CELL DIVISION / QUESTIONS

Q1.

When an organism grows, new cells are produced by cell division.
(a) What type of cell division happens to produce new body cells?

Tick one box.

Differentiation

Meiosis

Mitosis \square
(b) Why can cancers grow very large?

Tick one box.

Cancer cells are specialised

Cell division is slow

Cell division is uncontrolled \square
(c) Give one factor which increases the risk of getting cancer.
\qquad
(d) Survival rates for people with cancer have improved a lot.

People who are alive 10 years after diagnosis are usually considered to be cured.
The figure below shows data for people diagnosed with cancer in 1961 and 2001.

78% of people diagnosed with breast cancer in 2001 were alive 10 years later.
Complete the figure above to show this information.
(e) Which type of cancer diagnosed in 1961 had the highest survival rate?

Tick one box.

(f) Which type of cancer shows the biggest improvement in the percentage of people alive after 10 years?

Tick one box.

Breast \square

Prostate

Skin

Testicular \square
(g) Suggest two reasons why the survival rates for all cancers have increased.

1. \qquad
\qquad
2. \qquad
\qquad

Q2.
(a) In humans there are two types of cell division: mitosis and meiosis.

The table below gives statements about cell division.
Tick (\checkmark) one box in each row to show if the statement is true for mitosis only, for meiosis only, or for both mitosis and meiosis.

The first row has been done for you.

Statement	Mitosis only	Meiosis only	Both mitosis and meiosis
How cells are replaced	\checkmark		
How gametes are made			
How a fertilised egg undergoes cell division			
How copies of the genetic information are made			
How genetically identical cells are produced			

(b) Stem cells can be taken from human embryos.

In therapeutic cloning, an embryo is produced that has the same genes as the patient.
(i) Name one source of human stem cells, other than human embryos.
(ii) Stem cells from embryos can be transplanted into patients for medical treatment.

Give one advantage of using stem cells from embryos, compared with cells from the source you named in part (i).
\qquad
\qquad
(Total 6 marks)

Q3.
Human cells and yeast cells have some parts that are the same.
(a) The diagram shows a yeast cell.

Parts \mathbf{A} and \mathbf{B} are found in human cells and in yeast cells. On the diagram, label parts \mathbf{A} and \mathbf{B}.
(b) Many types of cell can divide to form new cells.

Some cells in human skin can divide to make new skin cells.
Why do human skin cells need to divide?
\qquad
\qquad
(c) Human stem cells can develop into many different types of human cell.
(i) Use the correct answer from the box to complete the sentence.

embryos	hair	nerve cells

Human stem cells may come from
(ii) Use the correct answer from the box to complete the sentence.

cystic fibrosis	paralysis	polydactyly

Human stem cells can be used to treat
\qquad

Q4.

In sexual reproduction, an egg fuses with a sperm.
(a) (i) Draw a ring around the correct answer to complete the sentence.

An egg and a sperm fuse together in the process of	cloning.
fertilisation.	
mitosis.	

(ii) Egg cells and sperm cells each contain the structures given in the box.

chromosome	gene	nucleus

List these three structures in size order, starting with the smallest.
1 \qquad (smallest)
2. \qquad
3 \qquad (largest)
(iii) The egg and the sperm contain genetic material.

Draw a ring around the correct answer to complete the sentence.

The genetic material is made of
carbohydrate.
DNA. protein.
(b) The diagram below shows the inheritance of \mathbf{X} and \mathbf{Y} chromosomes.

(i) Draw a tick (\checkmark) on the part of the diagram that shows a sperm cell.
(ii) What is the chance of having a female child?

Give the reason for your answer.
\qquad
\qquad
\qquad
\qquad
(Total 7 marks)

Q5.

CADASIL is an inherited disorder caused by a dominant allele.
CADASIL leads to weakening of blood vessels in the brain.
The diagram shows the inheritance of CADASIL in one family.

(a) CADASIL is caused by a dominant allele.
(i) What is a dominant allele?
(ii) What is the evidence in the diagram that CADASIL is caused by a dominant allele?
\qquad
\qquad
(iii) Person $\mathbf{7}$ has CADASIL.

Is person $\mathbf{7}$ homozygous or heterozygous for the CADASIL allele?
Give evidence for your answer from the diagram.
\qquad
\qquad
(b) Persons 7 and 8 are planning to have another baby.

Use a genetic diagram to find the probability that the new baby will develop into a person with CADASIL.

