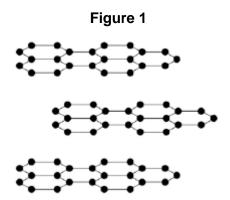
Bonding


Q1.

This question is about different substances and their structures.

(a) Draw **one** line from each statement to the diagram which shows the structure.

The substance is a gas The substance is a liquid The substance is ionic The substance is a solid metal

(b) Figure 1 shows the structure of an element.

What is the name of this element?

(4)

	Tick one box.	
	Carbon	
	Chloride	
	Nitrogen	
	Xenon	(4)
(c)	Why does this element conduct electricity?	(1)
	Tick one box.	
	It has delocalised electrons	
	It contains hexagonal rings	
	It has weak forces between the layers	
	It has ionic bonds	44
(d)	Figure 2 shows the structure of an alloy.	(1)
` /	Figure 2	
	Metal Y	
	Explain why this alloy is harder than the pure metal Y.	
		_
		_
		_ (2)
(e)	What percentage of the atoms in the alloys are atoms of X?	
		_

		(2)
(f)	What type of substance is an alloy?		
	Tick one box.		
	Compound		
	Element		
	Mixture		
		(1)
		(Total 11 marks)

Q2.

The figure below shows magnesium burning in air.

© Charles D Winters/Science Photo Library

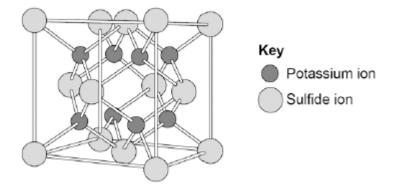
(a)	Look at the figure above.	
	How can you tell that a chemical reaction is taking place?	
		(1)
(b)	Name the product from the reaction of magnesium in the figure.	

(c)	The magnesium needed heating before it would react.	
	What conclusion can you draw from this?	
	Tick one box.	
	The reaction is reversible	
	The reaction has a high activation energy	
	The reaction is exothermic	
	Magnesium has a high melting point	(1)
(d)	A sample of the product from the reaction in the figure above was added to water and shaken.	(.,
	Universal indicator was added.	
	The universal indicator turned blue.	
	What is the pH value of the solution?	
	Tick one box.	
	1	
	4	
	7	
	9	
		(1)
(e)	Why are nanoparticles effective in very small quantities?	
	Tick one box.	
	They are elements	
	They are highly reactive	
	They have a low melting point	
	They have a high surface area to volume ratio	
		(1)

(f) Give **one** advantage of using nanoparticles in sun creams.

g)	Give one disadvantage of using nanoparticles in sun creams.
h)	A coarse particle has a diameter of 1×10^{-6} m. A nanoparticle has a diameter of 1.6×10^{-9} m.
	Calculate how many times bigger the diameter of the coarse particle is than the diameter of the nanoparticle.
	(Total
	(10tai
	udent investigated the reaction of copper carbonate with dilute sulfuric acid. student used the apparatus shown in the figure below.
	udent investigated the reaction of copper carbonate with dilute sulfuric acid. student used the apparatus shown in the figure below.
	udent investigated the reaction of copper carbonate with dilute sulfuric acid.
	udent investigated the reaction of copper carbonate with dilute sulfuric acid. student used the apparatus shown in the figure below. Copper carbonate Dilute sulfuric acid
Γhe	udent investigated the reaction of copper carbonate with dilute sulfuric acid. student used the apparatus shown in the figure below. Copper carbonate Balance
Γhe	copper carbonate with dilute sulfuric acid. Student used the apparatus shown in the figure below. Copper carbonate Balance Complete the state symbols in the equation.
Γhe (a)	copper carbonate with dilute sulfuric acid. Student used the apparatus shown in the figure below.
Γhe (a)	copper carbonate with dilute sulfuric acid. Student used the apparatus shown in the figure below.

\Mator \	vas produce	d in the reac	tion				
water	vas produced	a iii tiie reac	uori.				
	e a safe meth te and dilute						
n your ı	method you s	should name	all of the a	apparatus	you will u	se.	
Γhe per	centage aton	n economy f	or a reactio	on is calcu	ılated usin	g:	
_	centage aton Relative form um of relative f	ula mass of d	esired produ	ct from equ	ation ×	-	
Sı	Relative form	ula mass of do ormula masse	esired produ es of all read	ct from equ tants from	ation × equation	100	
Si The equ	Relative form	ula mass of doormula masse	esired produ es of all read copper carb	ct from equitants from	ation × equation	100	
Si The equ	Relative formous of relative for the	ula mass of domination of correction of $O_4 \rightarrow CuSO_4$	esired produces of all read copper carb + H ₂ O + C	ct from equitants from conate an O_2	ation × equation d sulfuric a	100 acid is:	
Si The equ Cu Relative	Relative formula masse the percen	ula mass of dormula masse reaction of or $O_4 \rightarrow CuSO_4$ asses : $CuCO$	esired produces of all react copper carb + $H_2O + C$ $O_3 = 123.5$;	ct from equations from conate an O_2 $H_2SO_4 = 9$	equation × equation d sulfuric a	100 acid is: $D_4 = 159.5$	opper
Si The equ Cu Relative	Relative formula masse the percen	ula mass of dormula masse reaction of or $O_4 \rightarrow CuSO_4$ asses : $CuCO$	esired produces of all react copper carb + $H_2O + C$ $O_3 = 123.5$;	ct from equations from conate an O_2 $H_2SO_4 = 9$	equation × equation d sulfuric a	100 acid is: $D_4 = 159.5$	opper
Si The equ Ci Relative	Relative formula masse the percen	ula mass of dormula masse reaction of or $O_4 \rightarrow CuSO_4$ asses : $CuCO$	esired produces of all react copper carb + $H_2O + C$ $O_3 = 123.5$;	ct from equations from conate an O_2 $H_2SO_4 = 9$	equation × equation d sulfuric a	100 acid is: $D_4 = 159.5$	opper

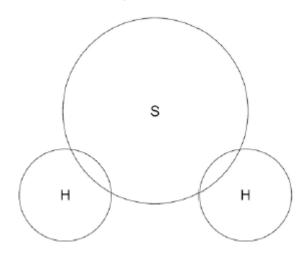

Atom economy = ______ %

	(e)	Give one reason why is it important for the percentage atom economy of a reaction to be as high as possible.
		(1) (Total 13 marks)
Q4	Figu	re 1 shows the outer electrons in an atom of the Group 1 element potassium and in tom of the Group 6 element sulfur.
		Figure 1
		K S
	(a)	Potassium forms an ionic compound with sulfur.
		Describe what happens when two atoms of potassium react with one atom of sulfur.
		Give your answer in terms of electron transfer.
		Give the formulae of the ions formed.

(b) The structure of potassium sulfide can be represented using the ball and stick model in **Figure 2**.

(5)

Figure 2


The ball and stick model is **not** a true representation of the structure of potassium sulfide.

(c) Sulfur can also form covalent bonds.

Complete the dot and cross diagram to show the covalent bonding in a molecule of hydrogen sulfide.

Show the outer shell electrons only.

(2)

(1)

(d) Calculate the relative formula mass (M_r) of aluminium sulfate Al₂(SO₄)₃

Relative atomic masses (A_r): oxygen = 16; aluminium = 27; sulfur = 32

Relative formula mass = _____

(2)

(e) Covalent compounds such as hydrogen sulfide have low melting points and do **not** conduct electricity when molten.

Draw **one** line from each property to the explanation of the property.

Property	Explanation of property	
	Electrons are free to move	
	There are no charged particles free to move	
Low melting point		
	lons are free to move	
	Weak intermolecular forces of attraction	
Does not conduct electricity when molten		
	Bonds are weak	

(f) Ionic compounds such as potassium sulfide have high boiling points and conduct electricity when dissolved in water.

(2)

Draw **one** line from each property to the explanation of the property.

Property	Explanation of property
	Electrons are free to move
	There are no charged particles free to move
High boiling point	

	lons are free to move	
	Weak intermolecular forces of attraction	
Conduct electricity when molten		
	Bonds are weak	
	Bonds are strong	
		(2) (Total 14 marks)

Q5.

This question is about halogens and their compounds.

The table below shows the boiling points and properties of some of the elements in Group 7 of the periodic table.

Element	Boiling point in °C	Colour in aqueous solution
Fluorine	-188	colourless
Chlorine	-35	pale green
Bromine	Х	orange
Iodine	184	brown

(a)	Why does iodine have a higher boiling poi	nt than chlorine?
	Tick one box.	
	lodine is ionic and chlorine is covalent	
	lodine is less reactive than chlorine	
	The covalent bonds between iodine atoms are stronger	
	The forces between iodine molecules are stronger	

(b) Predict the boiling point of bromine.

(1)

(c)	A redox reaction takes place when aqueous chlorine is added to potassium iodide solution.				
	The equation for this reaction is:				
	$Cl_2(aq) + 2KI(aq) \rightarrow l_2(aq) + 2KCI(aq)$				
	Look at table above.				
	What is the colour of the final solution in this reaction?				
	Tick one box. Brown				
	Orange				
	Pale green				
	Colourless	(4)			
(d)	What is the ionic equation for the reaction of chlorine with potassium iodide?	(1)			
	Tick one box.				
	$Cl_2 + 2K \rightarrow 2KCl$				
	$2I^- + CI_2 \rightarrow I_2 + 2CI^-$				
	I⁻ + CI → I + CI⁻				
	I⁻ + K⁺ → KI				
(e)	Why does potassium iodide solution conduct electricity?	(1)			
	Tick one box.				
	It contains a metal				
	It contains electrons which can move				
	It contains ions which can move				
	It contains water	(1)			
		(- /			

(f) What are the products of electrolysing potassium iodide solution?

