CHANGES IN ENERGY

Q1.

The image below shows a student before and after a bungee jump.
The bungee cord has an unstretched length of 20 m .

(a) For safety reasons, it is important that the bungee cord used is appropriate for the student's weight.

Give two reasons why.

1. \qquad
2. \qquad
\qquad
(b) The student jumps off the bridge.

Complete the sentences to describe the energy transfers.
Use answers from the box.

| potential | kinetic sound \quad thermal |
| :---: | :---: | :---: |

Before the student jumps from the bridge he has a store of
\qquad energy.

When he is falling, the student's store of \qquad energy increases.

When the bungee cord is stretched, the cord stores energy as
\qquad energy.
(c) At the lowest point in the jump when the student is stationary, the extension of the bungee cord is 35 metres.

The bungee cord behaves like a spring with a spring constant of $40 \mathrm{~N} / \mathrm{m}$.
Calculate the energy stored in the stretched bungee cord.
Use the correct equation from the Physics Equations Sheet.
\qquad
\qquad
\qquad
Energy = \qquad J

Q2.
The figure below shows a student before and after a bungee jump.
The bungee cord has an unstretched length of 20.0 m .

River

The mass of the student is 50.0 kg .
The gravitational field strength is $9.8 \mathrm{~N} / \mathrm{kg}$.
(a) Write down the equation which links gravitational field strength, gravitational potential energy, height and mass.
\qquad
(b) Calculate the change in gravitational potential energy from the position where the student jumps to the point 20.0 m below.
\qquad
\qquad
\qquad
Change in gravitational potential energy $=$ \qquad J
(c) 80% of this change in gravitational potential energy has been transferred to the student's kinetic energy store.

How much has the student's kinetic energy store increased after falling 20.0 m ?
Kinetic energy gained = \qquad J
(d) Calculate the speed of the student after falling 20.0 m .

Give your answer to two significant figures.
Speed =
\qquad m / s
(e) At the lowest point in the jump, the energy stored by the stretched bungee cord is 24.5 kJ.

The bungee cord behaves like a spring.
Calculate the spring constant of the bungee cord.
Use the correct equation from the Physics Equation Sheet.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Spring constant $=$ \qquad N / m

Q3.
The figure below shows the horizontal forces acting on a car.

(a) Which one of the statements describes the motion of the car?

Tick one box.
It will be slowing down.

It will be stationary.

It will have a constant speed.

It will be speeding up.

(b) During part of the journey the car is driven at a constant speed for five minutes.

Which one of the equations links distance travelled, speed and time?
Tick one box.
distance travelled $=$ speed + time
distance travelled $=$ speed \times time
distance travelled = speed - time
distance travelled $=$ speed \div time

(c) During a different part of the journey the car accelerates from $9 \mathrm{~m} / \mathrm{s}$ to $18 \mathrm{~m} / \mathrm{s}$ in 6 s.

Use the following equation to calculate the acceleration of the car.
acceleration= $\frac{\text { change in velociy }}{\text { time taken }}$
\qquad
\qquad
acceleration $=$ \qquad $\mathrm{m} / \mathrm{s}^{2}$
(d) Which equation links acceleration, mass and resultant force?

Tick one box.

(e) The mass of the car is 1120 kg . The mass of the driver is 80 kg .

Calculate the resultant force acting on the car and driver while accelerating.
\qquad
\qquad
Resultant force $=$ N
(f) Calculate the distance travelled while the car is accelerating.

Use the correct equation from the Physics Equation Sheet.
\qquad
\qquad
\qquad
Distance $=\ldots \mathrm{m}$
(g) A car driver sees a fallen tree lying across the road ahead and makes an emergency stop.

The braking distance of the car depends on the speed of the car.
For the same braking force, explain what happens to the braking distance if the speed doubles.

You should refer to kinetic energy in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 14 marks)

Q4.
A student did an experiment to calculate her power.
The diagram below shows how she obtained the measurements needed.
The student first weighed herself and then ran up a flight of stairs. A second student timed how long it took her to go from the bottom to the top of the stairs. The height of the stairs was also measured.

(a) Complete the following sentence.

To run up the stairs the student must do work against
the force of \qquad .
(b) The student did 2240 J of work going from the bottom of the stairs to the top of the stairs.

The student took 2.8 seconds to run up the stairs.
(i) Calculate the power the student developed when running up the stairs.
\qquad
\qquad
Power $=\ldots \mathrm{W}$
(ii) How much gravitational potential energy did the student gain in going from the bottom to the top of the stairs?

