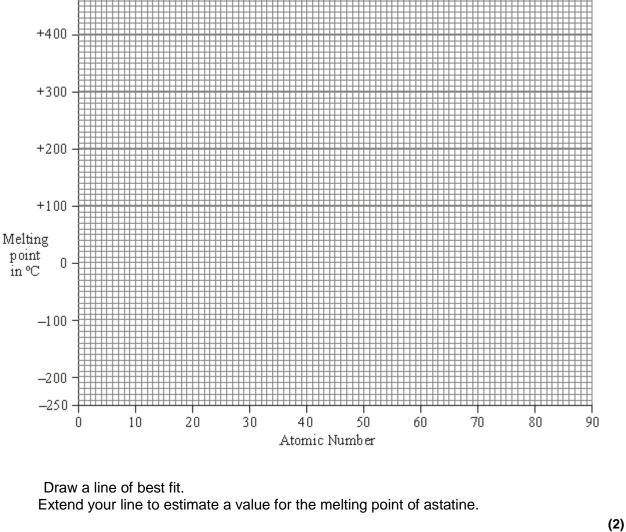
Ammonia (NH₃) is an important chemical which is used to make fertilisers. Ammonia is made from nitrogen and hydrogen,

(a) The diagrams represent the electron arrangements in atoms of nitrogen and hydrogen.

Complete the diagram showing the arrangement of electrons in a molecule of ammonia.

(1)

(b) Name the type of bonding which holds the nitrogen and hydrogen atoms together in an ammonia molecule.


(1) (Total 2 marks)

Q16.

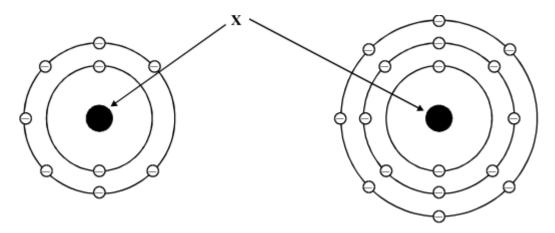
(a) The table gives the melting points of some of the elements of Group 7.

Element	Atomic number	Melting point in °C
Fluorine	9	-220
Chlorine	17	-101
Bromine	35	-7
lodine	53	114
Astatine	85	?

(i) Plot a graph of the melting point against atomic number.

+500

- °C (ii) Estimate the melting point of astatine. _ (1)
- (iii) Which of the Group 7 elements are solids at 20 °C?
- (b) (i) Draw a diagram to show the arrangement of electrons in an atom of fluorine.


(1)

(1)

Ken	on is a very unreactive element.
i)	Explain, in terms of electrons, why xenon is so unreactive.
ii)	Fluorine reacts with xenon but iodine does not.
	Explain, in terms of atomic structure, why fluorine is more reactive than iodine.

Q17.

The diagrams show the electronic arrangement of the atoms of two elements.

(i) Name the part of the atoms labelled **X**.

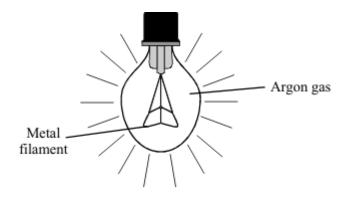
		(Total 2 ma
8.		
		s more reactive than chlorine. Fluorine reacts with most elements in the Periodic wever, fluorine does not react with argon.
Ato	mic n	umbers: F 9; Cl 17; Ar 18.
(a)	To	which group of the Periodic Table do fluorine and chlorine belong?
(b)	(i)	Give one use for argon.
	(ii)	Explain why the noble gas argon is unreactive.
	(11)	
(c)	(i)	Give one use for chlorine.
	(ii)	Draw the electron arrangement of a chlorine atom.

(iii) Explain why fluorine is more reactive than chlorine.

