ATOMS AND ISOTOPES

4	$\overline{}$	_	1
1	_	7	
ч			

Scientists sometimes replace one scientific model with a different model.

For example, in the early 20th Century the plum pudding model of the atom was replaced by the nuclear model of the atom.

Explain what led to the plum pudding model of the atom being replaced by the nuclear model of the atom.	
(Total 6 m	

(Total 6 marks)

Q2.

A student models the random nature of radioactive decay using 100 dice.

He rolls the dice and removes any that land with the number 6 facing upwards.

He rolls the remaining dice again.

The student repeats this process a number of times.

The table below shows his results.

Roll number	Number of dice remaining
0	100
1	84
2	70
3	59
4	46

5	40
6	32
7	27
8	23

(a)	Give two reasons why this is a good model for the random nature of radioactive
	decay.

1. ______

2. _____

(b) The student's results are shown in **Figure 1**.

Figure 1

Use Figure 1 to determine the half-life for these dice using this model.

Show on Figure 1 how you work out your answer.

Half-life = _____ rolls

(c) A teacher uses a protactinium (Pa) generator to produce a sample of radioactive material that has a half-life of 70 seconds.

(2)

(2)

In the first stage in the protactinium generator, uranium (U) decays into thorium (Th) and alpha (α) radiation is emitted.

The decay can be represented by the equation shown in Figure 2.

Figure 2

$$^{238}_{92}U \longrightarrow ^{234}_{\square}Th + \alpha$$

Determine the atomic number of thorium (Th) 234.

(d) When protactinium decays, a new element is formed and radiation is emitted.

The decay can be represented by the equation shown in **Figure 3**.

Figure 3

$$^{234}_{91}Pa \rightarrow ^{234}_{92}X + radiation$$

When protactinium decays, a new element, **X**, is formed.

Use information from Figure 2 and Figure 3 to determine the name of element X.

(1)

(e) Determine the type of radiation emitted as protactinium decays into a new element.

	71		•	,	
Give a reaso	n for your ans	ver.			

(f) The teacher wears polythene gloves as a safety precaution when handling radioactive materials.

Explain why the teacher wears polythene gloves.

The polythene gloves do **not** stop the teacher's hands from being irradiated.

(2)

Q3.

Atoms are different sizes.

One of the heaviest naturally occurring stable elements is lead.

Two of its isotopes are lead-206 (82 Pb) and lead-208 (82 Pb)

(a) (i) What is meant by 'isotopes'?

(2)

(ii) How many protons are in the nucleus of a 82 atom?

(1)

(iii) How many neutrons are in the nucleus of a 82 atom?

(1)

(b) A nucleus can be accelerated in a particle accelerator and directed at a large nucleus. This produces a heavy nucleus that will decay after a short time.

This is shown in Figure 1.

(i) In 1984, nuclei of iron (Fe) were directed at nuclei of lead (Pb). This produced nuclei of hassium (Hs).

Complete the equation for this reaction by writing numbers in the empty boxes.

(ii) Use the correct answer from the box to complete the sentence.

an electron a proton	a neutron
----------------------	-----------

The particle **X** in part (b)(i) is ______.

(1)

(iii) After acceleration the iron nuclei travel at a steady speed of one-tenth of the speed of light.

The speed of light is 3.00 \times 10 8 m / s.

Calculate the time taken for the iron nuclei to travel a distance of 12 000 m.

Time taken = _____ s

(2)

(iv) Linear accelerators, in which particles are accelerated in a straight line, are **not** used for these experiments. Circular particle accelerators are used.

Suggest why.

(3)

(c) Hassium-265 (108 ha

(i) What is meant by 'half-life'?

Tick (✓) two boxes.

	Tick (✓)
The average time for the number of nuclei to halve	

The time for count rate to be equal to background count	
The time for background count to halve	
The time for count rate to halve	

(2)

(ii) Complete the equation for the decay of Hs-265 by writing numbers in the empty boxes.

$$^{265}_{108}$$
Hs = $^{\square}_{\square}$ Sg + $^{\square}_{\square}$ α

(2)

(d) The table below shows how the atomic radius of some atoms varies with atomic number.

Atomic number	Atomic radius in picometres (pm)
15	100
35	115
50	130
70	150
95	170

$$1 \text{ pm} = 10^{-12} \text{ m}$$

(i) On **Figure 2**, use the data from the table above to plot a graph of atomic radius against atomic number and draw a line of best fit.

Two points have been plotted for you.

Figure 2

(ii) Scientists believe that the element with atomic number 126 can be produced and that it will be stable.

Use your graph in **Figure 2** to predict the atomic radius of an atom with atomic number 126.

Atomic radius =		pm
-----------------	--	----

(1)

(Total 20 marks)

Q4.

(a) Over 100 years ago, scientists thought the atom was like a 'plum pudding'. The diagram below shows the plum pudding model of the atom.

The scientists knew that an atom has negatively charged particles. They also knew that an atom has no overall charge.

What did the scientists conclude about the charge on the 'pudding part' of the

atom?

(c)

nve alph	scientists named Rutherford and Marsden devised an experiment to stigate the plum pudding model of the atom. The experiment involved firing a particles at a thin sheet of gold. The scientists measured how many of the a particles were scattered.
	ng the plum pudding model, the scientists predicted that only a few of the alpha icles would be scattered by more than 4°.
Ove	r several months, more than 100 000 measurements were made.
i)	The results from this experiment caused the plum pudding model to be replaced by a new model of the atom.
	Explain why.
ii)	Suggest one reason why other scientists thought this experiment provided valid evidence for a new model of the atom.