Use the following symbols to represent alleles.
D = allele for CADASIL
d = allele for not having CADASIL

Probability $=$ \qquad
(c) Scientists are trying to develop a treatment for CADASIL using stem cells.

Specially treated stem cells would be injected into the damaged part of the brain.
(i) Why do the scientists use stem cells?
\qquad
\qquad
\qquad
\qquad
(ii) Embryonic stem cells can be obtained by removing a few cells from a human embryo. In 2006, scientists in Japan discovered how to change adult skin cells
into stem cells. Suggest one advantage of using stem cells from adult skin cells.
\qquad
\qquad

Q6.
(a) (i) Mitosis and meiosis are types of cell division.

For each feature in the table, tick (\checkmark) one box to show if the feature occurs:

- only in mitosis
- only in meiosis.

Feature	Only in mitosis (\checkmark)	Only in mitosis (\checkmark)
Produces new cells during growth and repair		
Produces gametes (sex cells)		
Produces genetically identical cells		

(ii) Name the organ that produces gametes (sex cells) in:
a man \qquad
a woman \qquad
(b) \mathbf{X} and \mathbf{Y} chromosomes are the sex chromosomes. They determine a person's sex.

What sex chromosomes will be found in the body cells of:
(i) a man \qquad
(ii) a woman? \qquad
(c) A man and a woman decide to have a child.

What is the chance that the child will be a boy? \qquad

The photographs show the flowers of two closely-related species of plant.

Species A Species B

Images: © iStock/Thinkstock
The drawings show chromosomes from one cell in the root of each plant during cell division.

Species A Species B

One chromosome

One chromosome

(a) The drawings show that each chromosome has two strands of genetic material.
(i) How does a chromosome become two strands?
\qquad
\qquad
(ii) Explain why each chromosome must become two strands before the cell divides.
\qquad
\qquad
\qquad
\qquad
(b) For sexual reproduction, the plants produce gametes.
(i) Name the type of cell division that produces gametes. \qquad
(ii) How many chromosomes would there be in a gamete from each of these two plant species?
Species A \square Species B

(iii) It is possible for gametes from Species \mathbf{A} to combine with gametes from Species B to produce healthy offspring plants.
How many chromosomes would there be in each cell of one of the offspring
plants?

(c) (i) Look back at the information at the start of the question and the information from part (b).

What evidence from these two pieces of information supports the belief that Species A and Species B evolved from a common ancestor?
\qquad
\qquad
\qquad
\qquad
(ii) For successful gamete production to take place, chromosomes that contain the same genes must pair up.

The drawings showing the chromosomes of Species A and of Species B are repeated below.

Species A Species B

The offspring plants cannot reproduce sexually.
Suggest an explanation for this.
\qquad
\qquad
\qquad
\qquad
\qquad

Q8.
Stem cells can be collected from human embryos and from adult bone marrow.
Stem cells can develop into different types of cell.
The table gives information about using these two types of stem cell to treat patients.

Stem cells from human embryos	Stem cells from adult bone marrow
It costs $£ 5000$ to collect a few cells.	It costs £1000 to collect many cells.
There are ethical issues in using embryo stem cells.	Adults give permission for their own bone marrow to be collected.
The stem cells can develop into most other types of cell.	The stem cells can develop into only a few types of cell.
Each stem cell divides every 30 minutes.	Each stem cell divides every four hours.
There is a low chance of a patient's immune system rejecting the cells.	There is a high chance of a patient's immune system rejecting the cells.
More research is needed into the use of these stem cells.	Use of these stem cells is considered to be a safe procedure.

Scientists are planning a new way of treating a disease, using stem cells.
Use only the information above to answer these questions.
(a) Give three advantages of using stem cells from embryos instead of from adult bone marrow.

1. \qquad
2. \qquad
3. \qquad
(b) Give three advantages of using stem cells from adult bone marrow instead of from embryos.
4. \qquad
5. \qquad
6. \qquad

Q9.
Read the information about stem cells.

Stem cells are used to treat some human diseases.
Stem cells can be collected from early embryos. These stem cells have not begun to differentiate, so they could be used to produce any kind of cell, tissue or organ. The use of embryonic stem cells to treat human diseases is new and, for some diseases, trials on patients are happening now.

Stem cells can also be collected from adult bone marrow. The operation is simple but may be painful. Stem cells in bone marrow mainly differentiate to form blood cells. These stem cells have been used successfully for many years to treat some kinds of blood disease. Recently there have been trials of other types of stem cell from bone marrow. These stem cells are used to treat diseases such as heart disease.