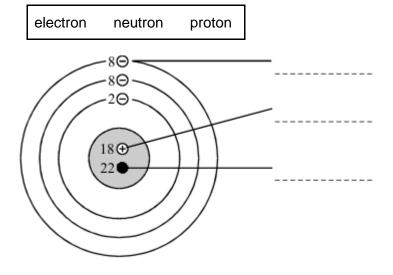
(2)

	(Total 10
eca	re is molten rock below the Earth's solid outer crust. The rock remains molten ause the radioactive decay of isotopes such as uranium, thorium and potassium ases heat energy.
)	Explain how this released heat energy is thought to cause the recycling of rocks.
)	Two <i>isotopes</i> of potassium are shown.
	³⁹ K ⁴⁹ K
	Explain what is meant by <i>isotopes</i> . You must include numbers of electrons, neutrons and protons in your explanation.

		(4) (Total 8 marks)
0.		
	ne chemical equation for the formation of iron is:	
F	$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$	
Calc	culate the relative formula mass of iron oxide, Fe ₂ O ₃ .	
Rela	ative atomic masses: O 16; Fe 56.	
	Relative formula mass $Fe_2O_3 = $	
		(Total 2 marks)
1. Urar	nium metal can be produced by reacting uranium hexafluoride with calcium.	
	UF_6 + 3Ca \rightarrow 3CaF ₂ + U	
(a)	Describe how calcium and fluorine bond together to form calcium fluoride electron arrangement of each atom is shown.	. The
	Calcium	Fluorine


Q20.

Q21.


	nium has two main isotopes, $^{235}_{92}$ U and $^{238}_{92}$ U. Use these as examples to ain what is meant by the word isotope.
At th	ne start of a reaction there was 174.5 g of uranium hexafluoride, UF ₆ .
Rela	tive atomic masses: F 19; U 235
(i)	Calculate the relative formula mass of uranium hexafluoride, UF ₆ .
	Relative formula mass UF ₆ =
(ii)	Relative formula mass $UF_6 =$
(ii)	Calculate the mass of uranium that would be produced from 134.5 g of
(ii)	Calculate the mass of uranium that would be produced from 134.5 g of
(ii)	Calculate the mass of uranium that would be produced from 134.5 g of

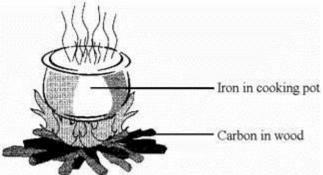
Q22.

The diagram shows a light bulb.

(a) (i) An argon atom has the structure shown. Use the words in the box to label the particles in the atom. Each word should only be used **once.**

(ii) Argon is unreactive. Why?

(b) Oxygen would **not** be a suitable gas to use in a light bulb. Explain why.

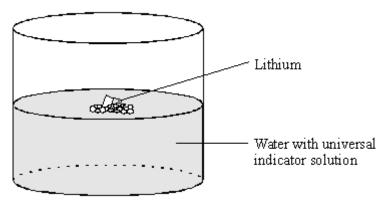

(2) (Total 5 marks)

(2)

(1)

Q23.

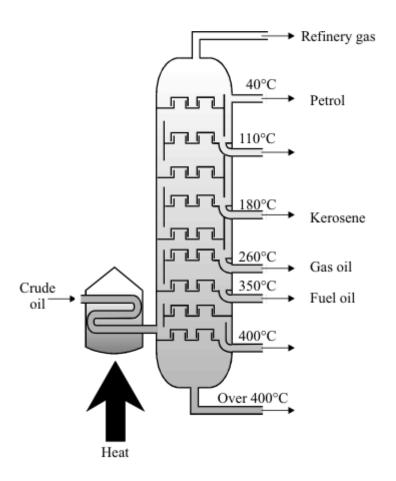
The uses of *elements* depend on their properties.