In this question you will be assessed on using good English, organising

information clearly and using specialist terms where appropriate.

	Describe the model now used for the structure of	of an atom.	
	 In your answer you should: give details of the individual particles that include the relative masses and relative ch 		
	Do not include a diagram in your answer.	•	
			(fotal 10 marks
m	s contain three types of particle.		•
m:	s contain three types of particle. Draw a ring around the correct answer to compl	ete the sentence.	•
m:		ete the sentence. electrons and neutrons. electrons and protons. neutrons and protons.	(Total 10 marks

Particle	Relative charge
Electron	– 1
Neutron	
Proton	

(2)

(c) (i) A neutral atom has no overall charge.

Q5.

Explain this in terms of its particles.

(ii)	Complete the sentence.
	An atom that loses an electron is called an
	and has an overall charge.
	nis question you will be assessed on using good English, organising information rly and using specialist terms where appropriate.
Som	ne substances are radioactive. They may emit alpha or beta particles.
Des	cribe the characteristics of alpha particles and beta particles in terms of their:
•	structure penetration through air and other materials deflection in an electric field.

		(Total 13 ma
е	figure below shows a helium atom.	
	Electron	
	Neutron	
	Which one of the particles in the atom is not charged?	
	Draw a ring around the correct answer.	
	electron neutron proton	
	Which two types of particle in the atom have the same mass?	
	and	
		_
)	What is the atomic number of a helium atom?	
	Draw a ring around the correct answer.	
	2 4 6	
	Give a reason for your answer.	
	a partial or and type of suclear radiation	
ゝト	a particles are one type of nuclear radiation.	

Use the correct answer from the box to complete the sentence.

Q6.

(a)

(b)

(ii)

		The difference I	oetween an alpl	na particle a	and a helium atom is that the alpha	
		particle does no	ot have any		·	(4)
	(iii)	Which one of th	e following is a	property of	alpha particles?	(1)
		Tick (✓) one be	ox.			
		Have a long rar	nge in air			
		Are highly ionis	ing			
		Will pass throug	gh metals			
						(1)
(c)	Doct	ors may use nuc	lear radiation to	treat certai	n types of illness.	
	Trea	ting an illness wi	th radiation may	also harm	a patient.	
	(i)	Complete the fo	ollowing sentend	ce.		
		The risk from tre	eating a patient	with radiati	on is that the radiation may	
				healthy bo	dy cells.	
						(1)
	(ii)	Draw a ring aro	und the correct	answer to d	complete the sentence.	
		Radiation may I	be used to treat	a patient if	the risk from the	
			much bigger th	nan		
		radiation is	about the sam	e as	the possible benefit of having	
			much smaller	than		
		the treatment.				/4\
						(1)

neutrons

protons

(Total 9 marks)

Q7.

The diagram shows the structure of an atom.

electrons

(a) In 1931 scientists thought that atoms contained **only** protons and electrons.

Suggest what happened in 1932 to change the idea that atoms contained only protons and electrons.

The table gives information about the particles in an atom.

Complete the table by adding the names of the particles.

Particle	Relative Mass	Relative Charge
	1	0
	very small	– 1
	1	+1

(2) (Total 3 marks)

(3)

(1)

Q8.

(b)

There are many different isotopes of gold. The isotope, gold-198, is radioactive. An atom of gold-198 decays by emitting a beta particle.

(a) Comp	lete the	following	sentences.
----	--------	----------	-----------	------------

All atoms of gold have the same number of	
and the same number of	·
The atoms from different isotopes of gold have	e different numbers of
A beta particle is an	emitted
from the	of an atom.

(b) The graph shows how the count rate from a sample of gold-198 changes with time.

Use the graph to calculate the half-life of gold-198.

Show clearly on the graph how you obtain your answer.

Half-life = _____ days

(c) The diagram shows a map of a river and the river estuary.

Environmental scientists have found that water flowing into one part of the river estuary is polluted. To find where the pollution is coming from, the scientists use a radioactive isotope, gold-198.

The gold-198 is used to find where the pollution is coming from.

Explain how.

(2)

(2)	
(2)	
(Total 7 marks)	
(Total / Illaiks)	

Q9.

The diagram represents an atom of beryllium. The three types of particle that make up the atom have been labelled.

(a)	Use the labels from the diagram to complete the following statements.	
	Each label should be used once.	
	The particle with a positive charge is	
	The particle with the smallest mass is	
	The particle with no charge is	. (2)

(b) What is the mass number of a beryllium atom?

Draw a ring around your answer.

	4 5	9	13
--	-----	---	----

Give a reason for your answer.

(2) (Total 4 marks) In the early part of the 20th century, scientists used the 'plum pudding' model to explain the structure of the atom.

Following work by Rutherford and Marsden, a new model of the atom, called the 'nuclear' model, was suggested.

(Total 4 marks)

Q11.

(a) The chart gives the number of protons and neutrons within the nuclei of 7 different atoms, **A** – **G**.

Which of these atoms are isotopes of the same element?

Give a reason for your answer.		

(b) Radium-226 is a radioactive isotope that decays into radon gas by emitting alpha particles.

The decay can be represented by the equation below.