Evaluate the use of stem cells from embryos or from adult bone marrow for treating human diseases.

You should give a conclusion to your evaluation.
\qquad

Q10.

The photograph shows some cells in the root of an onion plant.

By UAF Center for Distance Education [CC BY 2.0], via Flickr
(a) Cells \mathbf{X} and \mathbf{Y} have just been produced by cell division.
(i) Name the type of cell division that produced cells \mathbf{X} and \mathbf{Y}.
\qquad
(ii) What happens to the genetic material before the cell divides?
\qquad
(b) A gardener wanted to produce a new variety of onion.

Explain why sexual reproduction could produce a new variety of onion.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q11.

The diagram shows a strawberry plant.
The parent plant grows side shoots.

New plants grow on the side shoots.

© D.G. Mackean
The new plants will all have the same inherited characteristics as the original parent plant.
Complete the sentences to explain why.
Use words from the box.

asexual	differentiation	embryos	fertilisation
gametes	genes	mitosis	sexual

(a) The new plant is produced by \qquad reproduction.
(b) In this type of reproduction, body cells divide by \qquad
(c) The new plant has the same \qquad as the parent plant.

Q12.

The table shows the number of chromosomes found in each body cell of some different organisms.

Animals		Plants	
Species	Number of chromosomes in each body cell	Species	Number of chromosomes in each body cell
Fruit fly	8	Tomato	24
Goat	60	Potato	44
Human	46	Rice	24

(a) Nearly every organism on earth has an even number of chromosomes in its body cells.

Suggest why.
\qquad
\qquad
(b) Chromosomes contain DNA molecules.

Describe the function of DNA.
\qquad
\qquad
\qquad
\qquad
(c) Gametes are made in the testes by meiosis.
(i) Look at the diagrams.

Which diagram, A, B, C or D, represents how cell division by meiosis produces
gametes in the testes? \square
(ii) How many chromosomes will each goat gamete contain?
\qquad
(d) Body cells divide by mitosis.
(i) Why is the ability of body cells to divide important?
\qquad
\qquad
(ii) When a body cell of a potato plant divides, how many chromosomes will each of the new cells contain?
\qquad

Q13.
A woman gives birth to triplets.
Two of the triplets are boys and the third is a girl.
The triplets developed from two egg cells released from the ovary at the same time.
The diagram shows how triplets \mathbf{A}, \mathbf{B} and \mathbf{C} developed.

(a) Which stages on the diagram show gametes?

Draw a ring around your answer.
1 and $2 \quad 2$ and $3 \quad 3$ and $7 \quad 1$ and 7
(b) Embryo \mathbf{B} is male.

Which of the following explains why embryo \mathbf{B} is male?
Tick (v^{\prime}) one box.

Cell \mathbf{P} has an X chromosome; cell \mathbf{R} has an X chromosome.

Cell \mathbf{P} has a Y chromosome; cell \mathbf{R} has an X chromosome. \square
Cell \mathbf{P} has an X chromosome; cell \mathbf{R} has a Y chromosome. \square
(c) The children that develop from embryos \mathbf{A} and \mathbf{C} will not be identical.

Explain why.
You may use words from the box in your answer.

egg	genes	sperm

\qquad
\qquad
\qquad
\qquad
\qquad
(d) Single cells from an embryo at Stage 7 can be separated and grown in a special solution.
(i) What term describes cells that are grown in this way?

Draw a ring around your answer.
Ileles screened cells stem cells
(ii) What happens when the cells are placed in the special solution?

Tick (\boldsymbol{v}^{\prime}) two boxes.

The cells divide

The cells fertilise \square

The cells differentiate \square
The cells separate \square
(iii) Give one use of cells grown in this way.
\qquad
\qquad
(iv) Some people might object to using cells from embryos in this way.

Give one reason why.
\qquad
\qquad
\qquad

Q14.

Diagram 1 shows the nucleus of a body cell as it begins to divide by mitosis.

Diagram 1

(a) Use a word from the box to label Diagram 1.

alleles	chromosomes	gametes

(b) Complete Diagram 2 to show what the nucleus of one of the cells produced by this mitosis would look like.

Diagram 2

(c) Stem cells from a recently dead embryo can be grown in special solutions.

Some facts about stem cells are given below.