Complete the sobeen done for you	entences by crossing out the words that are wrong. The first one has ou.
Non-Metals	Metals can be hammered into shape.
Non-Metals	Metals often have low melting point.
Non-Metals	Metals are good conductors of heat.
In the box are th	ne names of three metals.
	copper iron sodium
Which one of the	nese is not a good metal for making the cooking pot? Give a reason
for your answer.	
Metal	

Q24.

Lithium is a very reactive metal.


(a) Lithium reacts with cold water.

(i)	Which physical property of lithium is seen during this reaction?
(ii)	Which chemical property of lithium will be shown by the universal indicator?
o) Cor	mplete the sentence by writing in the missing numbers.
,	nium has an atomic number of 3 and a mass number of 7.
LIU	num has an atomic number of 3 and a mass number of 7.
This	means that an atom of lithium has protons electrons
and	dneutrons.
	(Total 5 mari

Q25.

To make crude oil more useful it is separated into different fractions.

(a) Complete the gaps in the following sentences.

	Crud	de oil is separated into different fractions by a process called	
		Each fraction has a different	
(b)		ch fraction is a mixture of compounds. Most of these compounds are rocarbons, made up of the elements hydrogen and carbon.	(2
	(i)	Explain the difference between a mixture and a compound.	
			(2
	(ii)	Explain the difference between a compound and an element.	

(2)

(Total 6 marks)

Q26.

The elements in Mendeleev's periodic table were arranged in order of increasing atomic

mass. Part of the modem Periodic Table is shown.

							I	Н									He
Li	Be											В	C	N	٥	F	Ne 18
Na 11	Mg	\mathbb{L}_{-}										Al	Si 14	P	S 11	C1	Ar 1
K	Ca		Ī	_ <u> </u>	Ī	Ī	I	I	I	 							

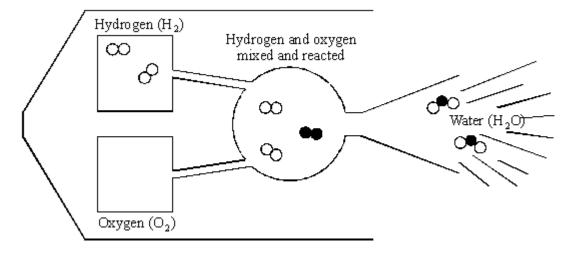
(a) Complete the sentence by writing in the missing words.

The modem Periodic Table is arranged in order of increasing

______.

(b) (i) Name a metal in the same group as lithium.

(1)


(ii) Name a non-metal in the same period as magnesium.

(1) (Total 3 marks)

Q27.

The diagram shows the reaction of hydrogen molecules with oxygen molecules to form water molecules.

(i) In the empty box draw **one** oxygen molecule.

(1)

(ii) Why are hydrogen and oxygen called elements?

(iii)	Why	y is water called a compound?	
		(Total 4 ma	(2 arks
Q28.			
This	quest	ion is about the Periodic Table.	
(a)	Perio incre prop	nitri Mendeleev was a Russian scientist who, in 1869, helped to develop the odic Table. He made his table with the known elements arranged in order of easing atomic mass. He started new rows so that elements with similar chemical erties would be in the same column. Mendeleev sometimes had to leave gaps a table.	
	(i)	Complete the sentences.	
		The Periodic Table is now the arrangement of the elements in order	
		of increasing atomic The rows are called	
		and the columns are called	
			(3
	(ii)	Suggest why Mendeleev had to leave gaps in his table.	
			(1
(b)	This	s section of the Periodic Table shows the positions of some elements.	`
()			
	Li	H He F Ne	
	Na	Cl Ar	
	К		
	(i)	Give the chemical symbol for one of the noble gases.	
			(1
	(ii)	Draw the arrangement of electrons around the nucleus for the noble gas that you chose in (i).	`


Nucl eus

(iii) Why do the electron arrangements of lithium, sodium and potassium make them react in a similar way?