- (i) Complete the equation by writing the correct number in each of the boxes.
- (ii) A sample of radium-226 has a count rate of 400 counts per second. The half-life of radium-226 is 1600 years.

How long will it be before the count rate has fallen to 50 counts per second? Show clearly how you work out your answer.

Length of time = _____ years

(2)

(2)

(c) In 1927, a group of women who had been employed to paint watch faces with a luminous paint sued their former employer over the illnesses caused by the paint. The women had been told that the paint, which contained radium, was harmless.

The company owners and the scientists working for the company knew that radium was harmful and took precautions to protect themselves from the radiation. The women were given no protection.

What important issue did the treatment of the women by the company owners and scientists raise?

Draw a ring around your answer.

a treatment for a could be harmful	iny people, including doc wide range of illnesses. I were generally ignored. In the died, their deaths were	Medical records th When some of the	at suggested radium women who had used
Suggest a reasor generally ignored	n why the evidence sugge I.	esting that radium	was harmful was

Q12.

The 'plum pudding' model of the atom was used by scientists in the early part of the 20th century to explain atomic structure.

Those scientists knew that atoms contained electrons and that the electrons had a (a) negative charge. They also knew that an atom was electrically neutral overall.

What did this allow the scientists to deduce about the 'pudding' part of the atom?

(b) An experiment, designed to investigate the 'plum pudding' model, involved firing alpha particles at a thin gold foil.

If the 'plum pudding' model was correct, then most of the alpha particles would go straight through the gold foil. A few would be deflected, but by less than 4°.

The results of the experiment were unexpected. Although most of the alpha particles did go straight through the gold foil, about 1 in every 8 000 was deflected by more than 90 $^{\circ}$.

Why did this	experiment lead	to a new	model	of the	atom,	called 1	the nu	clear	model,
replacing the	'plum pudding'	model?							

(1)

(c) The diagram shows the paths, **A**, **B** and **C**, of three alpha particles. The total number of alpha particles deflected through each angle is also given.

(i) Using the nuclear model of the atom, explain the three paths, **A**, **B** and **C**.

A _____

C	
oredict	he nuclear model, the scientist E. Rutherford devised an equation to the proportion of alpha particles that would be deflected through angles.
The res	sults of the experiment were the same as the predictions made by ford.
What when the san	vas the importance of the experimental results and the predictions being ne?

Q13.

The pie chart shows the average proportions of natural background radiation from various sources in the UK.

(a) (I) Com	plete the	e following	sentence
----	------	-------	-----------	-------------	----------

On average, ______ of the natural background radiation in the UK comes from radon gas.

(ii) Radon gas is found inside homes.

The table shows the results from measuring the level of radon gas inside four homes in one area of the UK.

(1)

Home	Level of radon gas in Bq per m³ of air
1	25
2	75
3	210
4	46
Mean	89

One of the homes has a much higher level of radon gas than the other three homes.

What should be done to give a more reliable mean for the homes in this area of the UK?

		50	86	136	222	(1)
		Draw a ring around y	our answer.			
	(ii)	How many particles a	are there in the nucl	eus of a radon atom?		, ,
		50	86	136	222	(1)
		Draw a ring around y	our answer.			
	(i)	How many electrons	does each atom of	radon have?		
(b)	Each	n atom of radon has 86	6 protons and 136 n	eutrons.		(1)
		include data for home	es from different are	eas of the UK		(4)
		measure the radon g	as level in more ho	mes in this area		
		ignore the data for ho	ome number 3			

(Total 4 marks)

Q14.

(a) Atoms of the isotope bismuth-212 decay by emitting either an alpha particle or a beta particle.

The equation represents what happens when an atom of bismuth-212 decays by beta emission into an atom of polonium-212.

(i)	The bismuth atom and the polonium atom have the same mass number (212)
	What is the <i>mass number</i> of an atom?

(1)

(ii) Beta decay does not cause the mass number of an atom to change	(ii	ii)	Beta deca	av does no t	t cause the	e mass nun	nber of an	atom to	change
--	-----	-----	-----------	---------------------	-------------	------------	------------	---------	--------

Explain why not.			

(2)

(b) When an atom of bismuth-212 emits an alpha particle, the atom decays into an atom of thallium.

An alpha particle is the same as a helium nucleus. The symbol below represents an alpha particle.

(i) The equation below represents the alpha decay of bismuth-212.

Complete the equation by writing the correct number in each of the two boxes.

(2)

(ii) It is impossible for the alpha decay of bismuth-212 to produce the same element as the beta decay of bismuth-212.

Explain why			

-(2)

(Total 7 marks)

Q15.

The names of three different processes are given in **List A**. Where these processes happen is given in **List B**.

Draw a line to link each process in **List A** to where the process happens in **List B**.

Draw only three lines.

List A	List B	
Process	Where it happens	
	in a star	
	L	
fusion		
	in a nuclear reactor	
	in a nuclear reactor	
chain reaction		
		İ
	in a smoke precipitator	
alpha decay		
	in the nucleus of an atom	
		(Total 3 marks)

Q16.

The diagrams show two different models of an atom.

(c) The table gives information about the three types of particle that are in the model of the atom used today.

(1)

Particle	Relative mass	Relative charge
	1	+1

very small	–1
1	0

Complete the table by adding the names of the particles.

(Z) (Total 4 marks)

(1)

(1)

Q17.