- Stem cells from an embryo can grow into any type of tissue.
- Stem cells may grow out of control, to form cancers.
- Large numbers of stem cells can be grown in the laboratory.
- Stem cells may be used in medical research or to treat some human diseases.
- Patients treated with stem cells need to take drugs for the rest of their life to prevent rejection.
- Collecting and growing stem cells is expensive.

Use only the information above to answer these questions.
(i) Give two advantages of using stem cells.

1. \qquad
2. \qquad
\qquad
(ii) Give two disadvantages of using stem cells.
3. \qquad
4. \qquad
\qquad

Q15.

The diagram shows how an immature egg could be used either to produce cells to treat
some human diseases or to produce a baby.

Scientists may be allowed to use this technique to produce cells to treat some human diseases, but not to produce babies.

Using information from the diagram, suggest an explanation for this.
\qquad
(Total 4 marks)

Q16.
The diagram shows two patterns of cell division. Cell division type \mathbf{A} is used in gamete formation. Cell division type \mathbf{B} is used in normal growth.

Parents:

(a) Name the two types of cell division, \mathbf{A} and \mathbf{B}, shown in the diagram.

Type A \qquad
Type B \qquad
(b) Name the process in which an egg and sperm join together.
\qquad
(c) Cell 1 contains 46 chromosomes. How many chromosomes will there be in:
(i) cell 10; \qquad
(ii) cell 14 ? \qquad

Q17.

Meiosis and mitosis are different types of division in human cells. Compare the two processes by referring to where each takes place and the kind of products that are made.
\qquad

Q18.
(a) The diagram shows a normal body cell which has six chromosomes.

(i) Complete the diagram below to show one cell produced from this cell by mitosis.

(ii) Complete the diagram below to show one cell produced from the original cell by meiosis.

(b) Thalassaemia is a blood disease. It is determined by a single recessive allele. A person with one recessive allele does not get the disease but does act as a carrier. People with this pair of recessive alleles can become ill.
(i) Draw a genetic diagram to show the inheritance of' this disease if both parents are heterozygous.
[Use the symbols $\mathrm{T}=$ dominant allele and $\mathrm{t}=$ recessive allele]
(ii) What are the chances of a baby inheriting the disease?
\qquad
(iii) What are the chances of a baby being a carrier if both parents are heterozygous?
\qquad

Q19.
In the cell shown in the diagram as a box, one chromosome pair has alleles Aa. The other chromosome pair has alleles $\mathbf{B b}$. The cell undergoes meiosis.
(a) Complete the diagram of the four gametes to show the independent assortment, or reassortment, of genetic material during meiosis.

(b) If the cell undergoes mitosis instead of meiosis, draw the two daughter cells which
result to show the chromosomes in each.

(c) State the number of chromosomes in:
(i) a normal human cell;
\qquad
(ii) a human gamete;
\qquad
(iii) the daughter cell from mitosis of a human cell.
\qquad

Q20.

The genetic diagram shows how the chromosomes divide and combine in human reproduction.

(a) Draw circles around the symbols for the two male gametes.
(b) State the chance of a child being a girl.
(c) (i) How many pairs of chromosomes are there in a human body cell?
\qquad
(ii) How many chromosomes are there in a human egg cell?
\qquad
(d) Chromosomes contain genes. From what substance are genes made?
\qquad
(e) In the process of mitosis, how do the number of chromosomes in the daughter cells compare to that in the original cell?
\qquad

Q21.
(a) How many pairs of chromosomes are there in a body cell of a human baby?
\qquad
(b) Place the following in order of size, starting with the smallest, by writing numbers 1 - 4 in the boxes underneath the words.

(c) For a baby to grow, its cells must develop in a number of ways.

Explain how each of the following is part of the growth process of a baby.
(i) Cell enlargement
\qquad
(ii) The process of cell division by mitosis
\qquad
(d) Why is cell specialisation (differentiation) important for the development and growth of a healthy baby from a fertilised egg?
\qquad
\qquad

Q22.

Diagram 1 shows an animal cell and some of the structures inside the cell.

Diagram 1

(a) Use words from the box to label structures A, B and C, on Diagram 1.

Characteristic	Chromosome	Gamete	Gene	Nucleus

(b) Factors that may affect characteristics include genes and the environment.

Diagram 2 shows some of the characteristics of a girl.

Diagram 2

Draw one line from each characteristic in List A to the factor(s) that affect the characteristic in List B.

List A Characteristic

Affected by both genes and the environment

Scar on arm

List B

Factor(s) that affect the characteristic
Affected by genes only

Affected by neither genes nor the environment

