Atomic Structure Part 6

Q1.

(a) The electronic structure of a sodium atom can be written 2,8,1. Write the electronic structure of a potassium atom in the same way.

(1)

(b) The electronic structure of a sodium atom can also be represented as in the diagram below.

(i) Draw a similar diagram for a fluorine atom.

(ii) Draw similar diagrams to show the electronic structure of the particles in sodium fluoride.

(4) (Total 5 marks)

Q2.

(a) Why do the elements in Group 1 of the Periodic Table have similar chemical properties?

_ (1)

(b)	Explain w	hy the reactivity of the elements in Group 1 increases down the group.
		(Total 3 ma
3.		
The f	ollowing pa	ssage was taken from a chemistry textbook.
		white, shiny, brittle element. It is used in the electronics industry because luct a small amount of electricity.
The i		germanium oxide obtained from flue dusts of zinc and lead smelters. nanium oxide from the flue dusts is changed into germanium by the l below.
STEF	P 1	The germanium oxide is reacted with hydrochloric acid to make germanium tetrachloride. This is a volatile liquid in which the germanium and chlorine atoms are joined by covalent bonds.
STEF	2	The germanium tetrachloride is distilled off from the mixture.
STEF	9 3	The germanium tetrachloride is added to an excess of water to produce germanium oxide and hydrochloric acid.
STEF	PS 1 to 3	are repeated several times.
STE	9 4	The pure germanium oxide is reduced by hydrogen to form germanium.
(a)	Balance t	ne equation below which represents the reaction in step 1.
	GeO ₂ +	$_$ HCI \rightarrow GeCl ₄ + $_$ H ₂ O
(b)	Write a wo	ord equation for the reaction in step 3.
(c)	Suggest v	why steps 1 to 3 are repeated several times.
(d)	The equa	tion which represents the reaction in step 4 is shown below.
		GeO_2 + $2H_2$ \rightarrow Ge + $2H_2O$
	(i) Exp	ain what is meant by the term 'reduced'.

(::)	
(ii)	Calculate the mass of germanium which could be made from 525 g of germanium oxide. (Relative atomic masses: Ge = 73; O = 16).
	Mass g
Ger	manium is difficult to classify as either a metal or a non-metal.
(i)	Give as much evidence as you can from the information in this question to support the view that germanium is a metal. Explain your answer as fully as you can.
(ii)	Give as much evidence as you can from the information in this question to support the view that germanium is a non-metal. Explain your answer as fully as you can.

Q4.

- (a) The list below gives six substances.
 - aluminium
 - beer
 - copper
 - milk

	•	pure water				
	•	sodium chloride				
	Put ea	ach substance in the	e correct o	column of the ta	ıble.	
		ELEMENTS	COM	IPOUNDS	MIXTURES	7
					WIIXTOTALO	
						(3)
(b)		ents can be divided				
	The	list below gives som	e properti	es of elements		
	•	brittle				
	•	can be hammered	into shape)		
	•	dull				
	•	good conductors of	electricity	/		
	•	poor conductors of	electricity			
	•	shiny				
	Put e	ach property into the	e correct c	column.		
	PF	ROPERTIES OF ME	TALS	PROPERTIE	S OF NON-METALS	
						(3)
						(Total 6 marks)
Sand elem		a medicine. It is giv	en to peop	ole whose bodi	es contain too little of a	particular
San		s a mixture of two co	mpounds	. The formulae	of the two compounds	are given
		KHCO3		KCI		

Use the Data Sheet to help you to name all the elements in these compounds.

Q5.

(a)

(b)	Which metal do people given Sando-K need?	(3)
		(1) (Total 4 marks)

Q6.

The table shows the % composition by mass of modern British coins.

COIN	% COMPOSITION BY MASS					
COIN	copper	nickel	tin	zinc		
£1	70	5.5	-	24.5		
20p	84	16	-	-		
5p, 10p, & 50p						
1p &2p (until 1991)	97	-	0.5	2.5		
1p &2p (1992 onwards)		Copper	plated steel			

- (a) Use the Data Sheet to help you to complete the table by filling in the information about 5p, 10p and 50p coins which are made of cupronickel.
- (b) Shade the pie chart to represent the % of copper in a £1 coin.

(c) Name the metal present in:

(1)

(1)

	(1)	all these coins,
	(ii)	a £1 coin but not in a 20p coin.
(d)	The	following is a list of properties.
	•	bends easily
	•	good conductor of electricity
	•	hard
	•	high melting point
	•	poor conductor of heat
	•	unreactive
		m this list, choose two properties which coinage metals should have. For each erty, give a reason for your answer.
	Prop	erty 1
	Reas	son
	Prop	erty 2
	Reas	son
		(Total 6 n
elem	ent.	is a mixture of two compounds. The formulae of the two compounds are given
belov		
		KHCO ₃ KC1
(a)	Whi	ch metal do people given Sando-K need?
(b)		do-K contains the ion, CO ₃₂ –. Which gas would be produced if a dilute acid was ed to Sando-K? (The Data Sheet may help you to answer this question.)
(c)		compounds in Sando-K contain ions.