(a)	Background	radiation	is a	all around	us all	the time
(a)	Dackground	radiation	13 0	an around	us an	uic uiiic.

(i) Radon is a natural source of background radiation.

Name another natural source of background radiation.

(ii) X-rays are an artificial source of background radiation.

Name another artificial source of background radiation.

(1)

(iii) An atom of radon-222 decays by emitting an alpha particle. The equation representing the decay is shown below.

$$^{222}_{86}$$
Rn \longrightarrow $^{218}_{84}$ X + alpha particle

How can you tell from the equation that 'X' is not an atom of radon?

(b) Having an X-ray taken increases your exposure to radiation.

The table gives:

- the radiation doses received for 6 different medical X-rays;
- the number of days' of exposure to natural background radiation each dose is equivalent to.

Medical X-ray	Radiation dose received (in arbitrary units)	Equivalent number of days of exposure to natural background radiation	
Chest	2	2.4	

Skull	7	8.4
Pelvis	22	26.4
Hip	44	52.8
Spine	140	
CT head scan	200	240

A hospital patient has an X-ray of the spine taken.

Calculate the number of days of exposure to natural background radiation that an X-ray of the spine is equivalent to.

Show how you wo	irk out your answer.	
	Equivalent number of days =	

(2)

- (c) Scientists have shown that X-rays increase the risk of developing cancer. The scientists came to this conclusion by studying the medical history of people placed in one of two groups, A or B.
 - The group into which people were put depended on their X-ray record.
 - (i) Person J has been placed into group A.
 Place each of the people, K, L, M, N and O, into the appropriate group, A or B.

Person	7	× (P)	1000	M	N C	0
Medical X-ray record	3 arm	None	None	2 skull	None	4 leg

Group A	Group B
---------	---------

eopie in each d		studied by the scient	nt about the number of tists?
		ive compared in ordene risk of developing	
		r due to a CT head s naturally is about 1	can is about 1 in 10 000 in 4.
can.	•	doctor that she need the risks involved.	ds to have a CT head
Do you think tha aken?	at the patient shou	uld give her permission	on for the CT scan to be
	und your answer.		
Draw a ring aro			
Oraw a ring aro	Yes	No	

(Total 9 marks)

Q18.

(a) The diagram represents a helium atom.

		N		
	(i)	Which part of the atom, K , L , M or N , is an electron?		
			Part	(1)
	(ii)	Which part of the atom, K , L , M or N , is the same as an alpha pa	article?	
			Part	(1)
(b)	A ra	dioactive source emits alpha particles.		
	Wha	at might this source be used for?		
	Put	a tick (✓) in the box next to your answer.		
	to m	nonitor the thickness of aluminium foil as it is made in a factory		
	to n	nake a smoke detector work		
	to ir	nject into a person as a medical tracer		(1)
				(.)

The graph shows how the count rate from a source of alpha radiation changes with time.

(c)

What is the count rate after 4 hours?

 counts per second	
	(1
(Total 4 mark	_

Q19.

The diagram represents an atom of beryllium. The three types of particle that make up the atom have been labelled.

(a) Use the labels from the diagram to complete the following statements.

Each label should be used once.

The particle with a positive charge is _____

The particle with the smallest mass is ______

The particle with no charge is _____

(b) What is the atomic number of a beryllium atom?

Draw a ring around your answer.

(2)

4	5	9	13

Give a reason for your answer.	
Which one of the following state change it into an ion?	ements describes what can happen to an atom to
Tick (√) one box.	
The atom loses a neutron.	
The atom loses an electron.	
The atom loses a proton.	

(1)

(Total 5 marks)

Q20.

The diagram represents an atom of beryllium.

(a) Complete the following statements by writing one of the letters, **J**, **K** or **L**, in each box.

Each letter should be used only **once**.

The particle with a positive charge is	
The particle with the smallest mass is	
The particle with no charge is	
Give the reason why all atoms have a tot	al charge of zero.
Complete the following sentence.	
There are several isotopes of beryllium. A	atoms of different beryllium
isotopes will have different numbers of	
isotopes will have different numbers of	

Q21.

The diagram represents an atom of lithium.

(a) (i) Complete the following table of information for an atom of lithium.

	Number of protons	s					
	Number of electro	ons					
	Number of neutro	ns					
(ii)	What is the mass r	number of a lithi	ium atc	um?			(2)
(")			idili dic	7111			
	Draw a ring around	u your answer.				_	
	3	4		7	10		
	Give a reason for	your answer.					
Con box.	nplete the following	sentence by dra	awing a	ring arour	nd the correc	et line in the	(2)
				an ion			
An	atom that has lost a	an electron is ca	ılled	an isotop	е		
				a positive	e atom		
							(1)
	en an alpha particle ges into polonium.	is emitted from	the nuc	cleus of a r	adon atom,	the radon	
	\bigcirc —	→ ○	+				
	Radon	Alpha particle		Poloni	ium		
			1	Not to sea	ale		
An a	lpha particle consist	ts of 2 protons a	and 2 n	eutrons.			
(i)	Complete the follo the box.	wing sentence	by drav	ving a ring	around the	correct line in	
			grea	er than]		
	The mass of a pole	onium atom is		ame as	the mass o	f a radon atom.	
			smal	ler than			

(b)

(c)

	(1)
— 7 ma	(1) rks)
_	(1)
- 	
_	(2)