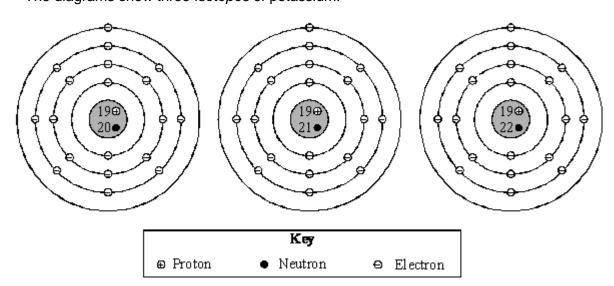
(1)

(iv) Small pieces of lithium, potassium and sodium are added to water.

What is the order of reactivity for these three metals? Put the most reactive metal first.

(v) Complete and balance the chemical equation for the reaction of sodium with water.

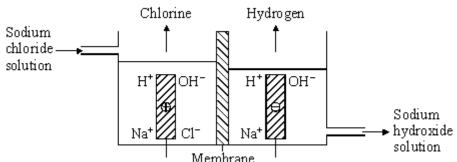
$$2Na(s) \ + \ 2H_2O(I) \ \rightarrow \ \underline{\hspace{1cm}} NaOH(aq) \ + \ \underline{\hspace{1cm}} (g)$$


(2)

(1)

(Total 10 marks)

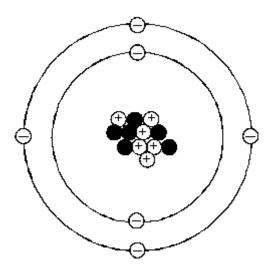
Q29.


The diagrams show three *isotopes* of potassium.

i) Exp	plain why these three atoms a	re called <i>isotopes</i> of potassium.	
			(Total 4
			(Total 4
ontains s	sodium chloride.	eaners contain sodium hydroxide and	d table salt
) AS	solution of each of these subst	ances was tested with universal indic	cator.
) As	solution of each of these subst Solution	Colour of universal indicator	cator.
			cator.
S	Solution	Colour of universal indicator	cator.
Si	Solution ulphuric acid (H ₂ SO ₄)	Colour of universal indicator	cator.
Si	Solution ulphuric acid (H ₂ SO ₄) odium hydroxide (NaOH) odium chloride (NaCl)	Colour of universal indicator red purple green I indicator colours and the correspondence	
Si	Solution ulphuric acid (H ₂ SO ₄) odium hydroxide (NaOH) odium chloride (NaCl) Explain how these universal	Colour of universal indicator red purple green I indicator colours and the correspondence	
So	Solution ulphuric acid (H ₂ SO ₄) odium hydroxide (NaOH) odium chloride (NaCl) Explain how these universal	Colour of universal indicator red purple green I indicator colours and the correspondence	
Si	Solution ulphuric acid (H ₂ SO ₄) odium hydroxide (NaOH) odium chloride (NaCl) Explain how these universal	Colour of universal indicator red purple green I indicator colours and the correspondence	
Si	Solution ulphuric acid (H ₂ SO ₄) odium hydroxide (NaOH) odium chloride (NaCl) Explain how these universal	Colour of universal indicator red purple green I indicator colours and the correspondence	

	Formula of ion
	dium chloride can be made by reacting sodium hydroxide with hydrochloric acid be presence of an indicator.
(i)	What is the name of this type of reaction?
(ii)	Write a balanced chemical equation for this reaction.
	(aq) +(aq) ->(aq) +(l)
The	atomic number for sodium is 11 and for chlorine is 17.
	Sodium atom Chlorine atom
(i)	Complete the diagrams to show the electron arrangements for a sodium atom and a chlorine atom.
(ii)	These atoms form different particles by one electron transferring from the sodium atom to the chlorine atom. What is the name given to the particles formed?
(iii)	Why do these sodium and chloride particles bond?

(d) Sodium chloride solution is electrolysed to form three products, hydrogen, chlorine and sodium hydroxide.