Atoms change into positive ions by one or more Atoms change into negative ions by one or more Atoms change into negative ions by one or more (d) Electricity can be used to show that an aqueous solution of Sando-K contains ions. (i) Draw a diagram of an apparatus that you could use to prove that Sando-K contains ions. (ii) Explain, as fully as you can, what would happen when the electricity is switched on. (Total 13 m	Atoms change into negative ions by one or more (d) Electricity can be used to show that an aqueous solution of Sando-K contains ions. (i) Draw a diagram of an apparatus that you could use to prove that Sando-K contains ions. (ii) Explain, as fully as you can, what would happen when the electricity is switched on. (Total 13 mg) (Total 13 mg) (a) Calcium and magnesium are elements. They are found in the Earth's crust as compounds, often carbonates and sulphates. Magnesium is also found as its chloride. (b) Use the Data Sheet to help you to answer this question.		Com	piete the two sentences below.
Atoms change into negative ions by one or more (d) Electricity can be used to show that an aqueous solution of Sando-K contains ions. (i) Draw a diagram of an apparatus that you could use to prove that Sando-K contains ions. (ii) Explain, as fully as you can, what would happen when the electricity is switched on. (Total 13 m (Total 13 m 88. Calcium and magnesium are elements. They are found in the Earth's crust as compounds, often carbonates and sulphates. Magnesium is also found as its chloride. (a) Calcium and magnesium are in the same Group in the Periodic Table. State which Group this is.	Atoms change into negative ions by one or more (d) Electricity can be used to show that an aqueous solution of Sando-K contains ions. (i) Draw a diagram of an apparatus that you could use to prove that Sando-K contains ions. (ii) Explain, as fully as you can, what would happen when the electricity is switched on.		Aton	ns change into positive ions by one or more
(d) Electricity can be used to show that an aqueous solution of Sando-K contains ions. (i) Draw a diagram of an apparatus that you could use to prove that Sando-K contains ions. (ii) Explain, as fully as you can, what would happen when the electricity is switched on. (Total 13 m (Total 13 m Calcium and magnesium are elements. They are found in the Earth's crust as compounds, often carbonates and sulphates. Magnesium is also found as its chloride. (a) Calcium and magnesium are in the same Group in the Periodic Table. State which Group this is.	(i) Electricity can be used to show that an aqueous solution of Sando-K contains ions. (i) Draw a diagram of an apparatus that you could use to prove that Sando-K contains ions. (ii) Explain, as fully as you can, what would happen when the electricity is switched on. (Total 13 mg) 3. Calcium and magnesium are elements. They are found in the Earth's crust as compounds, often carbonates and sulphates. Magnesium is also found as its chloride. (a) Calcium and magnesium are in the same Group in the Periodic Table. State which Group this is.			ns change into negative ions by one or
(ii) Explain, as fully as you can, what would happen when the electricity is switched on. (Total 13 m 8. Calcium and magnesium are elements. They are found in the Earth's crust as compounds, often carbonates and sulphates. Magnesium is also found as its chloride. (a) Calcium and magnesium are in the same Group in the Periodic Table. State which Group this is.	(ii) Explain, as fully as you can, what would happen when the electricity is switched on. (Total 13 m. Calcium and magnesium are elements. They are found in the Earth's crust as compounds, often carbonates and sulphates. Magnesium is also found as its chloride. (a) Calcium and magnesium are in the same Group in the Periodic Table. State which Group this is.		more	·
(ii) Explain, as fully as you can, what would happen when the electricity is switched on. (Total 13 m) 8. Calcium and magnesium are elements. They are found in the Earth's crust as compounds, often carbonates and sulphates. Magnesium is also found as its chloride. (a) Calcium and magnesium are in the same Group in the Periodic Table. State which Group this is.	(ii) Explain, as fully as you can, what would happen when the electricity is switched on. (Total 13 m. Calcium and magnesium are elements. They are found in the Earth's crust as compounds, often carbonates and sulphates. Magnesium is also found as its chloride. (a) Calcium and magnesium are in the same Group in the Periodic Table. State which Group this is.	(d)	Elec	tricity can be used to show that an aqueous solution of Sando-K contains ions.
8. Calcium and magnesium are elements. They are found in the Earth's crust as compounds, often carbonates and sulphates. Magnesium is also found as its chloride. (a) Calcium and magnesium are in the same Group in the Periodic Table. State which Group this is. (b) Use the Data Sheet to help you to answer this question.	(Total 13 magnesium are elements. They are found in the Earth's crust as compounds, often carbonates and sulphates. Magnesium is also found as its chloride. (a) Calcium and magnesium are in the same Group in the Periodic Table. State which Group this is. (b) Use the Data Sheet to help you to answer this question.		(i)	
Calcium and magnesium are elements. They are found in the Earth's crust as compounds, often carbonates and sulphates. Magnesium is also found as its chloride. (a) Calcium and magnesium are in the same Group in the Periodic Table. State which Group this is. (b) Use the Data Sheet to help you to answer this question.	Calcium and magnesium are elements. They are found in the Earth's crust as compounds, often carbonates and sulphates. Magnesium is also found as its chloride. (a) Calcium and magnesium are in the same Group in the Periodic Table. State which Group this is. (b) Use the Data Sheet to help you to answer this question.		(ii)	
Calcium and magnesium are elements. They are found in the Earth's crust as compounds, often carbonates and sulphates. Magnesium is also found as its chloride. (a) Calcium and magnesium are in the same Group in the Periodic Table. State which Group this is. (b) Use the Data Sheet to help you to answer this question.	Calcium and magnesium are elements. They are found in the Earth's crust as compounds, often carbonates and sulphates. Magnesium is also found as its chloride. (a) Calcium and magnesium are in the same Group in the Periodic Table. State which Group this is. (b) Use the Data Sheet to help you to answer this question.			
Calcium and magnesium are elements. They are found in the Earth's crust as compounds, often carbonates and sulphates. Magnesium is also found as its chloride. (a) Calcium and magnesium are in the same Group in the Periodic Table. State which Group this is. (b) Use the Data Sheet to help you to answer this question.	Calcium and magnesium are elements. They are found in the Earth's crust as compounds, often carbonates and sulphates. Magnesium is also found as its chloride. (a) Calcium and magnesium are in the same Group in the Periodic Table. State which Group this is. (b) Use the Data Sheet to help you to answer this question.			(Total 13 r
State which Group this is. (b) Use the Data Sheet to help you to answer this question.	State which Group this is. (b) Use the Data Sheet to help you to answer this question.	Calc		
		(a)		
(i) Write the chemical formula of magnesium chloride.	(i) Write the chemical formula of magnesium chloride.	(b)	Use	the Data Sheet to help you to answer this question.
			(i)	Write the chemical formula of magnesium chloride.