(Total

0			**	Key ⊕ Proton ○ Neutron × Electron
 K	I		M	
Whi	ich two of the atoms	s are isotopes o	of the same e	element?
				and
(1) 8	atoms of the same e	element		
(2) (different isotopes of	the same element	ent	
(2) (different isotopes of	the same elem	ent	
(2) (different isotopes of	the same element	ent	
(2) (gives some informa	the same elementation about the resulting the same elements and the resulting same elements are same elements and the resulting same elements and the resulting same elements are same elements are same elements and the resulting same elements are same elements are same elements and the resulting same elements are same e	ent	sotope thorium-230.
(2) (gives some informations number atomic number	the same elementation about the resulting the same elements and the resulting same elements are same elements and the resulting same elements and the resulting same elements are same elements are same elements and the resulting same elements are same elements are same elements and the resulting same elements are same e	ent	sotope thorium-230.
(2) (gives some informations number atomic number	the same elements at the relation about the relation about the relation and the relation and the relation at the relation and the relation at the relation and the relation and the relation at the relation a	ent	sotope thorium-230. m-230?

(ii)

Q22.

(a)

(b)

Give a reason for your answer to part (c)(i).

(c)		n a thorium-230 nucleus decays, it emits radiation and changes into um-226.
		$^{230}_{90}$ Th \longrightarrow $^{226}_{88}$ Ra + Radiation
	Wha	t type of radiation, alpha, beta or gamma, is emitted by thorium-230?
	Expl	ain the reason for your answer.
		/Total 0
		(Total 8 m
3.		
Mos		ents have some isotopes which are radioactive.
Mos		ents have some isotopes which are radioactive.
Mos	Wha	ents have some <i>isotopes</i> which are <i>radioactive</i> . at is meant by the terms:
Mos	Wha	ents have some <i>isotopes</i> which are <i>radioactive</i> . at is meant by the terms:
Mos	Wha	ents have some <i>isotopes</i> which are <i>radioactive</i> . at is meant by the terms: isotopes
Mos	Wha	ents have some <i>isotopes</i> which are <i>radioactive</i> . at is meant by the terms: isotopes

Use the graph to find the half-life of plutonium-238.

Show clearly on the graph how you obtain your answer.

(c) The Cassini spacecraft launched in 1997 took seven years to reach Saturn.

The electricity to power the instruments on board the spacecraft is generated using the heat produced from the decay of plutonium-238.

(i) Plutonium-238 decays by emitting alpha particles.

What is an alpha particle?

(1)

(ii) During the 11 years that Cassini will orbit Saturn, the output from the generators will decrease.

Explain why.

(i)	human. Plutonium-238 is unlikely to cause any harm if it is outside the body but is
(1)	likely to kill if it is inside the body.
	Explain why.
(ii)	In 1964, a satellite powered by plutonium-238 was destroyed, causing the release of radioactive material into the atmosphere.
	Suggest why some environmental groups protested about the launch of Cassini.
	(Total
Cor	(Total
Cor	238
	238
m	nplete the following table for an atom of uranium-238 (92 U)
m nı	mplete the following table for an atom of uranium-238 (92 U) ass number 238
m nı	mplete the following table for an atom of uranium-238 (
m nu	mplete the following table for an atom of uranium-238 (
m nu nu Cor	mplete the following table for an atom of uranium-238 (
m nu nu Cor	mplete the following table for an atom of uranium-238 (92 U) ass number
m nu nu Cor	mplete the following table for an atom of uranium-238 (
m nu nu Cor	mplete the following table for an atom of uranium-238 (
m nu nu Cor	mplete the following table for an atom of uranium-238 (

atom of a different element?	
	(1)
	(Total 4 marks)

Q25.

In the early part of the 20th century, scientists used the 'plum pudding' model to explain the structure of the atom.

Following work by Rutherford and Marsden, a new model of the atom, called the 'nuclear' model, was suggested.

De	scribe the differences between the two models of the atom.

(b) In their investigation, Rutherford and Marsden fired positively charged alpha particles at a very thin sheet of gold. Over a period of several months, the scientists made over 100 000 measurements. These measurements showed that:

(4)

 a very small number of alpha particles were deflected backwards from the gold foil.

	- (2
ny did the work of Rutherford and Marsden convince many scientists that the um pudding' model of the atom was incorrect?	
	-
(Total 8	_ (2 marks
ram shows a helium atom.	
Lies the words in the box to lobel the diagram	
Use the words in the box to label the diagram.	
	(Total 8

(b) The graph shows how the count rate from a sample of radioactive sodium-24 changes with time.

(1)

Q27.

(a)

	(Total 7 mar
	diagram shows the parts of a smoke detector. The radioactive source emits a particles.
	9 V battery Radioactive source
curre	alpha particles ionise the air inside the sensor which causes a small electric nt. Any smoke getting into the sensor changes the current. The change in nt sets the alarm off.
(i)	The smoke detector would not work if a radioactive source that emitted only gamma rays was used.
	Why not?
(ii)	Curium-242 is a radioactive isotope with a half-life of 160 days. It emits alpha
. ,	particles. Why is curium-242 not suitable for use inside smoke detectors?

(111)	Curium-242 and curium-244 are two of the isotopes of the element curium.
	How is an atom of curium-242 different from an atom of curium-244?

(1)

(1)

(1)

(b) Sections of steel are often joined by welding them together. The diagram shows how a radioactive source can be used to check for tiny cracks in the weld.

