Chemical Analysis

Q1.

This question is about mixtures and analysis.
(a) Which two substances are mixtures?

Tick two boxes.

(b) Draw one line from each context to the correct meaning.

Context

Pure
substance in chemistry

A single element or a single compound

A substance containing only atoms which have different numbers of protons

Pure
 substance in everyday life

A substance that can be separated by filtration

A useful product made by mixing substances
(c) What is the test for chlorine gas?

Tick one box.
A glowing splint relights \square

A lighted splint gives a pop \square
Damp litmus paper turns white

Limewater turns milky

(d) A student tested a metal chloride solution with sodium hydroxide solution.

A brown precipitate formed.
What was the metal ion in the metal chloride solution?

Tick one box.

Q2.
A student investigated a food colouring using paper chromatography.
This is the method used.

1. Put a spot of food colouring \mathbf{X} on the start line.
2. Put spots of three separate dyes, \mathbf{A}, \mathbf{B} and \mathbf{C}, on the start line.
3. Place the bottom of the paper in water and leave it for several minutes.
(a) Figure 1 shows the apparatus the student used.

Figure 1

Give two mistakes the student made in setting up the experiment.
Tick two boxes.
The lid was on the beaker.
The paper did not touch the bottom of the beaker.

The spots were too small.

The start line was drawn in ink.

The water level was above the spots.
(b) Another student set the experiment up correctly.

Figure 2 shows the student's results.
Figure 2

How many dyes were in \mathbf{X} ?
Tick one box.

(c) Which dye, \mathbf{A}, \mathbf{B} or \mathbf{C}, is not in \mathbf{X} ?

Write your answer in the box. \square
(d) Use Figure 2 to complete the table below.

Calculate the value for R_{f} for dye \mathbf{A}.

	Distance in mm
Distance moved by dye A	
Distance from start line to solvent front	

Use the equation:

$$
\mathrm{R}_{\mathrm{f}}=\frac{\text { distance moved by dye } \mathrm{A}}{\text { distance moved by solvent }}
$$

Give your answer to two significant figures.
\qquad
\qquad
\qquad
R_{f} value $=$

Q3.
Water from a lake in the UK is used to produce drinking water.
(a) What are the two main steps used to treat water from lakes?

Give a reason for each step.
Step 1 \qquad
Reason \qquad
Step 2 \qquad
Reason \qquad
(b) Explain why it is more difficult to produce drinking water from waste water than from water in lakes.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Some countries make drinking water from sea water.

Complete the figure below to show how you can distil salt solution to produce and collect pure water.

Label the following:

- pure water
- salt solution

(d) How could the water be tested to show it is pure?

Give the expected result of the test for pure water.
\qquad
\qquad
\qquad
\qquad
\qquad
(e) Why is producing drinking water from sea water expensive?
\qquad
\qquad

Q4.
A student investigated food dyes using paper chromatography.
This is the method used.

1. Put a spot of food colouring \mathbf{X} on the start line.
2. Put spots of four separate dyes, A, B, C and D, on the start line.
3. Place the bottom of the paper in water and leave it for several minutes.

Figure 1 shows the apparatus the student used.
Figure 1

(a) Write down two mistakes the student made in setting up the experiment and explain what problems one of the mistakes would cause.
\qquad
\qquad
\qquad
\qquad
(b) Another student set up the apparatus correctly.

Figure 2 shows the student's results. The result for dye \mathbf{D} is not shown.
Figure 2

Calculate the R_{f} value of dye \mathbf{A}

Give your answer to two significant figures.
\qquad
\qquad
\qquad
\qquad
R_{f} value $=$ \qquad
(c) Dye \mathbf{D} has an R_{f} value of 0.80. Calculate the distance that dye \mathbf{D} moved on the chromatography paper.
\qquad
\qquad
Distance moved by dye $\mathbf{D}=$ \qquad
(d) Explain how the different dyes in \mathbf{X} are separated by paper chromatography.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(e) Flame emission spectroscopy can be used to analyse metal ions in solution.

Figure 3 gives the flame emission spectra of five metal ions, and of a mixture of two metal ions.

Figure 3

Use the spectra to identify the two metal ions in the mixture.
\qquad
\qquad
(f) Explain why a flame test could not be used to identify the two metal ions in the mixture.
\qquad
\qquad
\qquad
\qquad
(g) Two students tested a green compound \mathbf{X}.