Q31.

Doscribo boy	Memb		
Describe nov	v each of these produc	as are formed.	
			(Total 45 ma
			(Total 15 ma
ne flasks are th	e particles of four differ	rent gases. (Each circle	e represents an atom.)
	////		
6	\ \	/ <u>^</u> \	/≘\
\sim \sim	/O 0 \		
	В	c	D
	ram represents		
_	n, O ₂		
(i) Oxygei	1, 02		
(ii) steam,	H ₂ O		
The gases in Explain why.	A and B are elements	s and the gases in C ar	nd D are compounds.
Explain willy.			

Q32.

About 100 years ago a scientist called J. J. Thomson thought that an atom was a ball of positive charge with negative particles stuck inside. Today a different model is used. The diagram shows how an atom of carbon is represented by this model.

- (a) The negative particles Θ are called electrons.
 - (i) What is the name of the positive particles ⊕?

(1)

(ii) What particle is represented by ●?

(1)

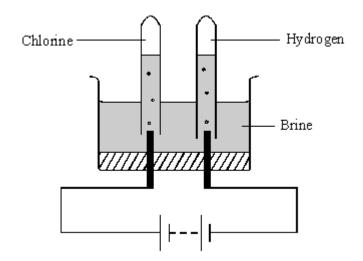
(iii) What is the central part of the atom called that contains both ⊕ and •?

(1)

(b) Use the model to explain why the six electrons are arranged as shown.

(Total 5 marks)

(2)


i)	Step	0 1			
	Calc	ulate the	relative formula mass of i	ron oxide, Fe₂O₃.	
ii)	Ste	p 2			
	Calc	ulate the	total relative mass of just	the iron atoms in the formula,	Fe₂O₃.
iii)	Ste	р 3			
	Calc	ulate the	e percentage (%) of iron in	the iron oxide, Fe_2O_3 .	
				Percentage of iron	9
					(Total 3
• he	Perio	dic Table	contains groups of eleme	nts that have similar chemical	properties.
(a)	The	e haloge	ns are in Group 7 of the Pe	eriodic Table.	
	(i)	Compl	ete the table. Iodine has be	een done for you.	
			Halogen	Colour of vapour	
			chlorine		
				red-brown	
			iodine	purple	
	(ii)	Why do	o the halogens have simila	r chemical properties?	

any alkali metal reacts with water.

(Total 5 mark		
(

Q35.

Brine, a solution containing sodium chloride in water, can be used to manufacture chlorine, hydrogen and sodium hydroxide. A student sets up a simplified model of the industrial cell.

(a) The electron arrangements of some atoms are shown here.

H 1

Na

O 2.6

C1 2.8.7

2.8.1

(i) Use the relevant electron arrangements to describe the bonding in water.

(ii) Use the relevant electron arrangements to describe the bonding in sodium

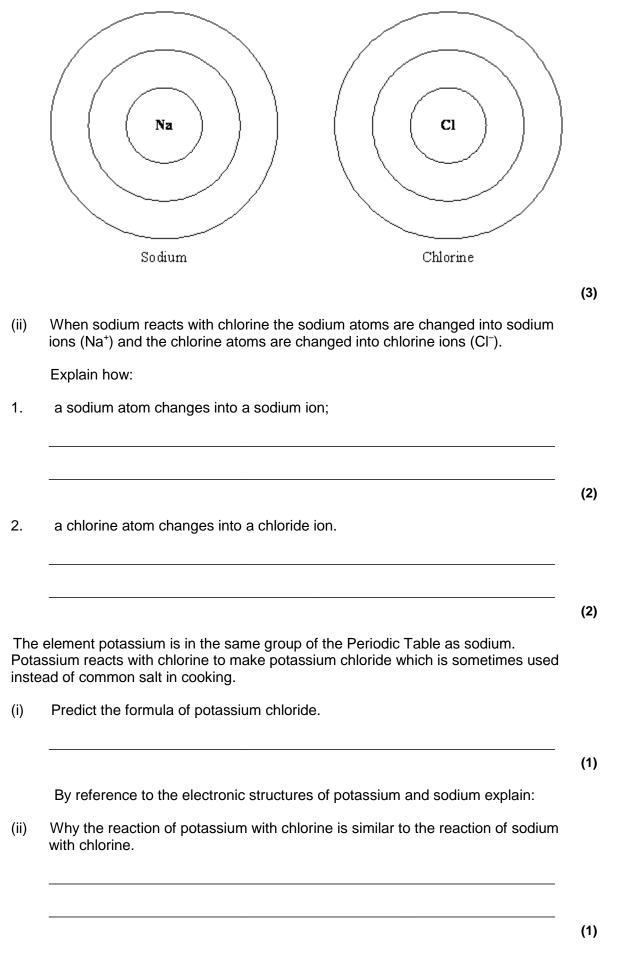
(2)