Tick one box.

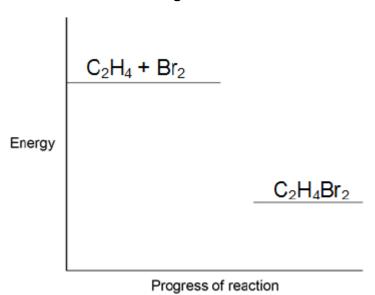
Product at cathode	Product at anode		
hydrogen	iodine		
hydrogen	oxygen		
potassium	iodine		
potassium	oxygen		
		(1)	,
		(Total 6 marks))

Q6.

(b)

This question is about the reaction of ethene and bromine.

The equation for the reaction is:


$$C_2H_4 + Br_2 \rightarrow C_2H_4Br_2$$

(a) Complete the reaction profile in Figure 1.

Draw labelled arrows to show:

- The energy given out (ΔH)
- The activation energy.

Figure 1

When ethene reacts with bromine, energy is required to break covalent bonds in the molecules.

Explain how a covalent bond holds two atoms together.

(3)

		1
		U.

(c) Figure 2 shows the displayed formulae for the reaction of ethene with bromine.

Figure 2

$$H = C + Br - Br \rightarrow H - C - C - H$$

$$H = H + Br - Br \rightarrow H - C - C - H$$

$$H = H + H$$

$$H = H + H$$

$$H = H$$

The bond enthalpies and the overall energy change are shown in the table below.

	C=C	С–Н	C-C	C–Br	Overall energy change
Energy in kJ / mole	612	412	348	276	- 95

Use the information in the table above and **Figure 2** to calculate the bond energy for the Br–Br bond.

Bond energy _____ kJ / mole

(3)

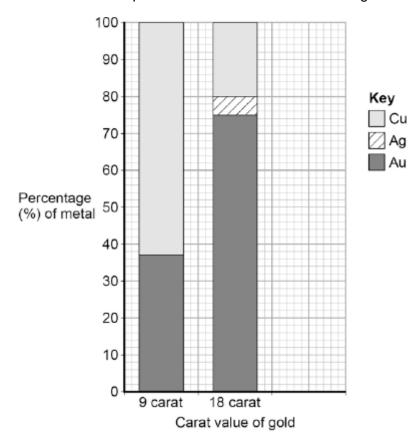
(d) **Figure 3** shows the reaction between ethene and chlorine and is similar to the reaction between ethene and bromine.

Figure 3

$$\begin{array}{c} H \\ C = C \\ H \\ \end{array} + CI - CI \\ \longrightarrow \\ H - \begin{array}{c} H \\ - \\ C \\ - \\ CI \\ CI \\ \end{array} CI \\ \end{array}$$

"The more energy levels (shells) of electrons an atom has, the weaker the covalent bonds that it forms."

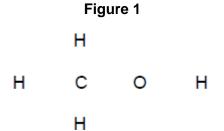
Use the above statement to predict and explain how the overall energy change for the reaction of ethene with chlorine will differ from the overall energy change for the reaction of ethene with bromine.


 	 	 _
 	 	 _
	 	_
 	 	 _
 	 	 _

(Total 14 marks)

Q7.

Gold is mixed with other metals to make jewellery.


The figure below shows the composition of different carat values of gold.

What is the percentage of gold in 12 carat gold? (a)

Tick one box.

	Give the per				
	Use the figu	re above to answer this question	on.		
		Percentage	· =		%
(c)	Suggest two jewellery.	reasons why 9 carat gold is o	ften used instead of	pure gold to make	
	1.				
	-				_
	2				_
	Z				
					_
				(Total 4	ma
Γhe	table below g	ives information about four alco	ohols.		
	Alcohol	Formula	Melting point in °C	Boiling point in °C	
Met	hanol	CH₃OH	-94	65	
Etha	anol	CH ₃ CH ₂ OH	-118	78	
Pro	panol	CH ₃ CH ₂ CH ₂ OH	-129	97	
Butanol		CH ₃ CH ₂ CH ₂ CH ₂ OH	-89	118	
(a)	Which alcoh	ol in the table is liquid over the	greatest temperatu	re range?	
. ,		•		J	
		_			
(b)	Which state	ment is correct?			
(b)	Which state				
b)	Tick one bo				
(b)	Tick one bo A molecule atoms	OX.			
(b)	Tick one both A molecule atoms Butanol has	ox. of ethanol has 5 hydrogen			
(b)	Tick one both A molecule atoms Butanol has Methanol has	ox. of ethanol has 5 hydrogen s the highest boiling point			
(c)	Tick one both A molecule atoms Butanol has Methanol has Propanol has	ox. of ethanol has 5 hydrogen s the highest boiling point as the largest molecules			

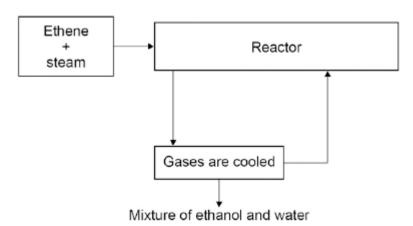

(d) **Figure 2** shows a flow diagram of the process to produce ethanol.

Figure 2

(1)

(1)

(1)

Complete the word equation for the reaction to produce ethanol.

_____ + ____ → ethanol

(e) What happens to the unreacted ethene?

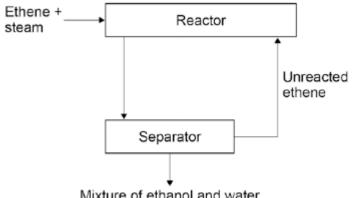
(f) Wine contains ethanol.

A bottle of wine was left open in air.

After a few days, the wine tasted of vinegar.

Vinegar is a solution of ethanoic acid in water.

Explain how oxidation causes the wine to taste of vinegar after a few days.


Q9.

In industry ethanol is produced by the reaction of ethene and steam at 300°C and 60 atmospheres pressure using a catalyst.

The equation for the reaction is:

$$C_2H_4(g) + H_2O(g)$$
 \subset $C_2H_5OH(g)$

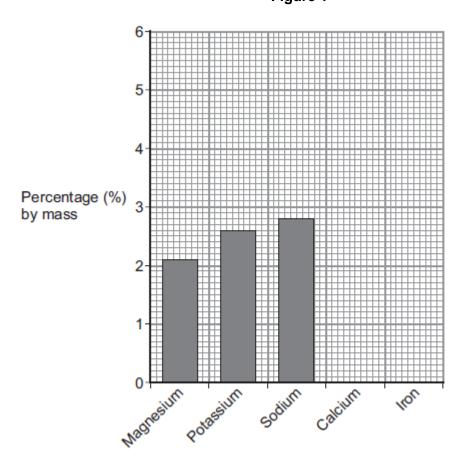
The figure below shows a flow diagram of the process.

Γhe 1	forward reaction is exothermic.
	Le Chatelier's Principle to predict the effect of increasing temperature on the unt of ethanol produced at equilibrium.
Give	a reason for your prediction.

Q10.

Metals are extracted from ores in the Earth's crust.

(a) Why is copper used in the manufacture of computers?


Tick (✔) one box.

Because it has a high density.	
Because it does not react with water.	
Because it is a good conductor of electricity	

(1)

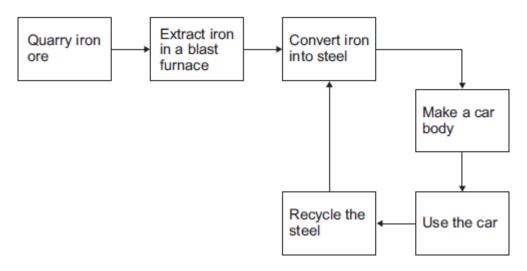
(b) Figure 1 shows the percentage (%) by mass of some metals in the Earth's crust.

Figure 1

(i) What is the percentage by mass of magnesium in the Earth's crust?

_____%

(1)


(ii) On **Figure 1** draw the bars for:

		• iron at 5.0%	by mass.	(2			
:)	An o	ore of zinc contains a	zinc carbonate.				
	The	equation for the rea	action when zinc carbonate is heated is:				
		ZnCO ₃ zinc carbonate	→ ZnO + CO ₂ zinc oxide carbon dioxide				
	(i)	What is the name	of this type of reaction?				
		Tick (✔) one box					
		corrosion					
		decomposition					
		electrolysis					
				(
	(ii)	Which substance i	in the equation is a gas at room temperature (20 °C)?				
		Tick (✔) one box					
		zinc carbonate					
		zinc oxide					
		carbon dioxide					
		carbon dioxido		(
	(iii) Complete the table below to show the number of atoms of carbon and oxygin the formula of zinc carbonate.						
		Element	Number of atoms in the formula ZnCO ₃				
		zinc, Zn	1				
		carbon, C					
		oxygen, O					
	(iv)	When 125 g zinc	carbonate is heated, 81 g zinc oxide is produced.	(
		Calculate the mass of carbon dioxide produced.					
			Mass of carbon dioxide =g				

calcium at 3.6% by mass

(d) Figure 2 shows a simple life cycle of a car body.

Figure 2

(i) What is **one** reason why iron from the blast furnace is converted into steel?