Tick (\boldsymbol{V}) one box.
much more than 2240 J

2240 J

much less than 2240 J

(c) Another four students did the same experiment.

The measurements taken and the calculated values for power are given in the table.

Student	Weight in newtons	Time taken in seconds	Power in watts
A	285	3.8	240
B	360	2.4	480

C	600	3.4	560
D	725	4.0	580

(i) To make a fair comparison of their powers the students kept one variable in the experiment constant.

What variable did the students keep constant?
\qquad
(ii) From the data in the table a student wrote the following conclusion.
'The greater the weight of the student the greater the power developed.'
Suggest why this conclusion may not be true for a larger group of students.
\qquad
\qquad

Q5.
The diagram below shows a person using a device called a jetpack. Water is forced downwards from the jetpack and produces an upward force on the person.

(a) State the condition necessary for the person to be able to remain stationary in mid-air.
\qquad
\qquad
(b) The person weighs 700 N and the jetpack weighs 140 N .
(i) Calculate the combined mass of the person and the jetpack.

Gravitational field strength $=10 \mathrm{~N} / \mathrm{kg}$

Combined mass $=$ \qquad kg
(ii) Increasing the upward force to 1850 N causes the person to accelerate upwards.

Calculate the acceleration of the person and the jetpack. Give the unit.
\qquad
\qquad
\qquad
\qquad
Acceleration $=$ \qquad Unit \qquad

Q6.
(a) Draw one line from each velocity-time graph to the statement describing the motion shown by the graph.

Velocity-time graph

Motion shown by graph

\square
Not moving

Constant deceleration

Constant velocity
(b) Use the correct answer from the box to complete the sentence.

energy	momentum	speed

The velocity of an object includes both the \qquad of the object and the direction the object is moving.
(c) At the start of a race, a horse accelerates from a velocity of $0 \mathrm{~m} / \mathrm{s}$ to a velocity of 9 m / s in 4 seconds.
(i) Calculate the acceleration of the horse.
\qquad

Acceleration $=$ \qquad $\mathrm{m} / \mathrm{s}^{2}$
(ii) When the horse accelerates, what, if anything, happens to the air resistance acting against the horse?

Tick (\checkmark) one box.

The air resistance decreases

The air resistance is constant

The air resistance increases

(d) A horse and a pony walk across a field at the same constant speed.

The horse has 4000 joules of kinetic energy.
The pony is half the mass of the horse.
What is the kinetic energy of the pony?
Draw a ring around the correct answer

```
2000 J
4 0 0 0 ~ J ~
8 0 0 0 ~ J ~
```

Give a reason for your answer.
\qquad
\qquad

Q7.
(a) Figure 1 shows the forces acting on a model air-powered rocket just after it has been launched vertically upwards.

Figure 1

(i) How does the velocity of the rocket change as the rocket moves upwards?

Give a reason for your answer.
\qquad
\qquad
(ii) The velocity of the rocket is not the same as the speed of the rocket.

What is the difference between the velocity of an object and the speed of an object?
\qquad
\qquad
\qquad
(b) The speed of the rocket just after being launched is $12 \mathrm{~m} / \mathrm{s}$.

The mass of the rocket is 0.05 kg .
(i) Calculate the kinetic energy of the rocket just after being launched.
\qquad
\qquad
\qquad
Kinetic energy = \qquad J
(ii) As the rocket moves upwards, it gains gravitational potential energy.

State the maximum gravitational potential energy gained by the rocket.
Ignore the effect of air resistance.
Maximum gravitational potential energy = \qquad J
(iii) Calculate the maximum height the rocket will reach.

Ignore the effect of air resistance.
Gravitational field strength $=10 \mathrm{~N} / \mathrm{kg}$.
\qquad
\qquad

Maximum height $=$ \qquad m
(iv) Figure $\mathbf{2}$ shows four velocity-time graphs.

Figure 2

Taking air resistance into account, which graph, A, B, C or D, shows how the velocity of the rocket changes as it falls from the maximum height it reached until it just hits the ground?

Write the correct answer in the box.

(c) The rocket can be launched at different angles to the horizontal.

The horizontal distance the rocket travels is called the range.
Figure 3 shows the paths taken by the rocket when launched at different angles. Air resistance has been ignored.

Figure 3

What pattern links the angle at which the rocket is launched and the range of the rocket?
\qquad
\qquad
\qquad
\qquad
(Total 11 marks)

Q8.
A student uses an electric motor to lift a load.