Cracks in the weld will be shown up on the photographic film below the thick steel plate.

- (i) Which type of source, alpha, beta or gamma, should be used to check the weld?
- (ii) Give a reason why the other two types of source **cannot** be used.

(c) The diagram shows a map of a river and its estuary.

Environmental scientists have found that the water flowing into one part of the river estuary is polluted. To find where the pollution is coming from, the scientists use a radioactive isotope, gold-198.

The g	raph sł	nows h	ow the co	ount rate	e from a	a sample	of gold-198	changes w	vith
	600							3	
	550								
	500								
	450								
	400								
t rate	350-								
ounts econd	300								
000	250								
	200								
	150								
	100								
	50-								
	0		1	2	3	1	5	6	
	Ü		†	S	e in day	/S		O .	
l lea ti	he aren	h to ca	lculate th						
Show	clearly	on the	graph h	ow you	obtain <u>'</u>	our ansv	ver.		

Q28.

The table gives information about the three types of particle that make up an atom.

Particle	Relative mass	Relative charge
Proton		+1

Neutron	1	
Electron	very small	– 1

Complete the table by adding the two missing values.					
Use tl	he information in the table to explain why an atom has no overall electrical e.				
Jraniu	um has two natural isotopes, uranium-235 and uranium-238. um-235 is used as a fuel inside a nuclear reactor. the reactor, atoms of uranium-235 are split and energy is released.				
. /	How is the structure of an atom of uranium-235 different from the structure of an atom of uranium-238?				
	The nucleus of a uranium-235 atom must absorb a particle before the atom is able to split.				
	What type of particle is absorbed?				
i)	How is the structure of an atom of uranium-235 different from the structure an atom of uranium-238? The nucleus of a uranium-235 atom must absorb a particle before the atable to split.				

Q29.

A radioactive source emits alpha (α) , beta (β) and gamma (γ) radiation. The diagram shows what happens to the radiation as it passes between two charged metal plates.

(Total 7 marks)

Diagram 1

(a) Which line **P**, **Q** or **R** shows the path taken by:

(i) alpha radiation _____

(1)

(ii) gamma radiation?

(1)

(b) The diagram shows three different boxes and three radioactive sources. Each source emits only one type of radiation and is stored in a different box. The box reduces the amount of radiation getting into the air.

Draw **three** lines to show which source should be stored in which box so that the minimum amount of radiation gets into the air.

(2)

(c) The graphs show how the count rates from three different radioactive sources, **J**, **K**, and **L**, change with time.

Q30.

The diagram represents an atom of lithium.

(i) Complete the diagram by writing in the spaces the name of each type of particle. Use only words given in the box. Each word may be used once or not at all.

		electron	neutron	nucleus	proton	
(ii)	Which	type of particle	found inside the	e atom is uncharg	jed?	(3)
(iii)	What	is the mass num	ber of this atom	n, 3, 4, 7 or 10?		(1)
	Give a	reason for your	choice.			

(2) (Total 6 marks)

Q31.

(a) The diagrams represent three atoms X, Y and Z.

G	ive a reason for your answer.
po	n the early part of the 20 th century some scientists investigated the paths taken by ositively charged alpha particles into and out of a very thin piece of gold foil. The agram shows the paths of three alpha particles.
	A
	Gold nucleus
E	xplain the different paths A , B and C of the alpha particles.
	o gain full marks in this question you should write your ideas in good English. Put sem into a sensible order and use the correct scientific words.

(3) (Total 5 marks)

Q32.

(a) Uranium-234 (²³⁴U) is a radioactive element. The graph shows the number of protons and neutrons in the nuclei of the elements formed when uranium-234 decays.

(i) How does the graph show that uranium-234 (²³⁴U) and thorium-230 (²³⁰Th) emit alpha particles?

What makes uranium and thorium different elements?

(1)

(1)

(iii) Radioactive decay may also produce gamma radiation.

(ii)

Why does the emission of gamma radiation **not** cause a new element to be formed?

(b) The graph shows how the thickness of different materials needed to absorb 90% of the gamma radiation emitted by a source depends on the energy of the radiation. The energy of the gamma radiation is given in units called electron-volts.

(i) Which of the materials shown is least effective at absorbing gamma radiation? Use the information in the graph to give a reason for your answer.

(1)

(2)

(ii) For gamma radiation of energy 1.5 million electron-volts, how many times more effective is steel than water at absorbing the radiation? Show clearly how you obtain your answer.

(c) Scientists in the early twentieth century thought that atoms were made up of electrons scattered inside a ball of positive charge. This was called the 'plum-pudding' model of the atom.

Plum pudding model

Rutherford and Marsden did an experiment, in which a beam of alpha particles was

aimed at a thin sheet of gold. Explain how the results of this experiment led to a new model of the atom.
You may include one or more diagrams in your answer.

(3) (Total 9 marks)
(Total 3 marks)

Q33.

(a) The table gives information about five radioactive isotopes.

Isotope	Type of radiation emitted	Half-life
Californium-241	alpha (α)	4 minutes
Cobalt-60	gamma (γ)	5 years
Hydrogen-3	beta (β)	12 years
Strontium-90	beta (β)	28 years
Technetium-99	gamma (γ)	6 hours

(i)	What is an alpha (α) particle?	