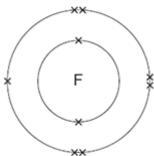
lick (✔) one box.	
To make the iron pure.	
To make the iron more brittle.	
To make alloys for specific uses.	

(ii) Apart from cost, give **three different** reasons why steel should be recycled.

1				
2				
3				
		-	 	

(Total 13 marks)

(3)


(1)

Q11.

This question is about fluorine.

(a) **Figure 1** shows the arrangement of electrons in a fluorine atom.

Figure 1

		XX	
(i)	In which group of the per	riodic table is fluorine?	
		Group	
(ii)	Complete the table below masses.	v to show the particles	in an atom and their relative
	Name of particle	Relative mass	
	Proton		
	Neutron	1	
		Very small	
	alkalis	alloys isoto	
	Atoms of fluorine with dif	ferent numbers of neut	trons are
	called	·	
Soc	lium reacts with fluorine to	produce sodium fluorid	le.
(i)	Complete the word equa	e e us	
		tion for this reaction.	
	sodium +	tion for this reaction →	
(ii)		ition for this reaction. \longrightarrow	
(ii)	sodium +Complete the sentence.	→	erent elements are chemicall
(ii)	sodium +Complete the sentence.	→ ms of two or more diffe	
(ii)	sodium + Complete the sentence. Substances in which ato	→ ms of two or more diffe	. •

Use the correct answer from the box to complete the sentence.

	ion	mole	molecule		
	The relative formula	a mass (M _r), in gra	ams, of sodium fluor	ide is one	
		of the substance.			(4)
(iv)	Figure 2 shows wh sodium atom reacts		e electrons in the ou tom.	ter shells when a	(1)
	The dots (•) and cre	osses (x) represe	nt electrons.		
			Figure 2		
	Na +	F -		la]+	F
	Use Figure 2 to he	lp you answer this	s question.		
	Describe, as fully a to produce sodium		appens when sodiu	m reacts with fluorin	ie
	· 				
					(4)
(v)	Sodium fluoride is a				
	What are two prop	erties of ionic sub	stances?		
	Tick (✔) two boxe	S.			
	Dissolve in water				
	Gas at room tempe	erature			
	High melting point				

(Total 13 marks)

Q12.

This question is about substances containing carbon atoms.

- (a) Diamond is made of carbon atoms.
 - (i) Diamond is used for tips of drills.

Figure 1 shows a drill.

Figure 1

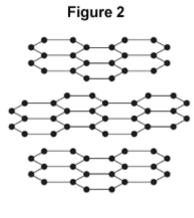
© Kershawj/iStock

Give one reason why diamond is used for tips of drills.

(1)

(ii) Diamond nanoparticles can be made.

Use the correct answer from the box to complete the sentence.

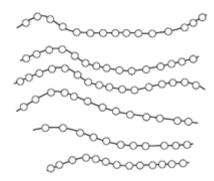

hundred	million	thousand

Nanoparticles contain a few _____ atoms.

(1)

(b) Graphite is made of carbon atoms.

Figure 2 shows the structure of graphite.


	•	— - ,—-	
(i)	What type of bonding doe	s graphite have?	
	Tick (✔) one box.		
	Covalent		
	Ionic		
	Metallic		
			(1)
(ii)	How many carbon atoms	does each carbon atom bond to in graphite?	
	Tick (✔) one box.		
	1		
	2		
	3		
	4		
			(1)
(iii)	What is a property of grap	hite?	
	Tick (✔) one box.		
	Dissolves in water		
	Has a low melting point		
	Soft and slippery		
			(1)

(c) Poly(ethene) is made of carbon and hydrogen atoms.

Poly(ethene) is a thermosoftening polymer.

Figure 3 shows the structure of a thermosoftening polymer.

Figure 3

(i) Complete the sentence.

Between the polymer chains in a thermosoftening polymer there are no ______ .

(ii) Use the correct answer from the box to complete the sentence.

condense dissolve meit	condense	dissolve	melt
------------------------	----------	----------	------

Heating would cause a thermosoftening polymer to

____.

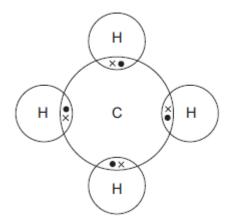
(1)

(2)

(1)

(iii) Many ethene molecules react together to make poly(ethene).

Different types of poly(ethene) can be made by changing the conditions for the reaction.

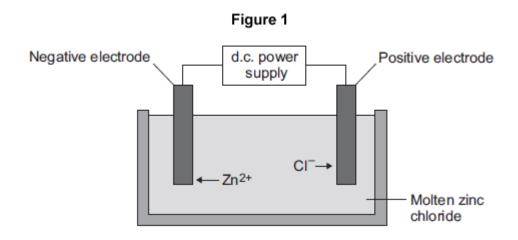

Suggest **two** conditions that could be changed.

1. ______

2.

(d) Figure 4 shows how the atoms are bonded in methane.

Figure 4



(i)	What is the formula for m	ethane?	
	Tick (✔) one box.		
	C₄H		
	CH ₄		
	C_4H_4		
			1)
(ii)	Methane has a low boiling	g point.	
	What does methane cons	sist of?	
	Tick (✔) one box.		
	Charged ions		
	A giant lattice		
	Small molecules		
			1)
		(Total 11 mark	s)

Q13.

This question is about zinc.

Figure 1 shows the electrolysis of molten zinc chloride.

(a) Zinc chloride is an ionic substance. Complete the sentence.

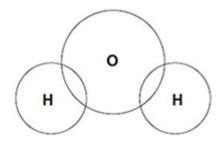
When zinc chloride is molten, it will conduct ______.

(b) Zinc ions move towards the negative electrode where they gain electrons to produce zinc.

(1)

	(i)	Name the product formed at the positive electrode.	
	(ii)	Explain why zinc ions move towards the negative electrode.	_ (1
			-
	(iii)	What type of reaction occurs when the zinc ions gain electrons?	(2
		Tick (✔) one box.	
		Neutralisation	
		Oxidation	
		Reduction	
			(
(c)		c is mixed with copper to make an alloy.	
	(i)	Figure 2 shows the particles in the alloy and in pure zinc.	
		Figure 2	
		Alloy Pure zinc	
		Use Figure 2 to explain why the alloy is harder than pure zinc.	-
			-
	(ii)	Alloys can be bent. Some alloys return to their original shape when heated.	(2

What name is used for these alloys?

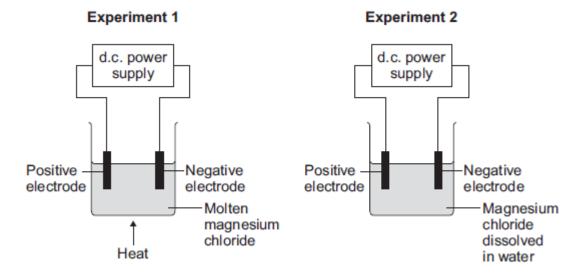

		(Total 8 n
s	ques	tion is about atoms, molecules and nanoparticles.
	Diffe	erent atoms have different numbers of sub-atomic particles.
	(i)	An oxygen atom can be represented as $^{16}_{8}O$
		Explain why the mass number of this atom is 16.
		You should refer to the numbers of sub-atomic particles in the nucleus of the atom.
	(ii)	Explain why ¹² ₆ C and ¹⁴ ₆ C are isotopes of carbon.
		You should refer to the numbers of sub-atomic particles in the nucleus of each isotope.

(b) Hydrogen atoms and oxygen atoms chemically combine to produce water molecules.

Q14.

Complete the figure below to show the arrangement of the outer shell (i) electrons of the hydrogen and oxygen atoms in a molecule of water.

Use dots (•) or crosses (×) to represent the electrons.



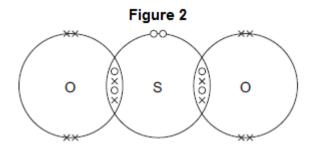
than 1g of cobalt oxide powder.		(ii)	Name the type of bonding in a molecule of water.
from water. (i) How does the size of a nanoparticle compare with the size of an atom? (ii) Suggest one reason why 1 g of cobalt oxide nanoparticles is a better cataly than 1g of cobalt oxide powder. (Total This question is about magnesium and magnesium chloride. (a) Magnesium chloride contains magnesium ions (Mg²+) and chloride ions (Cl⁻). Describe, in terms of electrons, what happens when a magnesium atom reacts we		(iii)	Why does pure water not conduct electricity?
(ii) Suggest one reason why 1 g of cobalt oxide nanoparticles is a better cataly than 1g of cobalt oxide powder. (Total This question is about magnesium and magnesium chloride. (a) Magnesium chloride contains magnesium ions (Mg²+) and chloride ions (Cl⁻). Describe, in terms of electrons, what happens when a magnesium atom reacts we	(c)		
than 1g of cobalt oxide powder. (Total 215. This question is about magnesium and magnesium chloride. (a) Magnesium chloride contains magnesium ions (Mg²+) and chloride ions (Cl⁻). Describe, in terms of electrons, what happens when a magnesium atom reacts we		(i)	How does the size of a nanoparticle compare with the size of an atom?
 This question is about magnesium and magnesium chloride. (a) Magnesium chloride contains magnesium ions (Mg²+) and chloride ions (Cl⁻). Describe, in terms of electrons, what happens when a magnesium atom reacts we 		(ii)	Suggest one reason why 1 g of cobalt oxide nanoparticles is a better catalyst than 1g of cobalt oxide powder.
This question is about magnesium and magnesium chloride. (a) Magnesium chloride contains magnesium ions (Mg²+) and chloride ions (Cl⁻). Describe, in terms of electrons, what happens when a magnesium atom reacts w			(Total 11 ma
Describe, in terms of electrons, what happens when a magnesium atom reacts w	• -	quest	ion is about magnesium and magnesium chloride.
	(a)	Mag	nesium chloride contains magnesium ions (Mg ²⁺) and chloride ions (Cl ⁻).