Name the type of bonding in magnesium chloride.

(ii)

(Total 3 marks)

(1)

(1)

(2)

Q9.

Sulphur hexafluoride is a colourless, odourless, non-flammable gas, which is insoluble in water and extremely unreactive. It is used as an insulator in high voltage transformers and switchgear.

The diagram below represents a molecule of sulphur hexafluoride.

(a)	What type of chemical bond holds the sulphur and fluorine atoms together in
	sulphur hexafluoride molecules?

(b)	Explain why sulphur hexafluoride has a low boiling point.	

(c)	Explain how three of the properties of sulphur hexafluoride make it suitable for use
	as an insulator inside electrical transformers.

Property 1:			
Explanation:			
•			
Property 2:	 		
Explanation:			

Property 3: _	 	 	
Explanation:			
•			

(3)

(Total 6 marks)

Q10.

The diagram represents an atom. Choose words from the list to label the diagram.

(Total 3 marks)

Q11.

Use these relative atomic masses: H = 1; O = 16; Ca = 40 to calculate the relative formula mass (M_r) of

quicklime CaO	
slaked lime Ca(OH) ₂	
(/2	/Total 2 marks

(Total 2 marks)

Q12.

One definition of an element is:

"A substance that cannot be broken down into simpler substances by chemical methods"

The table below shows some of the 'substances' which Antoine Lavoisier thought were elements. He divided the 'substances' into four groups. He published these groups in 1789.

The modern names of some of the 'substances' are given in brackets.

ACID-MAKING ELEMENTS	GAS-LIKE ELEMENTS	METALLIC ELEMENTS		EARTHY ELEMENTS
sulphur	light	cobalt	mercury	lime (calcium oxide)
phosphorus	caloric (heat)	copper	nickel	magnesia (magnesium oxide) barytes
charcoal (carbon)	oxygen	gold	platina (platinum)	(barium sulphate) argilla

azote (nitrogen)	iron	silver	(aluminium oxide) silex
hydrogen	lead	tin	(silicon dioxide)
	magnese	tungsten	
	zinc		

(i)	Name one substance in the list which is a compound.
(ii)	Suggest why Lavoisier thought that this substance was an element.