The students added water to compound \mathbf{X}.
Compound \mathbf{X} did not dissolve.
The students then added a solution of ethanoic acid to compound \mathbf{X}.
A gas was produced which turned limewater milky.
Student \mathbf{A} concluded that compound \mathbf{X} was sodium carbonate.
Student B concluded that compound \mathbf{X} was copper chloride.
Which student, if any, was correct?
Explain your reasoning.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q5.

Fertilisers are used to improve agricultural productivity.
(a) Ammonium nitrate is used in fertilisers.

Name the two compounds used to manufacture ammonium nitrate.
\qquad
\qquad
(b) A fertiliser contains the following information on the label:

NPK value = $14: 11: 11$
Explain why this information is useful to farmers.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) The figure below shows worldwide ammonia production and world population from 1950 to 2010.

Use the figure above and your knowledge to explain the relationship between ammonia production and world population.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q6.
Figure 1 shows how ethanol is made from plants and from crude oil.

Figure 1

(a) What is the name of the reaction to produce ethanol from sugar?

Tick (\boldsymbol{V}) one box.

(b) A student made ethanol from sugar.

Figure 2 shows the apparatus used.
Figure 2

(i) What change is seen in the limewater?

Give a reason for your answer.
\qquad
\qquad
(ii) The student wanted to separate the solid yeast from the solution.

Figure 3 shows the apparatus used.
Figure 3

What is missing from the apparatus in Figure 3?
\qquad
\qquad

Q7.
This question is about reactions of ethanoic acid and the analysis of salts.
(a) Figure 1 shows the apparatus used to investigate the reaction of ethanoic acid with calcium carbonate.

Figure 1

(i) Describe a change that would be seen in each test tube.

Give a reason for each change.
Test tube 1 \qquad

Test tube 2
\qquad
\qquad
\qquad
(ii) Complete the displayed structure of ethanoic acid.

(iii) Ethanoic acid is a carboxylic acid.

Complete the sentence.
Carboxylic acids react with alcohols in the presence of an
\qquad
catalyst to produce pleasant-smelling compounds
called \qquad .
(b) Figure 2 shows four test tubes containing three different salt solutions and water.

Figure 2

Potassium chloride solution	Calcium nitrate solution	Ammonium sulfate solution	Water

Each solution and the water was tested with:

- silver nitrate in the presence of dilute nitric acid
- barium chloride in the presence of dilute hydrochloric acid.

Complete the table of results.

	Potassium chloride solution	Calcium nitrate solution	Ammonium sulfate solution	Water
Test with silver nitrate in the presence of dilute nitric acid			no change	no change
Test with barium chloride in the presence of dilute hydrochloric acid		no change	white precipitate	

(c) Flame tests can be used to identify metal ions.
(i) Complete the following sentences.

The flame colour for potassium ions is \qquad .

The flame colour for calcium ions is \qquad .
(ii) Give one reason why a flame test would not show the presence of both potassium ions and calcium ions in a mixture.
\qquad
\qquad
\qquad

Q8.
This question is about water.
River water needs to be treated before it is safe to drink.
(a) The diagram shows two stages of the treatment of river water.

(i) What is the name of the process used to remove solid particles in Stage 1?

Tick (\checkmark) one box.

(ii) What is added in Stage 2 to sterilise the water?

Tick (\checkmark) one box.

Chlorine

Fluoride

Potassium

(b) Toxic substances in river water are removed by adding very small amounts of iron oxide nanoparticles.
(i) How is the size of nanoparticles different from normal-sized particles?
\qquad
\qquad
(ii) Nanoparticles are needed in only very small amounts.

Suggest why.
\qquad
\qquad
(c) In certain areas of the UK, tap water contains aluminium ions.

What would you see when sodium hydroxide solution is added drop by drop to tap water containing aluminium ions?
\qquad

Q9.

This question is about atoms.
Atoms contain electrons, neutrons and protons.
(a) (i) Which of these particles has a positive charge?

Tick (\checkmark) one box.

Electron

Neutron

Proton

(ii) Which of these particles does not have an electrical charge?

Tick (\checkmark) one box.

Neutron

Proton

(b) How are the elements in the periodic table arranged?

Tick (\checkmark) one box.

In order of increasing atomic number \square

In order of increasing mass number

In order of increasing reactivity
(c) The diagram shows the arrangement of the electrons in an atom of fluorine.

(i) How many protons are in an atom of fluorine?

Tick (\checkmark) one box.

2

7

9

(ii) The boiling point of fluorine is $-188^{\circ} \mathrm{C}$.

What is the state of fluorine at room temperature?
Tick (\checkmark) one box.

Solid

Liquid

Gas

(d) Fluorine reacts with copper to form an ionic compound.
(i) Explain, in terms of electrons and electronic structure, what happens to a fluorine atom when it reacts with copper.