(b) Magnesium chloride can be electrolysed.

The diagram below shows two experiments for electrolysing magnesium chloride.

electroly	why magnesium ch sed.	nondo maori	oo monon or a	ioooivoa iii wak	51 10 50
-	now magnesium is	produced at	the negative e	electrode in Ex p	periment
1.					

(iii) In **Experiment 2** a gas is produced at the negative electrode. Name the gas produced at the negative electrode.


(3)

(4)

	(iv)	Suggest why magnesium is not produced at the negative electrode in Experiment 2 .	(1
	(v)	Complete and balance the half equation for the reaction at the positive electrode.	- (1
		$___Cl^- \longrightarrow Cl_2 + ___$	(1
(c)	Mag	nesium is a metal.	
		ain why metals can be bent and shaped.	-
		(Total 14	- (2 marks
Q16. This	quest	tion is about the properties and uses of materials.	
Use	your k	knowledge of structure and bonding to answer the questions.	
(a)	Expl	ain how copper conducts electricity.	
			_
			_
(b)	Expl	ain why diamond is hard.	(2
			_
			_

(c)	Explain why th saucepan han	ermosetting polymers are b	etter than thermosoft	ening polymers for
				(T - 4 - 1
				(Total
he	structures of for	ır substances, A , B , C and I	D , are represented in	Figure 1.
	Α	Figure 1 B	С	D
-			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	+ + + + + + + + + + + + + + + + + + +
∟_ а)	Use the corre	ct letter, A , B , C or D , to ans	wer each question.	
	(i) Which sub	stance is a gas?		
		-		
	(ii) Which s	ubstance is a liquid?		
	(iii) Which	substance is an element?		
			L	_
	(iv) Which so	ubstance is made of ions?		

(b) Figure 2 shows the bonding in substance C.

(i) What is the formula of substance C?

Draw a ring around the correct answer.

$$SO_2$$
 SO^2 S_2O

electrons are _

(ii) Use the correct answer from the box to complete the sentence.

delocalised shared transferred

When a sulfur atom and an oxygen atom bond to produce substance C,

(1)

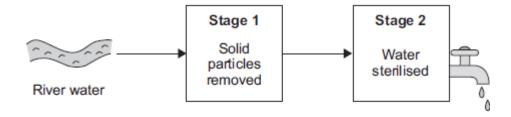
(1)

(iii) What is the type of bonding in substance C?

Draw a ring around the correct answer.

covalent ionic metallic

(Total 7 marks)


(1)

Q18.

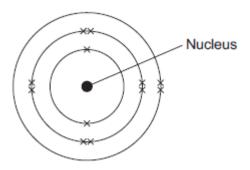
This question is about water.

River water needs to be treated before it is safe to drink.

(a) The diagram shows two stages of the treatment of river water.

(i) What is the name of the process used to remove solid particles in Stage 1?Tick (✓) one box.

	rystallisation
F	ermentation
F	iltration
(ii)	What is added in Stage 2 to sterilise the water?
	Tick (✓) one box.
C	chlorine
F	luoride
Ρ	otassium
Tox	ic substances in river water are removed by adding very small amounts of iron
	e nanoparticles.
oxid	e nanoparticles.
oxid	How is the size of nanoparticles different from normal-sized particles? Nanoparticles are needed in only very small amounts.
oxid (i)	How is the size of nanoparticles different from normal-sized particles?
oxid (i)	How is the size of nanoparticles different from normal-sized particles? Nanoparticles are needed in only very small amounts. Suggest why.
oxid (i) (ii)	How is the size of nanoparticles different from normal-sized particles? Nanoparticles are needed in only very small amounts. Suggest why.


(2)

(Total 6 marks)

Q19.

This question is about magnesium.

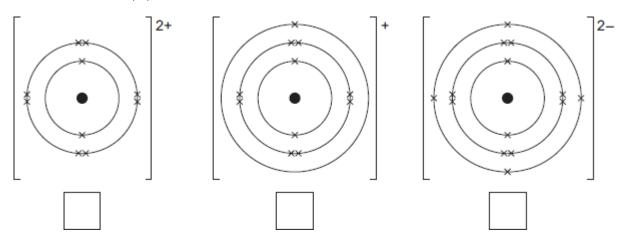
(a) (i) The electronic structure of a magnesium atom is shown below.

Use the correct answer from the box to complete each sentence.

electrons n	eutrons	protons	shells
-------------	---------	---------	--------

The nucleus contains protons and _____

The particles with the smallest relative mass that move around the nucleus are called


Atoms of magnesium are neutral because they contain the same number of electrons and _____

(3)

(ii) A magnesium atom reacts to produce a magnesium ion.

Which diagram shows a magnesium ion?

Tick (✓) one box.

	$Mg(s) + 2 HCl(aq) \longrightarrow MgCl_2(aq) + H_2(g)$				
(i)	State two observations that could be made during the reaction.				
	1				
	2				
(ii)	In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.				
	Describe a method for making pure crystals of magnesium chloride from magnesium and dilute hydrochloric acid.				
	In your method you should name the apparatus you will use.				
	You do not need to mention safety.				

Q20.

This question is about copper.

(a) Copper can be extracted by smelting copper-rich ores in a furnace.

The equation for one of the reactions in the smelting process is:

$$Cu_2S(s) + O_2(g)$$
 2 $Cu(s) + SO_2(g)$

	he atmosphere.
The elo	impure copper produced by smelting is purified by electrolysis, as shown w.
	d.c. power supply
(c	egative electrode athode) ure copper Positive electrode (anode) impure copper
	Electrolyte
	per atoms are oxidised at the positive electrode to Cu ²⁺ ions, as shown in the equation.
	Cu(s) \rightarrow Cu ²⁺ (aq) + 2e ⁻
i)	How does the half equation show that copper atoms are oxidised?
(ii)	The Cu ²⁺ ions are attracted to the negative electrode, where they are reduced to produce copper atoms.
	Write a balanced half equation for the reaction at the negative electrode.
	Suggest a suitable electrolyte for the electrolysis.

(c) Copper metal is used in electrical appliances.

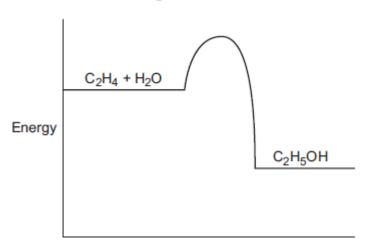
(b)

Describe the bonding in a metal, and explain why metals conduct electricity.

_	
	Soil near copper mines is often contaminated with low percentages of copper ompounds.
Ρ	Phytomining is a new way to extract copper compounds from soil.
С	Describe how copper compounds are extracted by phytomining.
F	A compound in a copper ore has the following percentage composition by mass:
	55.6% copper, 16.4% iron, 28.0% sulfur.
C	Calculate the empirical formula of the compound.
R	Relative atomic masses (A_r): S = 32; Fe = 56; Cu = 63.5
Y	ou must show all of your working.

Empirical formula =	
Empirical formula –	(4)
	(Total 16 marks)

Q21.


This question is about ethanol.

(a) Ethanol is produced by the reaction of ethene and steam:

$$C_2H_4 + H_2O \longrightarrow C_2H_5OH$$

(i) **Figure 1** shows the energy level diagram for the reaction.

Figure 1

How does the energy level diagram show that the reaction is exothermic?					
	(

(ii) A catalyst is used for the reaction.

Explain how a catalyst increases the rate of the reaction.

(2)

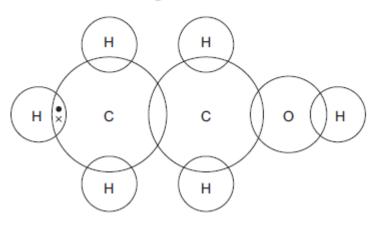
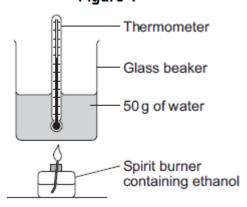

(b) **Figure 2** shows the displayed structure of ethanol.

Figure 2

Complete the dot and cross diagram in Figure 3 to show the bonding in ethanol.

Show the outer shell electrons only.


Figure 3

(c) A student burned some ethanol.

Figure 4 shows the apparatus the student used.

Figure 4

(i) The student recorded the temperature of the water before and after heating.His results are shown in **Table 1**.

Table 1

Temperature before heating	20.7 °C
Temperature after heating	35.1 °C

Calculate the energy used to heat the water.