)	What is meant by the term half-life?
)	Which one of the isotopes could be used as a tracer in medicine? Explain the reason for your choice.
he	increased use of radioactive isotopes is leading to an increase in the amount of
adic	increased use of radioactive isotopes is leading to an increase in the amount of pactive waste. One method for storing the waste is to seal it in containers which then placed deep underground.
adic	pactive waste. One method for storing the waste is to seal it in containers which
dic	pactive waste. One method for storing the waste is to seal it in containers which

(b)

Some people may be worried about having such a storage site close to the area in which they live. Explain why.

Container

		(3)
(Total	8	marks)

	1	A	
u	.5	4	_

Radon is a radioactive gas. Radon makes a major contribution to background radiation levels. Radon atoms decay by the emission of *alpha particles*.

(a) (i) What is an alpha particle?

_____ (1)

(ii) From which part of the radon atom does the alpha particle come?

(1)

(b) (i) A sample of air contains 40 000 radon atoms. The half-life of radon is four days. Draw a graph to show how the number of radon atoms present in a sample of air will change over a period of 12 days.

(3)

(ii) After 20 days, how many of the radon atoms from the original sample of air will have decayed? Show clearly how you work out your answer.

Number of radon atoms decayed = _____

(3)

(c) Fairly constant concentrations of radon gas have been found in some deep mine shafts.

Suggest why the concentration of radon gas remains fairly constant although the radon gas decays.
Evalois why the long town evapoure to long consentrations of rador and
Explain why the long term exposure to large concentrations of radon gas could be a danger to health.

Q35.

- (a) Tritium $\binom{3}{1}H$) is an isotope of hydrogen. Tritium has a proton number of 1 and a mass number of 3.
 - (i) The diagram below shows a simple model of a tritium atom. Complete the diagram by adding the names of the particles indicated by the labels.

(ii) Explain how the nucleus of an ordinary hydrogen atom is different from the nucleus of a tritium atom. Ordinary hydrogen atoms (¹ H) have a mass number of 1.

(iii)	Tritium is a radioactive substance which emits beta (β) radiation. Why do the atoms of some substances give out radiation?

(b) Tritium is one of the elements found in the waste material of the nuclear power industry. The diagram below shows a worker behind a protective screen. The container holds a mixture of different waste materials which emit alpha (α) , beta (β) and gamma (γ) radiation.

Suggest a suitable material for the protective screen. The material should prever radiation from the container reaching the worker. Explain your answer.		
	_	
	-	
	- (2)	
(Total 10	marks)	

•

Q36.

(a) Complete the table about atomic particles.

ATOMIC PARTICLE	RELATIVE MASS	RELATIVE CHARGE
proton		+1
neutron	1	0
electron	negligible	

(b) Use the Data Sheet to help you to answer some parts of this question.

(2)

(2)

	ssium is a metallic element in Group 1 of the Periodic Table. s a proton (atomic) number of 19.
Its m	ost common isotope is potassium-39, (19).
Anot	her isotope, potassium-40, (19), is a radioisotope.
(i)	State the number of protons, neutrons and electrons in potassium-39.
	Number of protons
	Number of neutrons
	Number of electrons
(ii)	Explain why potassium-40 has a different mass number from potassium-39.
(iii)	What is meant by a radioisotope?
(iv)	Atoms of potassium-40 change into atoms of a different element. This element has a proton (atomic) number of 20 and a mass number of 40. Name, or give the symbol of, this new element.
(v)	Explain in terms of atomic structure, why potassium-39 and potassium-40 have the same chemical reactions.
(i)	Name a suitable detector that could be used to show that potassium-40 gives out radiation.
(ii)	Name a disease which can be caused by too much exposure to a radioactive substance such as potassium-40.
	(Total 10 mark:

Read the following passage about potassium.

(c)

Q37.

(a) Atoms are made up of three types of particle called protons, neutrons and electrons.

Complete the table below to show the relative mass and charge of a neutron and an electron. The relative mass and charge of a proton has already been done for you.

PARTICLE	RELATIVE MASS	RELATIVE CHARGE
proton	1	+1
neutron		
electron		

(2)

(b) The diagram below shows the paths of two alpha particles **A** and **B**, into and out of a thin piece of metal foil.

The paths of the alpha particles depend on the forces on them in the metal. Describe the model of the atom which is used to explain the paths of alpha particles aimed at thin sheets of metal foil.

(3)

(Total 5 marks)

Q38.

The diagram below shows the paths of two alpha particles A and B into and out of a thin piece of metal foil.

(a)	The paths of the alpha particles depend on the forces on them in the metal. Describe the model of the atom which is used to explain the paths of alpha particles aimed at thin sheets of metal foil.

(b) Scientists used to believe that atoms were made up of negative charges embedded in a positive 'dough'. This is called the 'plum pudding' model of the atom. The diagram below shows a model of such an atom.

(3)

(2)

(i)	Explain how the 'plum pudding' model of the atom can explain why alpha particle A is deflected through a very small angle.				

(ii) Explain why the 'plum pudding' model of the atom can not explain the large deflection of alpha particle **B**.

eut	trons and electro	ns.	three types of particles	•
			proton have already be	
	PARTICLE	RELATIVE MASS	RELATIVE CHARGE	
	proton	1	+1	
	neutron			
	electron			
Γhe	e diagrams below Key: O – pro		r different atoms A, B, C	and D .
	0	80 8	8 4 8	
	nucleus A	nucleus B nucl	eus C nucleus D	
)	State the mass	s number of C.		
i)	Which two are	isotopes of the same e	element?	
			8	and
	Explain your a	nswer.		