In the motor, the electrical energy is transferred into other types of energy. Some of this energy is useful and the rest of the energy is wasted.
(a) (i) Name the useful energy output from the electric motor.
\qquad
(ii) What eventually happens to the wasted energy?
\qquad
\qquad
(b) The graph shows the input energy the motor needs to lift different loads by one metre.

What can you conclude from the graph about the relationship between the load lifted and the input energy needed?
\qquad
\qquad
\qquad
\qquad
(c) A shop uses escalators to lift customers to different floor levels. The escalators use electric motors. When the shop is not busy some escalators are turned off. A sign tells the customers that the escalators are turned off to save energy.

(i) Each escalator has one motor with an average power of 4000 W . The motor is turned on for an average of 8 hours each day, 6 days each week. Electricity costs 15 pence per kilowatt-hour.

Calculate the cost of the electricity used in an average week to run one escalator.

Show clearly how you work out your answer.
\qquad
\qquad
\qquad
\qquad
Cost $=$ \qquad pence
(ii) Give one environmental advantage to turning off electrical appliances when they are not being used.
\qquad
\qquad

Q9.
The miners working in a salt mine use smooth wooden slides to move quickly from one level to another.

(a) A miner of mass 90 kg travels down the slide.

Calculate the change in gravitational potential energy of the miner when he moves 15 m vertically downwards.
\square
Show clearly how you work out your answer.
\qquad
\qquad
Change in gravitational potential energy = \qquad J
(b) Calculate the maximum possible speed that the miner could reach at the bottom of the slide.

Show clearly how you work out your answer.
Give your answer to an appropriate number of significant figures.
\qquad
\qquad
\qquad
\qquad
Maximum possible speed = \qquad m/s
(c) The speed of the miner at the bottom of the slide is much less than the calculated maximum possible speed.

Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q10.

The diagram shows a wind turbine.

(a) The blades of the turbine are 20 metres long. On average, 15000 kg of air, moving at a speed of $12 \mathrm{~m} / \mathrm{s}$, hit the blades every second.

Calculate the kinetic energy of the air hitting the blades every second.
Show clearly how you work out your answer.
\qquad
\qquad
Kinetic energy $=$ \qquad J
(b) Part of the kinetic energy of the wind is transformed into electrical energy. The diagram shows that, for the same wind speed, the power output of a turbine, in kilowatts, depends on the length of the turbine blades.

Give a reason why doubling the diameter of the blades more than doubles the power output of a turbine.
\qquad
\qquad

Q11.

(a) When an object is moving it is said to have momentum.

Define momentum.
\qquad
\qquad
(b) The diagram below shows one way of measuring the velocity of a bullet.

A bullet is fired into a block of wood suspended by a long thread.
The bullet stops in the wooden block.
The impact of the bullet makes the block swing.
The velocity of the wooden block can be calculated from the distance it swings.
In one such experiment the block of wood and bullet had a velocity of $2 \mathrm{~m} / \mathrm{s}$ immediately after impact. The mass of the bullet was 20 g and the mass of the wooden block 3.980 kg .
(i) Calculate the combined mass of the block of wood and bullet.
\qquad Mass \qquad
(ii) Calculate the momentum of the block of wood and bullet immediately after impact.
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) State the momentum of the bullet immediately before impact.
\qquad
(iv) Calculate the velocity of the bullet before impact.
\qquad
\qquad
\qquad
\qquad Velocity \qquad m / s
(v) Calculate the kinetic energy of the block of wood and bullet immediately after impact.
\qquad
\qquad
\qquad
\qquad J
(vi) The kinetic energy of the bullet before the impact was 1600 joules. This is much greater than the kinetic energy of the bullet and block just after the impact.
What has happened to the rest of the energy?
\qquad
\qquad
\qquad
\qquad

Q12.
When a gun is fired, a very large force acts on the bullet for a very short time.
The change in momentum of the bullet is given by the following relationship:

```
force (N) x time(s) = change in momentum (kg m/s)
```

(a) An average force of 4000 newton acts for 0.01 seconds on a bullet of mass 50 g . Calculate the speed of the bullet. (Show your working.)

Answer \qquad m / s
(b) The bullet is fired horizontally. In the short time it takes for the bullet to reach its target, its horizontal speed has fallen to 80% of its initial speed.
(i) Explain why the speed of the bullet decreases so quickly.
\qquad
\qquad
(ii) Calculate the percentage of its original kinetic energy the bullet still has when it reaches its target.
(Show your working.)
\qquad
\qquad
\qquad
\qquad