(2)

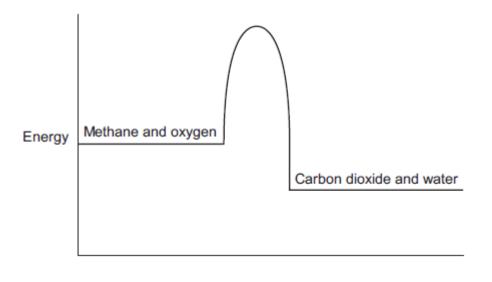
	Energy u	sed =	
Table 2 shows the mass of the and after the ethanol was burned		efore the ethan	ol was burned
Ta	able 2		
Mass of spirit burner before eth burned	anol was	72.80 g	
Mass of spirit burner after ethar burned	nol was	72.10 g	
Calculate the number of moles	of ethanol (C ₂ l	1.011) (1)	- la
Calculate the number of moles	01 011101101 (0 ₂ 1	₄₅ OH) that wer	e burnea.
	•	,	e burnea.
	•	,	e burnea.
	•	,	e burnea.
	•	,	e burnea.
Relative atomic masses (A _r): H	= 1; C = 12; O	= 16	
Relative atomic masses (A _r): H	= 1; C = 12; O	= 16	e burnea.
Relative atomic masses (A _r): H	e 1; C = 12; O	urned =	
Relative atomic masses (A _r): H	ber of moles ben joules per mo	urned =	

Use the equation $Q = m \times c \times \Delta T$

(d) The names, structures and boiling points of ethanol and two other alcohols are shown in **Table 3**.

Name	Methanol	Ethanol	Propanol
Structure	H-C-O-H H	H H H O H	H H H O H H O H H O H
Boiling point in °C	65	78	97

	incr	e your knowledge of structure and bonding to suggest why the rease as the number of carbon atoms increases.	
			(Total 15 mark
		stion is about atoms.	
		ontain electrons, neutrons and protons. Which of these particles has a positive charge?	
(a)	(i)	Tick (✓) one box.	
		Electron	
		Neutron	
		Proton	


(1)

(ii) Which of these particles does **not** have an electrical charge?

	Tick (✓) one box.	
	Electron	
	Neutron	
	Proton	4
(L)		(1)
(b)	How are the elements in the periodic table arranged?	
	Tick (✓) one box.	
	In order of increasing atomic number	
	In order of increasing mass number	
	In order of increasing reactivity	
(c)	The diagram shows the arrangement of the electrons in an atom of fluorine.	(1)
	* * *	
	(i) How many protons are in an atom of fluorine?	
	Tick (✓) one box.	
	2	

		7	
		9	
	(::\	The heilier regist of fluorises in 100 °C	(1)
	(ii)	The boiling point of fluorine is −188 °C.	
		What is the state of fluorine at room temperature?	
		Tick (✓) one box.	
		Solid	
		Liquid	
		Gas	14
(d)	Eliza	oring reacts with copper to form an ionic compound	(1)
(d)	(i)	orine reacts with copper to form an ionic compound. Explain, in terms of electrons and electronic structure, what happens to a fluorine atom when it reacts with copper.	
		Use Above Figure to help you to answer this question.	
			(2
	(ii)	Describe a chemical test which would show that a solution contains copper(II) ions.	

			(Total	(2) 9 marks)
Q23. Met	hane (CH1)	is used as a fuel.	
(a)	•	-	layed structure of methane is:	
(a)	1116	uispi		
			H I	
			н — с — н	
			н	
	Drav	v a rir	ng around a part of the displayed structure that represents a covalent bo	nd.
				(1)
(b)	Why	/ is m	nethane a compound?	
	Tick	(✓) (one box.	
			contains atoms of two elements, combined	
	chen	nically	y.	
	8.4 .41			
	Meth	iane i	is not in the periodic table.	
	Meth	ane i	is a mixture of two different elements.	
				(1)
(c)	Metl	hane	burns in oxygen.	
	(i)		e diagram below shows the energy level diagram for the complete nbustion of methane.	
		Dra	aw and label arrows on the diagram to show:	
		•	the activation energy the enthalpy change, ΔH .	

(ii) Complete and balance the symbol equation for the complete combustion of methane.

(2)

(2)

(2)

(3)

(iii) Explain why the **incomplete** combustion of methane is dangerous.

(iv) Explain why, in terms of the energy involved in bond breaking and bond making, the combustion of methane is exothermic.

(d) Methane reacts with chlorine in the presence of sunlight.

The equation for this reaction is:

Some bond dissociation energies are given in the table.

Bond	Bond dissociation energy in kJ per mole
С-Н	413
C-CI	327
CI-CI	243
H-CI	432

how that the	enthalpy change, A	∆ <i>H</i> , for this react	ion is -103 kJ per i	nole

(3)

(ii) Methane also reacts with bromine in the presence of sunlight.

This reaction is less exothermic than the reaction between methane and chlorine.

The enthalpy change, ΔH , is -45 kJ per mole.

What is a possible reason for this?

Tick (✓) one box.

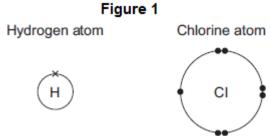
CH₃Br has a lower boiling point than CH₃Cl	
The C-Br bond is weaker than the C-Cl bond.	
The H-Cl bond is weaker than the H-Br bond.	

	Chlorine is more reactive than bromine.	
	(Total 15 m	(1) narks)
Q24.		
This	question is about salts.	
(a)	Salt (sodium chloride) is added to many types of food.	
	Sodium chloride is produced by reacting sodium with chlorine.	
	sodium + chlorine sodium chloride	
	The diagram shows what happens to atoms of sodium and chlorine in this reaction.	
	The dots (•) and crosses (×) represent electrons.	
	Only the outer electrons are shown.	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Describe, in terms of electrons, what happens when a sodium atom reacts with a chlorine atom to produce sodium chloride.	
/ b\	Lock of juding one offect the looming chility of children	(3)
(b)	Lack of iodine can affect the learning ability of children.	
	One idea is that salt (sodium chloride) should have iodine added.	
	(i) Iodine consists of simple molecules.	
	What is a property of substances that have simple molecules?	
	Tick (✓) one box.	
	Have no overall electric charge	

	Have high boiling points	
	Have giant covalent structures	
(ii)	Which one of the following questions cannot be answered by science alone?	()
	Tick (✓) one box.	
	How much sodium chloride is in food?	
	What harm does a lack of iodine do?	
	Should iodine be added to salt in food?	
	Give one reason why this question cannot be answered by science a	alone.
	tudent produced the salt ammonium nitrate by adding an acid to ammo	
solut		
A stusolut	ition.	onia (
solut	Name the acid used.	onia
solut	Name the acid used. Use the correct answer from the box to complete the sentence.	onia (
solut	Name the acid used. Use the correct answer from the box to complete the sentence. an acid an alkali a salt	onia (
solut (i) (ii)	Name the acid used. Use the correct answer from the box to complete the sentence. an acid an alkali a salt Ammonia solution (ammonium hydroxide) is The student added a few drops of a solution which changed colour was	onia (

Farmers buy solid ammonium nitrate in poly(ethene) sacks.

(c)

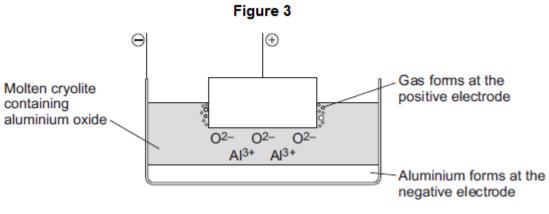

(d)

		Tick (✓) one box.	
		Crystallisation	
		Decomposition	
		Electrolysis	
	(ii)	Why do farmers use ammonium nitrate on their fields?	(1)
	(iii)	The properties of poly(ethene) depend on the reaction conditions when it is made. State one reaction condition that can be changed when making poly(ethene).	(1)
		(Total 12 m	(1) narks)
Q25. This	ques	tion is about electrolysis.	
(a)		tal spoons can be coated with silver. s is called electroplating.	
	Sug	gest one reason why spoons are electroplated.	
(b)		en sodium chloride solution is electrolysed the products are hydrogen and rine.	(1)
	(i)	What is made from chlorine? Tick (✓) one box.	

How is solid ammonium nitrate made from a solution of ammonium nitrate?

(i)

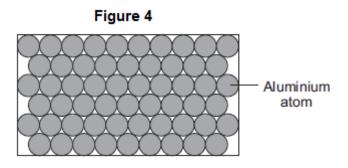
	Bleach		
	Fertiliser		
	Soap		
			(1)
(ii)	Sodium chloride solution conta (H ⁺) and sodium ions (Na ⁺).	ains two types of positive ions, hydrogen	
	Why is hydrogen produced at	the negative electrode and not sodium?	
	Tick (✓) one box.		
	Hydrogen is a gas.		
	Hydrogen is less reactive than	sodium.	
	Hydrogen ions move faster that ions.	an sodium	
			(1)
(iii)	Hydrogen and chlorine can be	used to produce hydrogen chloride.	.,
	The diagrams in Figure 1 sho atom of hydrogen and an aton	w how the outer electrons are arranged in of chlorine.	n an
	Fi	gure 1	
	Hydrogen atom	Chlorine atom	


Complete **Figure 2** to show how the outer electrons are arranged in a molecule of hydrogen chloride (HCl).

(1) (iv) What is the type of bond in a molecule of hydrogen chloride? Tick (✓) one box. Covalent Ionic Metallic (1) (v) Why is hydrogen chloride a gas at room temperature (20 °C)? Tick (✓) **two** boxes. Hydrogen chloride has a low boiling point. Hydrogen chloride has a high melting point. Hydrogen chloride is made of simple molecules. Hydrogen chloride does not conduct electricity. Hydrogen chloride has a giant structure.

(c) Aluminium is produced by electrolysis of a molten mixture of aluminium oxide and cryolite.