Use Above Figure to help you to answer this question.
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Describe a chemical test which would show that a solution contains copper(II) ions.
\qquad
\qquad
\qquad
\qquad
\qquad

Q10.
This question is about chemical tests.
(a) Solutions of copper(II) ions and iron(III) ions produce coloured precipitates with sodium hydroxide solution.

Draw one line from each metal ion to the colour of the precipitate it produces.

(b) Sodium hydroxide solution was added to a solution containing ions of a metal.

A white precipitate was produced. The white precipitate dissolved in excess sodium hydroxide solution.

Use the correct answer from the box to complete the sentence.

aluminium	magnesium	potassium

The ions in the solution were ions of \qquad .
(c) Low sodium salt contains sodium chloride and potassium chloride.

A student used a flame test on low sodium salt.
(i) What is the colour produced by sodium ions in a flame test?
\qquad
(ii) What is the colour produced by potassium ions in a flame test?
\qquad
(iii) Why is it not possible to tell from the flame test that both ions are present in low sodium salt?
\qquad
\qquad

Q11.
This question is about chemical analysis.
(a) A student has solutions of three compounds, \mathbf{X}, \mathbf{Y} and \mathbf{Z}.

The student uses tests to identify the ions in the three compounds.
The student records the results of the tests in the table.

	Test			
Compound	Flame test	Add sodium hydroxide solution	Add hydrochloric acid and barium chloride solution	Add nitric acid and silver nitrate solution
\mathbf{X}	no colour	green precipitate	white precipitate	no reaction
\mathbf{Y}	yellow flame	no reaction	no reaction	yellow precipitate
\mathbf{Z}	no colour	brown precipitate	no reaction	cream precipitate

Identify the two ions present in each compound, \mathbf{X}, \mathbf{Y} and \mathbf{Z}.
X \qquad
Y \qquad
Z \qquad
(b) A chemist needs to find the concentration of a solution of barium hydroxide. Barium hydroxide solution is an alkali.

The chemist could find the concentration of the barium hydroxide solution using two different methods.

Method 1

- An excess of sodium sulfate solution is added to $25 \mathrm{~cm}^{3}$ of the barium hydroxide solution. A precipitate of barium sulfate is formed.
- The precipitate of barium sulfate is filtered, dried and weighed.
- The concentration of the barium hydroxide solution is calculated from the mass of barium sulfate produced.

Method 2

- $\quad 25 \mathrm{~cm}^{3}$ of the barium hydroxide solution is titrated with hydrochloric acid of known concentration.
- The concentration of the barium hydroxide solution is calculated from the result of the titration.

Compare the advantages and disadvantages of the two methods.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q12.

The diagram shows three stages in the treatment of reservoir water.

(a) (i) What is separated from the reservoir water during filtration?

Tick (\boldsymbol{V}) one box.
Bacteria

Dissolved nitrates

Solids

(ii) What is added to sterilise the water?

Tick (\boldsymbol{V}) one box.
Calcium

Chlorine \square

Magnesium \square
(iii) State one advantage of adding fluoride to drinking water.
\qquad
\qquad
(b) The diagram shows a water filter used in the home.

A student collected a sample of water from the filter.
The student could show that the filtered water contains dissolved salts without using a chemical test.

Describe how.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Seawater is forced through a membrane to make drinking water.

Suggest why water molecules can pass through the membrane, but sodium ions and chloride ions cannot.
\qquad
\qquad
(Total 6 marks)

Q13.

Chromatography can be used to separate components of a mixture.
(a) A student used paper chromatography to analyse a black food colouring.

The student placed spots of known food colours, A, B, C, D and E, and the black food colouring on a sheet of chromatography paper.

The student set up the apparatus as shown in Diagram 1.
Diagram 1

The student made two errors in setting up the apparatus.
Identify the two errors and describe the problem each error would cause.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) A different student set up the apparatus without making any errors.

The chromatogram in Diagram 2 shows the student's results.
Diagram 2

(i) What do the results tell you about the composition of the black food colouring?
\qquad
\qquad
\qquad
(ii) Use Diagram 2 to complete Table 1.

Table 1

	Distance in $\mathbf{~ m m}$
Distance from start line to solvent front	
Distance moved by food colour \mathbf{C}	

(iii) Use your answers in part (b) (ii) to calculate the R_{f} value for food colour \mathbf{C}.
\qquad
\qquad
R_{f} value $=$ \qquad
(c) Table 2 gives the results of chromatography experiments that were carried out on some known food colours, using the same solvent as the students.