Q13.

X is an element with the following properties:

- melts at -220°C and boils at -188°C;
- does not conduct electricity at room temperature;
- forms molecular compounds with non-metals;
- forms ionic salts with metals in which its ion has a 1-charge.
- (a) Would you expect X to be a solid, a liquid or a gas at 20°C?

(1)

(b) Predict the formula of the product formed when X reacts with aluminium. (The aluminium ion is Al³⁺ and the X ion is X⁻.) Select your answer from the list below.

	AIX	AIX_2	AIX ₃	AI_3X	Al_2X_3	
	Predicted forr	nula				(1)
(c)	To which Grou	up of the Peri	iodic Table do	oes the eleme	nt X belong?	(1)
						(1) (Total 3 marks)
Q14. Sodi	um and potassi	um are both i	in Group 1 of	the Periodic 1	Γable.	
(a)	Explain, by ref Group 1.	ference to the	eir electronic	structures, wh	ny both elements are p	laced in
						(1)
(b)	Use the Data The diagrams				on. es of some atoms and	ions.
	X A		B	c		
					**	
	D Which are of	4l 4w 4	E	F		
	Which one of (i) represer					
						(1)
(c)	Sodium and p	otassium bot	h react with c	old water.		

The word equation represents the reaction of sodium with water.

(i)

sodium + water → sodium hydroxide + hydrogen

	+			
How does the with water?	e reactivity of pota	ssium with water	differ from that	of sodium
Explain this c	ifforence in reacti	it. b. reference	to the electroni	o etruetures e
	n and sodium aton	vity by reference ns.	to the electroni	ic structures of
	n and sodium aton			
	n and sodium aton	ns.		
	n and sodium aton	าร.		

(Total 9 marks)

Q15.

One definition of an element is:

"A substance that cannot be broken down into simpler substances by chemical methods"

The table below shows some of the 'substances' which Antoine Lavoisier thought were elements. He divided the 'substances' into four groups. He published these groups in 1789.

The modern names of some of the 'substances' are given in brackets.

ACID-MAKING ELEMENTS	GAS-LIKE ELEMENTS		TALLIC MENTS	EARTHY ELEMENTS
sulphur	light	cobalt	mercury	lime (calcium oxide)
phosphorus	caloric (heat)	copper	nickel	magnesia (magnesium oxide)
charcoal	oxygen	gold	platina (platinum)	barytes (barium sulphate)
(carbon)	azote	iron	silver	argilla (aluminium oxide)
	(nitrogen) hydrogen	lead	tin	silex (silicon dioxide)

	magnese	tungsten
	zinc	

Dmitri Mendeleev devised a Periodic Table of the elements in 1869. A modern version of this table is shown on the Data Sheet.

Give two	wavs in	n which N	lendeleev's	table is more	useful than	Lavoisier's
----------	---------	-----------	-------------	---------------	-------------	-------------

1	
2	

(Total 2 marks)

Q16.

Ammonia is a very important chemical.

(a) The table shows the percentage of ammonia used to make different substances.

SUBSTANCES MADE FROM AMMONIA	PERCENTAGE (%) OF AMMONIA USED
fertilisers	75
nitric acid	10
nylon	5
others	10

Shade on the pie chart the percentage of ammonia used to make nitric acid.

(1)

(b) Ammonia gas is made by the reaction between nitrogen gas and hydrogen gas. Write a word equation to represent this reaction.

(1)

(c) Nitrogen is one of the raw materials used to make ammonia.
 Nitrogen is obtained from air.
 This pie chart shows the proportion of nitrogen, oxygen and other gas

This pie chart shows the proportion of nitrogen, oxygen and other gases in air. Label the area which represents the proportion of nitrogen in air.

(1)

(d) An artificial fertiliser contains compounds with the formulae:

NH₄NO₃ and KCI

(i) Use the Data Sheet to help you answer this question. Name the elements in the compound NH₄NO₃.

1.

	2
(ii)	3 Use the Data Sheet to help you answer this question. Name the compound KCI.
(i)	Ammonium nitrate is one type of artificial fertiliser. Calculate the relative formula mass of ammonium nitrate NH_4NO_3 . (Relative atomic masses: $H = 1$, $N = 14$, $O = 16$.)
(ii)	Use your answer to part (f)(i) to help you calculate the percentage by mass of nitrogen present in ammonium nitrate NH ₄ NO ₃ .
	(Total 9 m

Q17.

Use the Data Sheet to help you answer this question.

When sodium reacts with water it forms sodium ions.

The diagrams below represent the electron arrangements of some atoms and ions.

Which of the diagrams, **A** to **E**, represents the electron arrangement of each of the following?