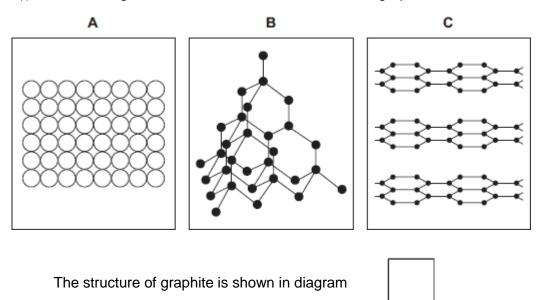
This is shown in **Figure 3**.


(2)

Name a gas produc	ed at the positive electrode.
Aluminium ions mov Explain why.	re to the negative electrode.
	trode, the aluminium ions gain electrons to produce
aluminium.	
aluminium. What is this type of	
aluminium. What is this type of fick (✓) one box.	
At the negative elect aluminium. What is this type of Tick (one box. Combustion Oxidation	

(1)

(iv) Aluminium has layers of atoms, as shown in Figure 4.



Complete the sentence.

Metals can be bent and shaped because the layers of atoms can ____

(1)

- (d) Electrodes used in the production of aluminium are made from graphite.
 - (i) Which diagram, A, B or C, shows the structure of graphite?

(1)

(ii) The temperature for the electrolysis is 950 °C.

Use the correct answer from the box to complete the sentence.

cross links a giant ionic lattice strong covalent bonds

The graphite does not melt at 950 °C because graphite has ______. (1)

(Total 14 marks)

Q26.

This question is about metals and alloys.

(a) Explain how electricity is conducted in a metal.

To gain full marks you must include a description of the structure and bonding of a

Des	scribe how the structure of an alloy is different from the structure of a pure meta
Allo	ys are used to make dental braces and coins.
	ys are used to make dental braces and coins. Nitinol is an alloy used in dental braces.
Allo (i)	Nitinol is an alloy used in dental braces.
	Nitinol is an alloy used in dental braces.
	Nitinol is an alloy used in dental braces.
(i)	Nitinol is an alloy used in dental braces.
	Nitinol is an alloy used in dental braces. Why is Nitinol used in dental braces?
(i)	Nitinol is an alloy used in dental braces. Why is Nitinol used in dental braces? Suggest one reason why coins are not made of pure copper.
(i) (ii)	Nitinol is an alloy used in dental braces. Why is Nitinol used in dental braces? Suggest one reason why coins are not made of pure copper. Do not give cost as a reason.
(i)	Nitinol is an alloy used in dental braces. Why is Nitinol used in dental braces? Suggest one reason why coins are not made of pure copper. Do not give cost as a reason.

High density poly(ethene) can also be made from the same monomer. How can the same reaction produce two different products? (d) Give two reasons why instrumental methods of analysis are used to detect impurities in metals. (Total 1: 127. This question is about compounds. (a) The table gives information about the solubility of some compounds. Soluble compounds All potassium and sodium salts All nitrates Chlorides, bromides and iodides, except those of silver and lead Use information from the table to answer these questions. (i) Name a soluble compound that contains silver ions. (ii) Name a soluble compound that contains carbonate ions.		(iv)	Banks keep coins in poly(ethene) bags. These bags are made fron density poly(ethene).	n low
(d) Give two reasons why instrumental methods of analysis are used to detect impurities in metals. (Total 1: 27. This question is about compounds. (a) The table gives information about the solubility of some compounds. Soluble compounds All potassium and sodium salts All nitrates Chlorides, bromides and iodides, except those of silver and lead Use information from the table to answer these questions. (i) Name a soluble compound that contains silver ions.			High density poly(ethene) can also be made from the same monor	ner.
(Total 1: 27. This question is about compounds. (a) The table gives information about the solubility of some compounds. Soluble compounds All potassium and sodium salts All nitrates Chlorides, bromides and iodides, except those of silver and lead Use information from the table to answer these questions. (i) Name a soluble compound that contains silver ions.			How can the same reaction produce two different products?	
This question is about compounds. (a) The table gives information about the solubility of some compounds. Soluble compounds All potassium and sodium salts All nitrates Chlorides, bromides and iodides, except those of silver and lead Use information from the table to answer these questions. (i) Name a soluble compound that contains silver ions. (ii) Name a soluble compound that contains carbonate ions.	(d)			ect
This question is about compounds. (a) The table gives information about the solubility of some compounds. Soluble compounds All potassium and sodium salts All nitrates Chlorides, bromides and iodides, except those of silver and lead Use information from the table to answer these questions. (i) Name a soluble compound that contains silver ions. (ii) Name a soluble compound that contains carbonate ions.				(Total 11 ma
Soluble compounds All potassium and sodium salts All nitrates Chlorides, bromides and iodides, except those of silver and lead Use information from the table to answer these questions. (i) Name a soluble compound that contains silver ions. (ii) Name a soluble compound that contains carbonate ions.		ques	tion is about compounds.	
All potassium and sodium salts All nitrates Chlorides, bromides and iodides, except those of silver and lead Use information from the table to answer these questions. (i) Name a soluble compound that contains silver ions. (ii) Name a soluble compound that contains carbonate ions.	(a)	The	table gives information about the solubility of some compounds.	
All nitrates Chlorides, bromides and iodides, except those of silver and lead Use information from the table to answer these questions. (i) Name a soluble compound that contains silver ions. (ii) Name a soluble compound that contains carbonate ions.			Soluble compounds	
Chlorides, bromides and iodides, except those of silver and lead Use information from the table to answer these questions. (i) Name a soluble compound that contains silver ions. (ii) Name a soluble compound that contains carbonate ions.		All	potassium and sodium salts	
Use information from the table to answer these questions. (i) Name a soluble compound that contains silver ions. (ii) Name a soluble compound that contains carbonate ions.		All	nitrates	
(i) Name a soluble compound that contains silver ions. (ii) Name a soluble compound that contains carbonate ions.		Ch	nlorides, bromides and iodides, except those of silver and lead	
(ii) Name a soluble compound that contains carbonate ions.		Use	information from the table to answer these questions.	
		(i)	Name a soluble compound that contains silver ions.	
(b) Metal oxides react with acids to make salts.		(ii)	Name a soluble compound that contains carbonate ions.	
	(b)	Met	al oxides react with acids to make salts.	
What type of compound is a metal oxide?		Wha	at type of compound is a metal oxide?	

(i)	State how solid lead nitrate can be obtained from lead nitrate solution.
(ii)	Balance the equation for the reaction. PbO + HNO_3 \longrightarrow $Pb(NO_3)_2$ + H_2O
(iii)	Give the total number of atoms in the formula Pb(NO ₃) ₂
	oxide of lead that does not have the formula PbO contains 6.21 g of lead and g of oxygen.
Calc	culate the empirical formula of this lead oxide.
Rela	ative atomic masses (A_r): O = 16; Pb = 207
You	must show your working to gain full marks.
	Empirical formula =
	(Total 10 ma
•	tion is about sodium chloride and iodine.
Des	cribe the structure and bonding in sodium chloride.
	(ii) An (0.72) Calco Rela You

Whe	en sodium chloride solution is electrolysed, one product is chlorine.
Nam	ne the two other products from the electrolysis of sodium chloride solution.
Sodi	um chloride is added to many types of food. Some scientists recommend that um chloride should have a compound of iodine added.
	one ethical reason why a compound of iodine should not be added to sodium ride used in food.
Γhe	bonding in iodine is similar to the bonding in chlorine.
	bonding in iodine is similar to the bonding in chlorine. Complete the diagram below to show the bonding in iodine.
The	Complete the diagram below to show the bonding in iodine.
	Complete the diagram below to show the bonding in iodine.
i)	Complete the diagram below to show the bonding in iodine. Show the outer electrons only.
i)	Complete the diagram below to show the bonding in iodine. Show the outer electrons only.
i)	Complete the diagram below to show the bonding in iodine. Show the outer electrons only.
i)	Complete the diagram below to show the bonding in iodine. Show the outer electrons only.

(2

(2)

(Total 14 marks)

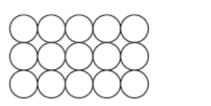
Q29.

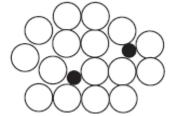
Iron is extracted from iron oxide in the blast furnace.

(a) The equation for one of the reactions in the blast furnace is:

$$Fe_2O_3 + 3CO$$
 2Fe + 3CO₂

(i) Complete the word equation for this reaction.


(ii) Oxygen is removed from iron oxide in the blast furnace.


Draw a ring around the correct answer to complete the sentence.

The iron oxide is oxidised. reduced.

(1)

(b) The diagrams represent pure iron and iron from the blast furnace.

Pure iron

Iron from the blast furnace

(i) Draw **one** line from each statement to the correct explanation.

S	ta	te	m	e	nt	
•				•		

Explanation

Pure iron is an element because

it is made of one sort of atom only.

it contains two elements not chemically combined.

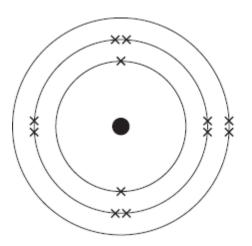
Iron from the blast furnace is a mixture because

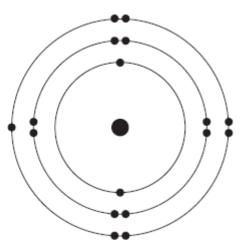
every atom has the same number of neutrons.

it contains two elements chemically combined.

(ii) Explain why iron from the blast furnace is harder than pure iron.