Use the atomic structures o	., 35 Cl and 37	Cl to available the se		
Use the atomic structures of sotopes.	of 17° and 17	to explain the m	leaning of the t	erm

Q36.

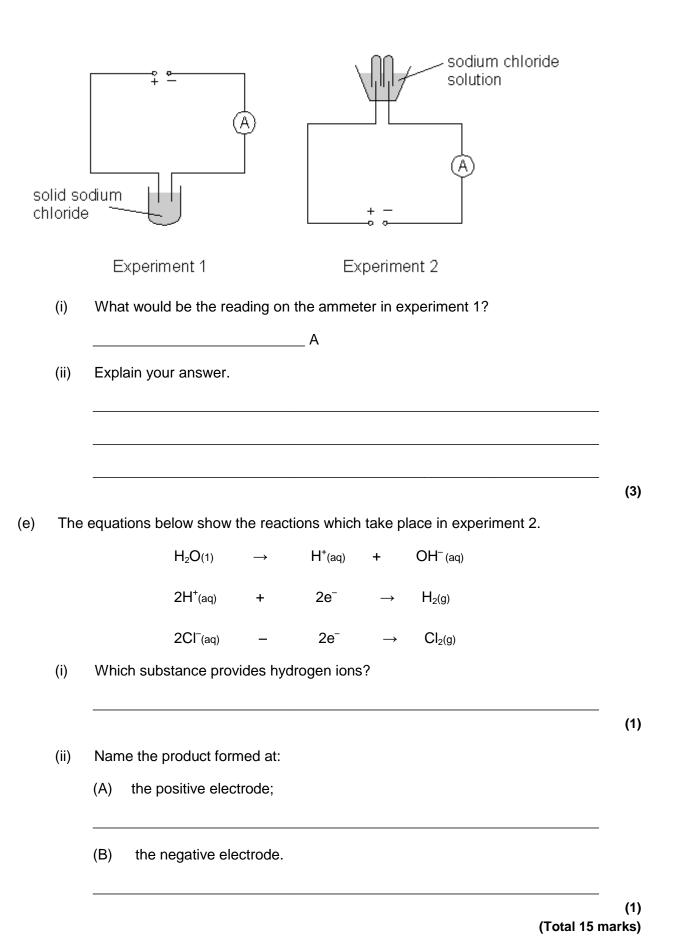
This question is about sodium chloride (common salt) which is an important chemical.

Sodium chloride can be made by burning sodium in chlorine gas.



(a) Balance the symbol equation for the reaction of sodium with chlorine.

 $Na(s) \qquad + \qquad \qquad Cl_2(g) \qquad \quad \rightarrow \qquad \qquad NaCl(s)$


(1)

(b) (i) Complete the diagrams below to show the electronic structures of a sodium and a chlorine atom. (Atomic number of sodium = 11 and chlorine = 17.)