(i) A sodium atom, Na _____

(ii) A sodium ion, Na⁺_____

(Total 2 marks)

Q18.

Part of the Periodic Table which Mendeleev published in 1869 is shown below.

	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
Period 1	Н						
Period 2	Li	Be	В	С	И	0	F
Period 3	Na	Mg	A1	Si	P	s	C1
Period 4	К	Ca	*	Ti *	ν .	Cr	Mn
	Cu	Zn	*	*	As	Se	Br
Period 5	Rb Ag	Sr Cd	Y In	Zr Sn	Nb Sb	Mo Te	* I

(i)	Give the symbols of two elements in Group 1 of Mendeleev's Periodic Table which are not found in Group 1 of the modern Periodic Table.
	and
(ii)	Name these two elements.
	and
Whi table	ch group of elements in the modern Periodic Table is missing on Mendeleev's e?
	ndeleev left several gaps in his Periodic Table. These gaps are shown as
aste	ndeleev left several gaps in his Periodic Table. These gaps are shown as risks(*) on the table above. gest why Mendeleev left these gaps.
aste	risks(*) on the table above.
aste	risks(*) on the table above. gest why Mendeleev left these gaps.
aste	risks(*) on the table above. gest why Mendeleev left these gaps.
aste	risks(*) on the table above. gest why Mendeleev left these gaps.
aste Sug	risks(*) on the table above. gest why Mendeleev left these gaps.
aste Sug Cor	risks(*) on the table above. gest why Mendeleev left these gaps.
aste Sug Cor	risks(*) on the table above. gest why Mendeleev left these gaps. nplete the following sentence. e modern Periodic Table the elements are arranged in the order of their
aste Sug Cor	risks(*) on the table above. gest why Mendeleev left these gaps. nplete the following sentence.
Cor In th	risks(*) on the table above. gest why Mendeleev left these gaps. nplete the following sentence. e modern Periodic Table the elements are arranged in the order of their

PROPERTY	
They react with water to give alkaline solutions.	
They are gases.	
They are non-metals.	
They form an ion with a 1+ charge.	
They react with water and give off hydrogen.	✓
They form an ion with a 1– charge.	
They are metals.	
They react with water to give acidic solutions.	_

Vhat happens when a sm ou should describe what					formed
od silodia describe wriat	you would 5	cc and star	o what sub	starious arc	, ioiiiica.

Q19.

Part of the Periodic Table which Mendeleev published in 1869 is shown below.

	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
Period 1	Н						
Period 2	Li	Be	В	С	И	0	F
Period 3	Na	Mg	Al	Si	Р	s	C1
Period 4	K Cu	Ca Zn	*	Ti *	V As	Cr Se	Mn Br
Period 5	Rb Ag	Sr Cd	Y In	Zr Sn	Nb Sb	Mo Te	* I

Use the Data Sheet to help you to answer this question.

(a)	Name two elements in Group 1 of Mendeleev's Periodic Table which are not found in Group 1 of the modern Periodic Table.	
	and	(2)
(b)	Which group of elements in the modern Periodic Table is missing on Mendeleev's table?	(2)
(c)	Mendeleev left several gaps in his Periodic Table. These gaps are shown as asterisks(*) on the table above. Suggest why Mendeleev left these gaps.	(1)
		(1)
(d)	Complete the following sentence.	
	In the modern Periodic Table the elements are arranged in the order of their	
	numbers.	(1)
	(Total 5 m	
Q20. (a)	What is the name given to the block of elements in the middle of the Periodic Table which includes vanadium?	
(b)	Come of the proportion of vanadium are about in this list	(1)
(b)	Some of the properties of vanadium are shown in this list.It has a high melting point.	
	It is a solid at room temperature.	
	It is a conductor of electricity.	
	It is a good conductor of heat.	
	It forms coloured compounds.	
	If forms crystalline compounds.	
	It forms compounds that are catalysts.	
	Select two properties, from the list above, which are not typical of a Group 1 metal.	
	1.	

2.	

(Total 3 marks)

(2)

Q21.

In sea water the bromine is present as bromide ions (Br⁻). The equation below shows how chlorine can be used to displace bromine from sea water.

$$Cl_{2(g)}$$
 + $2Br^{-}(aq)$ \rightarrow $Br_{2(g)}$ + $2Cl^{-}(aq)$

Explain, as fully as you can, why chlorine can displace bromine from sea water. To obtain full marks your answer should refer to electronic structure.

(Total 3 marks)

Q22.

The graph shows the melting point of four elements in Group 7 of the periodic table.

(a) What is the melting point of fluorine?