Use the diagrams on page 4 to help you.


(2)


(2)

(Total 7 marks)

Q30.

(a) The diagram shows an atom of magnesium and an atom of chlorine.

Magnesium

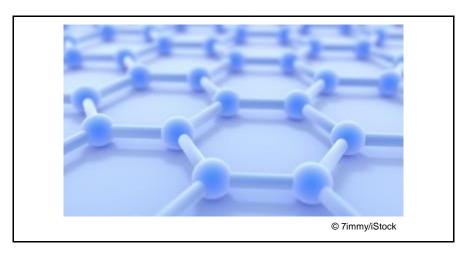
Chlorine

nto ions to produce magnesium c	chloride (MgCl ₂).
Calculate the relative formula ma	ass (M_r) of magnesium chloride $(MgCl_2)$.
Relative atomic masses (A_r) : mag	gnesium = 24; chlorine = 35.5

Q31.

The article gives some information about graphene.

Nanotunes!



Carbon can be made into nano-thin, strong sheets called graphene.

A graphene sheet is a single layer of graphite.

Graphene conducts electricity and is used in loudspeakers.

The picture shows the structure of graphene.

- (a) Use the picture and your knowledge of bonding in graphite to:
 - (i) explain why graphene is strong;

explain why graphene can conduct electricity.

- explain why graphene can conduct electricity.
- (b) Graphite is made up of layers of graphene.

(ii)

Explain why graphite is a lubricant.

(2)

(3)

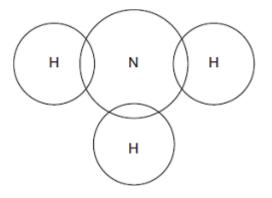
Q32.

(a) A particle of ammonia is represented by the formula NH₃ or as:

(i) How many different elements are there in a particle of ammonia?

(1)

(ii) Draw a ring around the correct answer to complete the sentence.


A particle of ammonia is called an ion.

a molecule.

(1)

(iii) Complete the dot and cross bonding diagram for ammonia.

Show **only** electrons in the outer energy level of each atom.

(2)

(b) Ammonia gas reacts with hydrogen chloride gas to produce a white solid.

The formula of the white solid is NH₄Cl

(i) Complete the equation by adding the correct state symbols.

$$NH_3(g) + HCI(\underline{\hspace{1cm}}) \longrightarrow NH_4CI(\underline{\hspace{1cm}})$$

(1)

(ii) The white solid has the formula NH₄Cl

Complete the name of the white solid.

Ammonium _____

(1)

(c) Concentrated ammonia solution gives off ammonia gas.

Concentrated hydrochloric acid gives off hydrogen chloride gas.

(i)

(ii)

(iii)

Diagram 1

Cotton wool soaked in concentrated hydrochloric acid	Cotton wool soaked in concentrated ammonia solution
Glass	tube
Concentrated hydrochloric acid is corrosi	ive.
Give one safety precaution you should to hydrochloric acid.	ake when using concentrated
After 3 minutes a white solid was seen in	(1) the glass tube, as shown in Diagram
2. Diagram 2	
Diagram 2	
Cotton wool soaked	Cotton wool soaked
in concentrated hydrochloric acid	in concentrated ammonia solution
	in concentrated ammonia solution
hydrochloric acid	in concentrated ammonia solution
hydrochloric acid Glass	in concentrated ammonia solution
White solid formed Suggest why the white solid is seen near	in concentrated ammonia solution
White solid formed Suggest why the white solid is seen near	in concentrated ammonia solution tube here rer the concentrated hydrochloric acid (1)
White solid formed Suggest why the white solid is seen near than the concentrated ammonia.	in concentrated ammonia solution tube here rer the concentrated hydrochloric acid r temperature. (1)

	(Total 10
3.	
	ur is a non-metal.
	ur burns in the air to produce sulfur dioxide, SO ₂
(a)	Why is it important that sulfur dioxide is not released into the atmosphere?
	Tick (✔) one box.
	Sulfur dioxide causes acid rain.
	Sulfur dioxide causes global dimming.
	Sulfur dioxide causes global warming.
(b)	Sulfur dioxide dissolves in water.
	What colour is universal indicator in a solution of sulfur dioxide? Give a reason for your answer.
(c)	Sulfur dioxide is a gas at room temperature.
	The bonding in sulfur dioxide is covalent.
	Explain, in terms of its structure and bonding, why sulfur dioxide has a low boiling point.

(d) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Sulfur dioxide is produced when fossil fuels are burned.

It is important that sulfur dioxide is not released into the atmosphere.

Three of the methods used to remove sulfur dioxide from gases produced when fossil fuels are burned are:

- wet gas desulfurisation (W)
- dry gas desulfurisation (D)
- seawater gas desulfurisation (S).

Information about the three methods is given in the bar chart and in **Table 1** and **Table 2**.

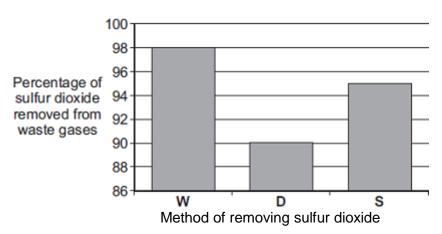


Table 1

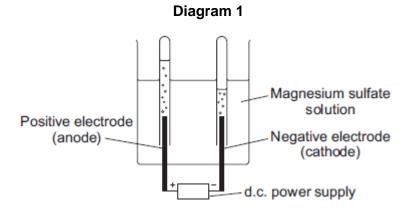
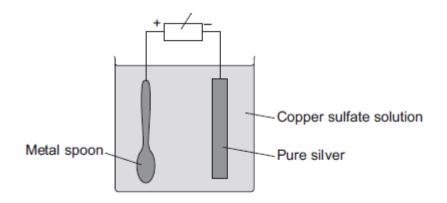

Method	Material used	How material is obtained
w	Calcium carbonate, CaCO₃	Quarrying
D	Calcium oxide, CaO	Thermal decomposition of calcium carbonate: CaCO ₃ CaO + CO ₂
S	Seawater	From the sea

Table 2

Method	What is done with waste material	
W	Solid waste is sold for use in buildings. Carbon dioxide is released into the atmosphere.	
D	Solid waste is sent to landfill.	
S	Liquid waste is returned to the sea.	

Evaluate the three methods of removing sulfur dioxide from waste gases.
Compare the three methods and give a justified conclusion.
(Total 12 marks

Q34. Diagram 1 shows the apparatus used to electrolyse magnesium sulfate solution.


Gases were given off at both electrodes.

(a) The gas collected at the anode was oxygen.

Draw **one** line from the test for oxygen to the correct result.

	Test	Result
		The splint relights
	ace a glowing splint the tube of the gas	The splint goes out
		There is a squeaky pop
(i)	The gas collected at the cath	node was hydrogen.
	Describe how to test the gas	to show that it is hydrogen.
	Test	
	Result	
(ii)	Why is hydrogen, and not ma	agnesium, produced at the cathode?
A stu	•	sis to silver plate a metal spoon.
(ii)	Diagram 2 shows the appara apparatus up correctly.	atus the student used. The student did not set the
	Γ	Diagram 2

d.c. power supply

The student found that the metal spoon eroded and a thin layer of copper formed on the pure silver electrode.

uggest two changes that the student must make to his apparatus to be silver plate the metal spoon. Give a reason for each change.	oe abie
hy is it difficult to electroplate plastic spoons?	
/7	otal 10 m

Q35.

A student was investigating a magnesium salt, **X**.

The student found that **X**:

(iii)

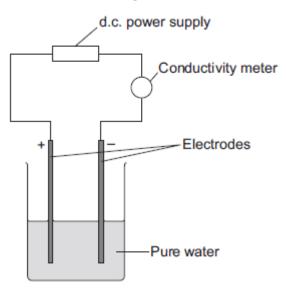
- · has a high melting point
- does not conduct electricity
- dissolves in water and the solution conducts electricity.
- (a) (i) What is the type of bonding in magnesium salt **X**?

(ii) Explain why solid **X** does **not** conduct electricity but a solution of **X** does conduct electricity.

(1)

The	e student dissolved X in water.
	student added dilute nitric acid and silver nitrate solution to the solution of X.
	hite precipitate was formed.
	X contains chloride ions.
Ξхр	lain why a white precipitate was formed.
The	e student dissolved X in water.
	e student dissolved X in water. student added a few drops of sodium hydroxide solution to the solution of X .
Γhe	
The	student added a few drops of sodium hydroxide solution to the solution of X .
The 4 w	student added a few drops of sodium hydroxide solution to the solution of X . hite precipitate was formed.
The 4 w	e student added a few drops of sodium hydroxide solution to the solution of X . hite precipitate was formed. Salt X contains magnesium ions. Name two other metal ions that would give a white precipitate when a few
Γhe A w	e student added a few drops of sodium hydroxide solution to the solution of X . hite precipitate was formed. Salt X contains magnesium ions. Name two other metal ions that would give a white precipitate when a few drops of sodium hydroxide solution are added.
Γhe A w (i)	student added a few drops of sodium hydroxide solution to the solution of X . hite precipitate was formed. Salt X contains magnesium ions. Name two other metal ions that would give a white precipitate when a few drops of sodium hydroxide solution are added. 1
Γhe A w	estudent added a few drops of sodium hydroxide solution to the solution of X . hite precipitate was formed. Salt X contains magnesium ions. Name two other metal ions that would give a white precipitate when a few drops of sodium hydroxide solution are added. 1
Γhe A w (i)	e student added a few drops of sodium hydroxide solution to the solution of X . hite precipitate was formed. Salt X contains magnesium ions. Name two other metal ions that would give a white precipitate when a few drops of sodium hydroxide solution are added. 1

(4)


(Total 11 marks)

Q36.