Table 2

Name of food colour	Distance from start line to solvent front in $\mathbf{m m}$	Distance moved by food colour in $\mathbf{m m}$	\mathbf{R}_{f} value
Ponceau 4R	62	59	0.95
Carmoisine	74	45	0.61
Fast red	67	27	0.40
Erythrosine	58	17	0.29

Which of the food colours in Table 2 could be food colour \mathbf{C} from the chromatogram?

Give the reason for your answer.
\qquad
\qquad
\qquad
(d) Two types of chromatography are gas chromatography and paper chromatography.

Give one advantage of gas chromatography compared with paper chromatography.
\qquad
\qquad

Q14.
A student was investigating a magnesium salt, \mathbf{X}.
The student found that \mathbf{X} :

- has a high melting point
- does not conduct electricity
- dissolves in water and the solution conducts electricity.
(a) (i) What is the type of bonding in magnesium salt \mathbf{X} ?
(ii) Explain why solid \mathbf{X} does not conduct electricity but a solution of \mathbf{X} does conduct electricity.
\qquad
\qquad
\qquad
\qquad
(b) The student dissolved \mathbf{X} in water.

The student added dilute nitric acid and silver nitrate solution to the solution of \mathbf{X}.
A white precipitate was formed.
Salt \mathbf{X} contains chloride ions.
Explain why a white precipitate was formed.
\qquad
\qquad
\qquad
\qquad
(c) The student dissolved \mathbf{X} in water.

The student added a few drops of sodium hydroxide solution to the solution of \mathbf{X}.
A white precipitate was formed.
(i) Salt \mathbf{X} contains magnesium ions.

Name two other metal ions that would give a white precipitate when a few drops of sodium hydroxide solution are added.

1. \qquad
2. \qquad
(ii) Describe the two further tests the student would have to do to show that salt \mathbf{X} contains magnesium ions, and not the two metal ions you identified in part (c) (i).

Give the expected results of each test.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q15.
In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

A group of students had four different colourless solutions in beakers 1, 2, 3 and 4, shown in the figure below.

The students knew that the solutions were

- sodium chloride
- sodium iodide
- sodium carbonate
- potassium carbonate
but did not know which solution was in each beaker.
The teacher asked the class to plan a method that could be used to identify each solution.
She gave the students the following reagents to use:
- dilute nitric acid
- silver nitrate solution.

The teacher suggested using a flame test to identify the positive ions.
Outline a method the students could use to identify the four solutions.

You should include the results of the tests you describe.
\qquad
Extra space \qquad

Q16.
A student was trying to produce hydrogen gas.
Figure 1 shows the apparatus she used.
Figure 1

(a) No gas was produced.

The student's teacher said that this was because the substances in the flask did not react.
(i) Suggest why the substances in the flask did not react.
\qquad
\qquad
\qquad
(ii) Which two substances could the student have put in the flask to produce hydrogen safely?

Tick ($\mathcal{\checkmark}$) one box.
Gold and dilute hydrochloric acid \square
Potassium and dilute hydrochloric acid \square
Zinc and dilute hydrochloric acid \square
(b) Another student did produce hydrogen from two substances.

Figure 2 shows the apparatus the student used to collect and measure the volume of the hydrogen gas.

Figure 2

Give the name of the apparatus labelled \mathbf{X}.
\qquad
(c) The student did the experiment four times. Her results are shown in the table below.

Experiment	Volume of hydrogen collected in one minute in $\mathbf{c m}^{\mathbf{3}}$
1	49
2	50
3	35
4	48

(i) One of the results is anomalous.

Which result is anomalous? Write your answer in the box. \square
Give a reason for your choice.
\qquad
(ii) Calculate the mean volume of hydrogen collected in one minute.
\qquad
\qquad
Mean volume $=$
(iii) Give a reason why the experiment should be repeated several times.
\qquad
\qquad
\qquad
(d) A teacher collected two tubes full of hydrogen gas, as shown in Figure 3.

Figure 3

She tested tube A with a lighted splint as soon as she took the bung out.
She tested tube B with a lighted splint a few seconds after taking the bung out.
(i) Suggest why tube \mathbf{B} gave a much louder pop than tube \mathbf{A}.
\qquad
\qquad
\qquad
\qquad
(ii) Complete and balance the chemical equation for the reaction that takes place when the hydrogen reacts in this test.

$$
\mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow
$$

Q17.
The label shows the ingredients in a drink called Cola.

Cola

Ingredients:
Carbonated water
Sugar
Colouring
Phosphoric acid
Flavouring
Caffeine
(a) (i) The pH of carbonated water is 4.5 .