(d) The electrolysis of sodium chloride solution is an important industrial process. The diagrams below show two experiments set up during an investigation of the electrolysis of sodium chloride.

(c)

Q37.

Fluorine is a very useful element. It is placed in group 7 of the Periodic Table.

Use your knowledge of the elements in group 7 to help you answer these questions. You

(a)	Nar	ne another element in group 7 of the Periodic Table.
(b)		nders filled with fluorine molecules are commercially available. What would you ect the formula of a fluorine molecule to be?
(c)		oride ions are added to drinking water to help prevent tooth decay. What is the ge on fluoride ions in the water?
(d)	Fluc	prine reacts with the non-metal sulphur to make sulphur hexafluoride (SF_6).
	(i)	What type of bonding would you expect in sulphur hexafluoride?
	(ii)	Explain the reason for your answer to part (i).
38.		(Total 5
		an extremely important element. More than a million tonnes of silicon are each year. Silicon is made by reducing silicon oxide (sand) with carbon (coke).
(a)	(i)	Complete the diagram below to show the arrangement of electrons in an atom of silicon. The Data Sheet may help you with this question.
		Si

	What features of all the atoms of the elements in group 4 of the Periodic Table might give them similar chemical properties?
	con is difficult to classify as a metal or a non-metal because it has properties ch resemble both. Some of the properties of silicon are listed below.
•	Silicon is a shiny blue/grey solid.
•	Silicon is placed in Group 4 of the Periodic Table.
•	Silicon has a relative atomic mass of 28. Silicon has a very high melting point (1410°C).
•	Silicon has a very high boiling point (1410-C).
•	Silicon conducts electricity.
•	Silicon oxide will neutralise alkalis.
•	Silicon forms compounds in which the silicon atoms are bonded to other atoms by covalent bonds.
(i)	Select two properties from the list above in which silicon resembles a metal.
	1
	2
	2
(ii)	Select two properties from the list above in which silicon resembles a non-metal.
	1
	···
	2
	(Total 8
9 .	
	e (CaCO ₃) is a raw material. On strong heating it is converted to calcium oxide a very useful substance.
	$CaCO_3 \xrightarrow{leat} CaO + CO_2$
(a) Ca	culate the formula mass (M _r) of calcium carbonate.
(a) Ca —	
(a) Ca —	culate the formula mass (M_r) of calcium carbonate. $M_r \ \text{of calcium carbonate} = \underline{\hspace{2cm}}$

		Mass of calcium carbonate needed = million tonnes
(c)		er is added to some of the calcium oxide produced in a process known as king'. The product of this reaction is used to make plaster.
	CaO	$O_{(s)} + H_2O_{(1)} \rightarrow Ca(OH)_{2(s)}$
	(i)	Give the chemical name of Ca(OH) ₂ .
	(ii)	What is the physical state of the Ca(OH) ₂ formed in the reaction?
		(Total 8 ı
) .		(Total 8 i
Fluo Fluo gase	orine re es. It d	(Total 8 is the most reactive element in group 7 of the Periodic Table. Exercise with all the other elements in the Periodic Table except some of the noble does not react with helium, neon and argon, but it does react with xenon. Many is burst into flames when exposed to fluorine.
Fluo Fluo gase	orine re es. It d	s the most reactive element in group 7 of the Periodic Table. eacts with all the other elements in the Periodic Table except some of the noble does not react with helium, neon and argon, but it does react with xenon. Many
Fluo Fluo gase subs	orine re es. It d stance	s the most reactive element in group 7 of the Periodic Table. eacts with all the other elements in the Periodic Table except some of the noble does not react with helium, neon and argon, but it does react with xenon. Many is burst into flames when exposed to fluorine. The electronic structure of chlorine is 2.8.7. What is the electronic structure
Fluo Fluo gase subs	orine rees. It destance	s the most reactive element in group 7 of the Periodic Table. eacts with all the other elements in the Periodic Table except some of the noble does not react with helium, neon and argon, but it does react with xenon. Many is burst into flames when exposed to fluorine. The electronic structure of chlorine is 2.8.7. What is the electronic structure of fluorine?