A student investigated the conductivity of different concentrations of sodium chloride solution.

The student set the apparatus up as shown in Figure 1.

Figure 1

The student measured the conductivity of the pure water with a conductivity meter.

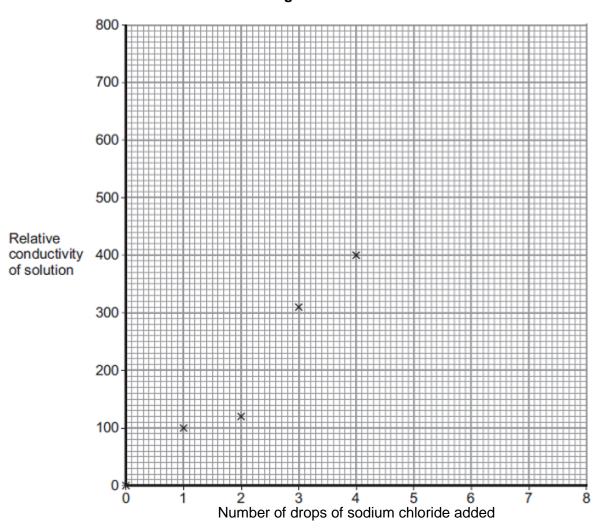
The reading on the conductivity meter was zero.

(a) The student:

- added sodium chloride solution one drop at a time
- stirred the solution
- recorded the reading on the conductivity meter.

The student's results are shown in the table below.

Number of drops of sodium chloride solution added	Relative conductivity of solution
0	0
1	100
2	120
3	310


4	400
5	510
6	590
7	710
8	800

(i) The student plotted the results on the grid shown in Figure 2.

Plot the four remaining results.

Draw a line of best fit, ignoring the anomalous result.

Figure 2

(ii) One of the points is anomalous.

Suggest **one** error that the student may have made to cause the anomalous result.

(3)

		(111)			sium chloride solution.	
			State one variable of the two solution		keep constant when measuring the conductivity	
	(b)	(i)	Explain, in terms	of bonding,	why pure water does not conduct electricity.)
		(ii)	Explain why sodi	um chloride s	solution conducts electricity.)
		(iii)	After he had adde		nloride solution, the student noticed bubbles of)
			Complete the ser	ntence.		
			The gas produce	d at the nega	ative electrode is	`
					(1) (Total 10 marks)	-
Q3	7.					
-,-		quest	ion is about diamo	nds.		
	Draw	a rin	g around the corre	ct answer to	complete each sentence.	
	(a)	Diar	monds are found ir	meteorites.		
		(i)	Meteorites get ve the diamonds do		they pass through the Earth's atmosphere, but	
				high		
			Diamond has a	low	melting point.	

very low

(ii) Most diamonds found in meteorites are nanodiamonds. hundred A nanodiamond contains a few thousand atoms million. (1) Diamonds are used for the cutting end of drill bits. (b) hard. Diamonds can be used for drill bits because they are shiny. soft. (1) (c) The figure below shows the arrangement of atoms in diamond. carbon (i) Diamond is made from nitrogen atoms. oxygen (1) three (ii) Each atom in diamond is bonded to four other atoms. five (1) covalent (iii) Diamond has a giant ionic structure. metallic (1) all In diamond (iv) none of the atoms are bonded together. some (1)

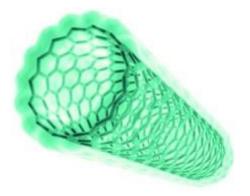
Q38.

In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Chlorine

CI — CI

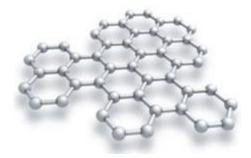
Explain why chlorine (Cl₂) is a gas at room temperature, but sodium chloride (NaCl) is a solid at room temperature.


Sodium chloride

Chloride ion (Cl⁻)
Sodium ion (Na⁺)

Include a description of the bonding and structure of chlorine and sodium chloride in your answer.
Extra space
(Total 6 mark

Q39.

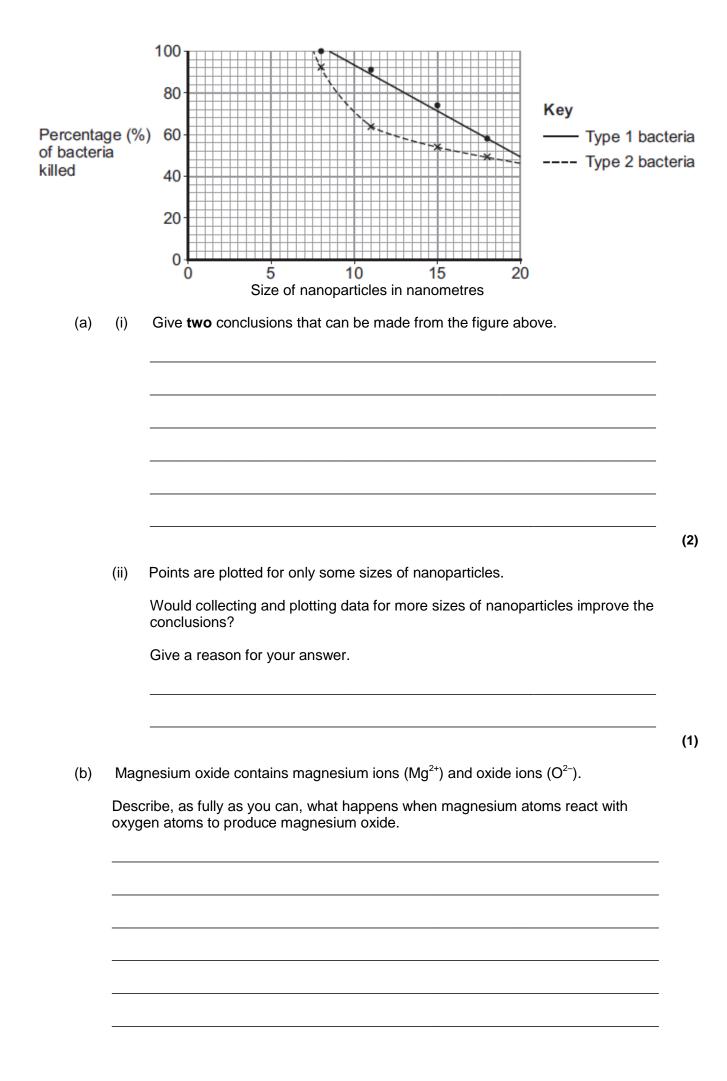

Carbon atoms are used to make nanotubes.

© Denis Nikolenko/Hemera/Thinkstock

Carbon atoms in a nanotube are bonded like a single layer of graphite.

The figure below shows the structure of a single layer of graphite.

© Evgeny Sergeev/iStock/Thinkstock


Explain wh	y graphite	can condu	ıct electri	city.		
Explain wh	y graphite	can condu	ıct electri	city.		
Explain wh	y graphite	can condu	ıct electri	city.		
Explain wh	y graphite	can condu	ıct electri	city.		
Explain wh	y graphite	can condu	ıct electri	city.		

(Total 4 marks)

Q40.

Magnesium oxide nanoparticles can kill bacteria.

The figure below shows the percentage of bacteria killed by different sized nanoparticles.

	
	(4)
	(-,
/Tatal '	7
(Total)	7 marks

Q41.

Glass is made from silicon dioxide.

© Velirina/iStock/Thinkstock

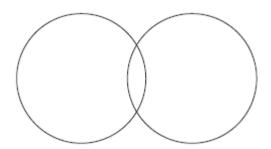
(a) Silicon dioxide has a very high melting point.

Other substances are added to silicon dioxide to make glass. Glass melts at a lower temperature than silicon dioxide.

Suggest why.			

(b) Sodium oxide is one of the substances added to silicon dioxide to make glass.

(i) Sodium oxide contains Na⁺ ions and O²⁻ ions.


Give the formula of sodium oxide.

(1)

(1)

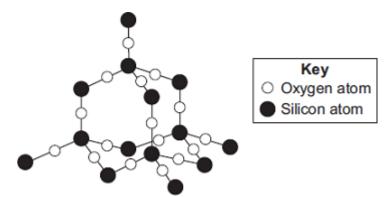
(ii) Sodium oxide is made by heating sodium metal in oxygen gas.

Complete the diagram to show the outer electrons in an oxygen molecule (O₂).

(2)

(c) Glass can be coloured using tiny particles of gold. Gold is a metal.

Describ	oe the	struc	ture o	f a	meta	λl.



(3)

(Total 7 marks)

Q42.

The diagram shows a small part of the structure of silicon dioxide.

(a) Use the diagram above to answer the question.

Draw a ring around the correct answer to complete each sentence.

In silicon dioxide, each silicon atom is bonded with

two

three

oxygen atoms.

four

ionic.

covalent.

metallic.

(b)

© Oleksiy Mark/iStock

Silicon dioxide is used as the inside layer of furnaces.

Suggest why.

(1)

(2)

(c) Nanowires can be made from silicon dioxide.

Draw a ring around the correct answer to complete the sentence.

The word 'nano' means the wires are very

brittle.

thick.

thin.

(1) (Total 4 marks)