Room temperature is 20°C.	
Which element is solid at room	temperature?
ook at the periodic table on th	e Data Sheet.
Using data from the graph, des Group 7.	scribe the trend of melting points of the elements in
	an matala
The elements in Group 7 are no	
Which two of the following are	
Place a tick (🞷) in the box aga	inst each correct property.
Brittle (if solid)	
Good conductor of heat	
Good conductor of heat High boiling point	

Q23.

The periodic table on the Data Sheet might help you to answer this question.

Diagrams **A – D** show models of four different molecules.

Complete the table to give the name and the formula of each of the molecules ${\bf A}-{\bf D}.$

The first one has been done for you.

Molecule	Name	Formula
Α	Hydrogen	H_2
В		
С		
D		

(Total 6 marks)

Q24.

The elements in Group 1 are known as the	alkali metals.	
Which three of the following are properties	s of alkali metals?	
Place a tick (v´) in the box against each co	orrect property.	
Hard, tough and strong		
Low density		
Form hydroxides that dissolve in water		
React quickly with water		
Used as catalysts		
Used to make electric cables		
		(Total 3 marks)

Q25.

Use the periodic table on the Data Sheet to answer these questions.

The table below gives the electronic structures of four elements, \boldsymbol{W} , \boldsymbol{X} , \boldsymbol{Y} and \boldsymbol{Z} .

Element	Electronic structure
W	2,5
Х	2,7
Y	2,8,8
Z	2,8,8,1

(a) Which element **W**, **X**, **Y** or **Z**:

(i)	is a Group 0 gas?	
(ii)	is nitrogen?	
(iii)	is a Group 7 gas?	
(iv)	reacts violently with water?	(3)
Whi	ch two Groups of the periodic table do not contain any non-metals?	

Q26.

(b)

(a) You may find the Data Sheet helpful to complete the word equation.

These two gases react as shown in the balanced symbol equation.

$$2H_2 + O_2 \rightarrow 2H_2O$$

Complete the word equation for this reaction.

hydrogen + _____ → ____

(2)

(b) Complete this sentence by crossing out the **two** words in the box that are wrong.

This chemical reaction is much faster if a molecule if a

is used

(1)

(Total 3 marks)

(Total 4 marks)

Q27.

Beryllium and calcium are metals in Group 2 of the periodic table.

The diagrams show their electronic structures.

(a) Why do beryllium and calcium have similar chemical properties?

(b)	Calcium is more reactive than beryllium.	(1)
. ,	Suggest an explanation for this in terms of the electronic structure of the two elements.	
		(2)
	(То	tal 3 marks)
3.		
(a)	Helium is used to fill party balloons.	
	Which two of the following are properties that make helium suitable for filling p balloons?	arty
	Place a tick (✔) in the box against each suitable property.	
	Coloured	
	Exists as individual atoms	
	Less dense than air	
	Poor conductor of heat	
	Very unreactive	
		(2)
(b)	The table shows the names of some gases.	
	Use the correct formulae from the box to complete the table. The first one has done for you.	been
	CH ₄ CO ₂ H ₂ HCl NH ₃ O ₂	
	- · ·	

 O_2

Oxygen

Carbon dioxide	
Hydrogen chloride	
Ammonia	

(3) (Total 5 marks)

Q29.

Use the Periodic Table of Elements on the Data Sheet to help you to answer this question.

(b) Complete the diagram to show the electronic structure of a magnesium atom.

(1) (Total 4 marks)

Q30.

Use the Periodic Table of Elements on the Data Sheet to help you to answer this question.

Francium (Fr) is a very rare element. It is estimated that there is only 25 g of francium in the Earth's crust. Francium is radioactive and has a half-life of only a few minutes.

Mendeleev predicted the existence of francium in the 1870s but the element was not discovered until 1939.

(a) Explain why Mendeleev was able to predict the existence of francium in the 1870s.

))	Sugg franc	gest why there is not much experimental evidence for the properties of cium.
)	(i)	If you could react francium with water, how would the reaction compare with that of sodium with water?
	(ii)	Explain the reason for your answer.
		(Total 6
se t	the pe	eriodic table on the Data Sheet to help you to answer these questions.
ı)	Write	e the symbol for helium.
))	Write	e the name of an element in Group 4.
:)	Write	e the name of the element which has a relative atomic mass of 64.
d)		e the name of the element with the next highest atomic number after Te

Q32.

The diagram shows an atom.

(a) On the diagram, write the names of structures **A**, **B**, **C** and **D**.

(4)

(b) To which Group of the periodic table does this atom belong?

Give one reason for your answer.

(2)

(c) Name the element which is made up of this type of atom.

(Total 7 marks)

(1)

Q33.

The table shows some properties of four Group 7 elements.