(b)	(1)	What does the information at the start of this question suggest about the reactivity of the elements in group 0?
	(ii)	A chemist did an experiment to find out if fluorine reacts with xenon. The two gases were mixed in a glass container. The only product detected was silicon fluoride. Explain what happened.
	(iii)	The experiment was repeated many years later but the gases were mixed in a
	(111)	different type of container. A white solid was obtained which was xenon fluoride. Predict whether you think (1) krypton and (2) radon will react with fluorine.
		Explain the reasons for your predictions.
		(Total 14 m
		millions of different substances that make up our world. All these substances from chemical elements.
(a)	Wha	at is an element?
(b)	Mar	ny substances are compounds. What is a compound?

		(Total 3
	tha Da	oriodio Toblo on the Data Shoot to help you to answer this guestion
))		eriodic Table on the Data Sheet to help you to answer this question. e one similarity and one difference in the electronic structure of the elements:
	(i)	across the Period from sodium to argon;
	(ii)	down Group 7 from fluorine to astatine.
	(i)	State the trend in reactivity of the Group 1 elements.
	(ii)	Explain this trend in terms of atomic structure.
		rogen is an element which is difficult to fit into a suitable position in the Periodic e. Give reasons why hydrogen could be placed in either Group 1 or Group 7.

(Total 11 marks)

(3)

Q43.

The extract below was taken from a leaflet on the uses of platinum. One of the uses described was in making electrodes for spark plugs in car engines. The spark plug produces the spark which ignites the fuel in the engine.

Spark Plugs

The electrodes in a spark plug have to conduct electricity very well. Since they project into the combustion chamber of the engine, they must also be able to withstand extremely high temperatures in a very corrosive atmosphere.

Nickel-based plugs have been produced for many years. They only last a fairly short time. As the electrodes wear, combustion becomes less efficient and the petrol is not burnt completely.

Platinum and other precious metals can now be used in spark plugs. These last much longer and are more efficient. This can help to reduce air pollution.

The table below gives some information about platinum and nickel.

	MELTING POINT (° C)	BOILING POINT (° C)	POSITION IN REACTIVITY SERIES	COST (£/kg)
nickel	1455	2920	Higher than gold	2.5
platinum	1769	4107	below gold	6110

(a) Compare nickel and platinum for use in making the electrodes in spark plugs.

A good answer should give advantages and disadvantages of each metal linking these to the properties of the metals. Marks will be given for the way in which you organise your answer.

You will need a sheet of lined paper.

			(8)
(b)	(i)	Describe the structure and bonding in metals.	

	(ii)	Explain why metals such as nickel and platinum are good conductors of electricity.			
		(Total 13 ma			
44.					
	•	n the manufacture of lead is the reduction of lead oxide with carbon. Lead and xide are the products of this reaction.			
(a)	Write	e a word equation for this reaction.			
(b)	\\/ha	at is meant by "reduction"?			
(b)	VVIIC	at is meant by "reduction"?			
		/Total 2 ma			
		(Total 2 ma			
45. Read	d the f	ollowing information about an element X.			
	en to	ent X melts above 600°C. It conducts electricity at room temperature. It burns in form an oxide. When the oxide is mixed with water it turns Universal Indicator			
	oxide on X ²⁺	e of X is a white solid at room temperature. It has the formula XO and contains			
		ent X reacts with chlorine to form a chloride with a high melting point. The onducts electricity when molten and it is soluble in water.			
(a)	Fron	n the information give three pieces of evidence which suggest that X is a metal.			
	1				
	2				
	3				

In which Group of the Periodic Table shou your answer.	ld X be placed? Give a reason for
Group	
Reason	
Predict the formula for the chloride of X	
	(Total 6