Q39.

Use the Data Sheet to help you answer this question. This question is about elements and atoms.

(a) About how many different elements are found on Earth? Draw a **ring** around the correct number.

40 50 60 70 80 90

(1)

(3)

(2)

(b) The following are parts of an atom:

electron neutron nucleus proton

Choose from the list the one which:

- (i) has no electrical charge; _____
- (ii) contains two of the other particles; _____
- (iii) has very little (negligible) mass. _____

(c) Scientists have been able to make new elements in nuclear reactors. One of these new elements is fermium. An atom of fermium is represented by the symbol below.

257 Fm 100

- (i) How many protons does this atom contain? _____
- (ii) How many neutrons does this atom contain? _____

(Total 6 marks)

Q40.

The diagrams below represent three atoms, A, B and C.

- (a) Two of the atoms are from the **same** element.
 - (i) Which of **A**, **B** and **C** is an atom of a different element?
 - (ii) Give **one** reason for your answer.

Two	of these atoms are isotopes of the same element.
(i)	Which two are isotopes of the same element? and
(ii)	Explain your answer.
	(Total 5

Q41.

The diagram shows a film badge worn by people who work with radioactive materials. The badge has been opened. The badge is used to measure the amount of radiation to which the workers have been exposed.

The detector is a piece of photographic film wrapped in paper inside part **B** of the (a)

Part A has "windows" as shown.

Complete the sentences below.

When the badge is closed

affect the film.

(i)	radiation and	radiation can pass through the
	open window and affect the film.	

Most of the _____ radiation will pass through the lead window and (ii)

(1)

(1)

(b) Other detectors of radiation use a gas which is ionised by the radiation.

(1)	Explain what is meant by <i>lonised</i> .
(ii)	Write down one use of ionising radiation.
	nium-238 has a very long half-life. It decays via a series of short-lived bisotopes to produce the stable isotope lead-204.
Expl	ain, in detail, what is meant by:
(i)	half-life,
(ii)	radioisotopes.
can l	relative proportions of uranium-238 and lead-204 in a sample of igneous rock be used to date the rock. ck sample contains three times as many lead atoms as uranium atoms. What fraction of the original uranium is left in the rock?
	(Assume that there was no lead in the original rock.)
(ii)	The half-life of uranium-238 is 4500 million years.
	Calculate the age of the rock.
	Age million yea

(2)

(3)

(3)

Q42.

The diagrams below represent three atoms, A, B and C.

- (a) Two of these atoms are from the **same** element.
 - (i) Which of A, B and C is an atom of a different element?
 - (ii) Give **one** reason for your answer.

- (b) Two of these atoms are isotopes of the same element.
 - (i) Which **two** are isotopes of the same element? _____ and _____
 - (ii) Explain your answer.

- (c) Which of the particles O, and X, shown in the diagrams:
 - (i) has a positive charge; _____
 - (ii) has no charge; _____
 - (iii) has the smallest mass? _____

(d) Using the same symbols as those in the atom diagrams, draw an alpha particle.

Q43.

In some areas of the U.K. people are worried because their houses are built on rocks that release radon.

Read the information about radon.

- It is a gas.
- It is formed by the breakdown of radium.
- It emits alpha radiation.
- Each radon atom has 86 protons.
- Each radon atom has 136 neutrons.
- (i) How many electrons has each atom of radon? _____
- (ii) What is the mass (nucleon) number of radon? _____

(Total 2 marks)

Q44.

Neptunium-237 (²³⁷Np) is a radioactive element. The graph shows the numbers of neutrons and protons in the nuclei of the elements formed when ²³⁷Np decays.

(a) Use the periodic table on the Data Sheet to identify element **X**.

(b)	Why	are ²³³ Pa and ²³³ U considered to be different elements?
(c)	Wha	t type of radiation is released when ²³⁷ Np decays to form ²³³ Pa?
(d)	Wha	t change takes place in the nucleus when ²³³ Pa changes into ²³³ U?
		(Total 4 ma
45.		
		m shows how the thickness of aluminium foil is controlled. The thicker the foil, the more radiation it absorbs.
Pres con		Roller Detector Aluminium foil Beta radiation source
(a)	The	designers used a beta radiation source for this control system. Why would an alpha radiation source be unsuitable in this control system?
	(;;)	Why would a gamma radiation source be unsuitable in this control system?
	(ii)	viny would a gainina radiation source be unsultable in this control system?

	(Total 5 r
	(Total 3 I
Q46.	
(a)	Complete the sentences about atoms.
	In an atom, the number of electrons is equal to the number of
	All atoms of an element have the same number of
	Isotopes of the same element have different numbers of
(b)	Complete the sentence.
	When an atom of a radioactive element emits alpha radiation, an atom of a different element is formed. A different element is formed because the radioactive element has lost
	 (Total 4 r
Q47.	
99 To	technetium) is produced by the radioactive decay of 42 Mb (molybdenum).
Wh	at change occurs in the nucleus of a molybdenum atom when this happens?

Explain why radiation is dangerous to humans.

(ii)

Q48.

The diagram shows an atom.

How many protons are there in the nucleus of the atom?	
What is the mass number of the atom?	
	(Total 2 marks)