			State at room temperatur e	Reaction with	hydrogen
Element	Boiling point in °C	Melting point in °C		Description	Product
Fluorine	– 218	– 188	gas	Explosive	Hydrogen

				reaction in dim light	fluoride
Chlorine	- 34	- 101	gas	Explosive reaction in sunlight	Hydrogen chloride
Bromine	+ 59	-7		Reacts if heated	
lodine	+ 185	+ 114		Reacts if heated strongly	Hydrogen iodide

					0.1.9.7	10 0100	
(a)	What is	s the state at re	oom temperat	ure of:			•
	(i) b	romine;					
	(ii) io	odine?					(2)
(b)	Which	one of the fou	r elements is	most reactive?			(2)
(a)	Nama t	ha aamnaund	formed when	hydrogon roost	a with broming		(1)
(c)	ivallie l	ne compound	ioimed when	nyurogen reaci	s with bromine.		
						(Total 4 ma	(1) rks)
						1.5.5. 71114	,

Q34.

(ii)

Ammonium chloride, NH₄CI, is made up of nitrogen, hydrogen and chlorine atoms.

(i) Complete the table to show the number of atoms of each element present in NH₄Cl.

Element	Number of atoms in NH₄Cl
nitrogen	1
hydrogen	
chlorine	

Calculate the relative formula mass of ammonium chloride, NH₄Cl.
(Relative atomic masses: H = 1, N = 14, Cl = 35.5)

(1)

Relative formula mass = _	
	(2)

(Total 3 marks)

Q35.

The table shows how Group 7 elements react with hydrogen.

	Reaction with hydrogen					
Element	Description	Product				
Fluorine	Explosive reaction in dim light	Hydrogen fluoride				
Chlorine	Explosive reaction in sunlight	Hydrogen chloride				
Bromine	Reacts if heated	Hydrogen bromide				
Iodine	Reacts if heated strongly	Hydrogen iodine				

Explain the difference in the rates of the reaction of fluorine with hydrogen and of loc with hydrogen.	line
(To	tal 2 marks)

Q36.

John Newland produced a periodic table in 1866. The first 21 elements in his table are shown in the diagram.

	Column										
1	2	3	4	5	6	7					
Н	Li	Be	В	С	N	0					
F	Na	Mg	Al	Si	Р	S					
CI	K	Ca	Cr	Ti	Mn	Fe					

Use the periodic table on the Data Sheet to help you to answer these questions.

(a) In which **two** columns of Newland's periodic table do all the elements have similar properties?

i)	What order is used in the modern periodic table?
ii)	Argon has a higher relative atomic mass than potassium. Explain why.
iii)	Describe the changes in the number of electrons in the atoms of elements in the period which begins with potassium and ends with krypton.
	(Total 5

Q37

(a)

Melting point	1410 °C
Relative atomic mass	28
Conductivity	Conducts electricity
Compounds	Forms compounds with covalent bonds
Position in periodic table	Group 4
Reaction with water	Unreactive
Density	Relatively low

Give two ways in which silicon is similar to the alkali metals.
1
2

Give two ways in which the properties of silicon are different from those of the alkal metals.	İ
1	_
2	-
/T-1-1-4	_ (2
(Total 4	mark
he periodic table on the Data Sheet to help you to answer these questions.	
Write the symbol for helium.	
Write the name of an element in Group 4.	_ (
	- ('
Write the name of the element which has a relative atomic mass of 64.	,
	_ (
Write the name of the element with the next highest atomic number after Te (tellurium) in the periodic table.	
(Total 4	_ (1
	metals. 1

Q39.

(a) The table shows how Group 7 elements react with hydrogen.

Element	Reaction with hydrogen					
	Description	Product				
Fluorine	Explosive reaction in dim light	Hydrogen fluoride				
Chlorine	Explosive reaction in sunlight	Hydrogen chloride				
Bromine	Reacts if heated	Hydrogen bromide				
lodine	Reacts if heated	Hydrogen iodine				

			stron	gıy									
(i)	Ex	plain w	hy all the	Group	7 eler	ments	react	in a	simil	ar wa	y with	hydr	ogen.
(ii)	Ex an	plain th d of iod	e differe ine with	nce in t nydroge	he rate en.	es of th	ne rea	actio	n of f	luorine	e with	hydro	ogen,
) Ex	plain	why Gr	oup 0 ele	ements	are m	onator	nic.						
o) Ex	plain	why Gr	oup 0 ele	ements	are m	onator	nic.						
o) Ex 	rplain	why Gro	oup 0 ele	ements	are mo	onator	nic.						
) Ex 	rplain	why Gr	oup 0 ele	ements	are mo	onator	nic.						
) Ex	xplain	why Gro	oup 0 ele	ements	are mo	onator	nic.						
) Ex	xplain	why Gro	oup 0 ele	ements	are mo	onator	nic.						(Total 6 n
	xplain	why Gro	oup 0 ele	ements	are m	onator	nic.						(Total 6 n
								bols	for s	ix eler	nents		(Total 6 n
	ne Per		able is sh	nown. It		es the		bols	for si	ix eler	nents.		(Total 6 n
				nown. It				bols	for s	ix eler	nents		(Total 6 n
	ne Per		able is sh	nown. It		es the		bols	for si	ix eler	nents		(Total 6 n
	ne Per		able is sh	nown. It		es the		bols	for s	ix eler	nents		(Total 6 n

(b) (i) Put the symbol CI, for chlorine, into its correct position in the Table.

Write the symbol for carbon. _

(a)

(1)

(1)

	(ii)	Bromine, chlorine, fl halogens is least rea	uorine and iodine are halogens. active?	Which one of these
(c)		alkali metals form Gr tive alkali metal show	oup 1 in the Periodic Table. Writen in the Table above.	e the symbol of the mos
(d)	Writ	e the symbol for an el	lement which is in the same Gro	up as sodium.
				(Total
I1. Elect	rons,	neutrons and protons	s are sub-atomic particles.	
(a)	Coi	mplete the six spaces	s in the following table.	
	Nan	ne of sub-atomic particle	Relative mass	Relative charge
-			1	
_				0
-			<u>1</u> 1840	
(b)		aluminium atom has 1 eus?	3 electrons. How are these arrai	nged in shells around the
(c)	Chr	omium atoms have 24	protons and 28 neutrons.	
	(i)	How many electrons	s does each neutral chromium a	tom have?
	(ii)	What is the mass nu	umber of chromium?	
(d)	Wha	at change occurs to a	n atom which undergoes the pro-	cess of <i>reduction</i> in a

chemical reaction?

	shows part of the io	*	·	
	0	−O Sodium		
Explain why	the ions in this lattic	e stay in place.		
				(Total 10
Choose from follow.	the names of eleme	ents in the box the ar	nswers to the que	
	the names of eleme	ents in the box the ar chlorine	nswers to the que	
follow.				
aluminium	carbon	chlorine	copper	
aluminium helium Give the nar	carbon	chlorine	copper	

					Num	ber of electrons	s in-			
(c)	The	table gives ir	nformation a	about the atoms	of thre	ee elements.				
				_ in its nucleus.						
	(ii)	The mass n	number of a	n atom is the to	tal nun	nber of	and			
		atom is not	charged.							
	`,						if the			
(D)	(i)				numbe	r of	in its			
(b)	Con	nplete the spa	aces in the s	sentences						
	_			1	_					
		Neutror	n		-					
	_			1840						
		particle	e							
(a)		ns are made		nic particles. Co		e the six spaces Relative charge	in the table.			
3.										
							(Total 5 n			
	(ii)	Describe o	ne physica	I property which	they h	nave in common.				
	(i)	Describe o	ne chemica	al property whic	h they	have in common	ı .			
` ,	The alkali metals are in Group 1 of the Periodic Table. The elements in Group 1 have a number of similar properties.									
(b)	Tho	alkali motale	: 0	4 (4) 5 '		—				

a noble gas

(iii)

Fluorine	F	2	7	0
Neon	Ne	2	8	0
Sodium	Na	2	8	1

Two of these elements can react together to form a chemical compound.

,	What is the name and the formula of this compound?
	Name Formula
,	What type of bonding holds this compound together?
	Explain, in terms of electron transfer, how the bonding occurs in this compound.
-	
-	
-	
	(Total 1

Q44.

Part of the Periodic Table is shown below. Use the information to help you answer the questions which follow.

Н							He
Li	Be	В	C	И	0	F	Ne
Na	Mg	A1	Si	Р	ß	C1	Ar

(a)	Write the symbol for:			
	(i)	chlorine;		

(ii) sodium. _____

(b) (i) What is the symbol of the element which is in Group 2 and Period 3?

(2)

Tl	arrangement of alastrona in autobus (C) is 2.0.0
The	arrangement of electrons in sulphur (S) is 2.8.6.
Writ	e the arrangement of electrons for:
(i)	neon (Ne);
(ii)	aluminium (Al)
	Periodic Table is an arrangement of elements in order of increasing atomic ober. What is the atomic number of an element?
Wh	at is the name of the uncharged particle in the nucleus of an atom?

Q45.

The word box contains the names of some metals.

aluminium	copper	iron	manganese	zinc

(i) The drawing shows the view from a window. Choose from the names of metals in the box to complete the **three** spaces.

(ii)

(1)

What is the name of one metal in the word box which often has coloured (iii) compounds?

(Total 5 marks)

(1)