The pH of Cola is 2.9.
Name the ingredient on the label that lowers the pH of Cola to 2.9.
(ii) Which ion causes the pH to be 2.9?
\qquad
(b) A student investigated the food colouring in Cola and in a fruit drink using paper chromatography.

The chromatogram in the figure below shows the student's results.

(i) Complete the sentence.

The start line should be drawn with a ruler and \qquad .

Give a reason for your answer.
\qquad
\qquad
(ii) Suggest three conclusions you can make from the student's results.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Caffeine can be separated from the other compounds in the drink by gas chromatography.

Why do different compounds separate in a gas chromatography column?
\qquad
\qquad
(d) Caffeine is a stimulant.

Large amounts of caffeine can be harmful.
(i) Only one of the questions in the table can be answered by science alone.

Tick (\checkmark) one question.

Question	Tick (\checkmark)
Should caffeine be an ingredient in drinks?	
Is there caffeine in a certain brand of drink?	
How much caffeine should people drink?	

(ii) Give two reasons why the other questions cannot be answered by science alone.

Reason 1 \qquad
\qquad
Reason 2 \qquad
\qquad
(Total 11 marks)

Q18.

(a) The colours of fireworks are produced by chemicals.

© Igor Sokalski/iStock/Thinkstock
Three of these chemicals are lithium sulfate, potassium chloride and sodium nitrate.
(i) A student wants to carry out flame tests on these three chemicals.

Describe how to carry out a flame test.
\qquad
\qquad
\qquad
(ii) Draw one line from each chemical to the correct flame colour.

The first one has been done for you.
Chemical

(iii) Dilute nitric acid and silver nitrate solution are added to solutions of the three chemicals.

A white precipitate forms in one of the solutions.
Which chemical produces the white precipitate?
\qquad
(b) The student tests a fourth chemical, \mathbf{X}.
(i) The student adds sodium hydroxide solution to a solution of chemical \mathbf{X}.

A blue precipitate is formed.
Which metal ion is in chemical \mathbf{X} ?
\qquad
(ii) The student adds dilute hydrochloric acid to a solution of chemical \mathbf{X} and then adds barium chloride solution.

A white precipitate is formed.
Which negative ion is in chemical \mathbf{X} ?
Draw a ring around the correct answer.

chloride nitrate sulfate

Q19.

The colours of fireworks are produced by chemicals.

© Igor Sokalski/iStock/Thinkstock
(a) Information about four chemicals is given in the table.

Complete the table below.

Chemical	Colour produced in firework
barium chloride	green
carbonate	crimson
sodium nitrate	
calcium sulfate	red

(b) Describe a test to show that barium chloride solution contains chloride ions.

Give the result of the test.
\qquad
\qquad
\qquad
\qquad
(c) A student did two tests on a solution of compound \mathbf{X}.

Test 1
Sodium hydroxide solution was added.

A blue precipitate was formed.

Test 2

Dilute hydrochloric acid was added.
Barium chloride solution was then added.
A white precipitate was formed.
The student concluded that compound \mathbf{X} is iron(II) sulfate.
Is the student's conclusion correct?
Explain your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q20.

Carbon dioxide is produced when copper carbonate is heated.
A student investigated heating copper carbonate.
The student used the apparatus to measure how long it took for carbon dioxide to be produced.
The student also noted what happened during each minute for three minutes.

(a) The student used changes to the limewater to measure how long it took for carbon dioxide to be produced.

Describe how.
\qquad
\qquad
\qquad
(b) The student wrote down her observations.

Time interval in minutes	Observations
Between 0 and 1	A slow release of gas bubbles. The limewater did not change. The solid in the test tube was green.
Between 1 and 2	A fast release of gas bubbles. The limewater changed at 1 minute 10 seconds.
Between 2 and 3	No release of gas bubbles. The solid in the test tube was black.

(i) Suggest the reason for the student's observations between 0 and 1 minute.
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Explain the student's observations between 1 and 2 minutes.
\qquad
\qquad
\qquad
\qquad
(iii) Explain the student's observations between 2 and 3 minutes.
\qquad
\qquad
\qquad
\qquad

Colours are used to coat some chocolate sweets.
Some of these colours are given E-numbers.

Use the correct word from the box to complete the sentence.

additive	element	fuel

An E-number is used to identify a permitted food \qquad
(b) Chromatography was used to compare three of the colours used to coat the chocolate sweets.

What do these results tell you about these three colours?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q22.
This is part of an article about food additives.

THE PERIL OF FOOD ADDITIVES

Some orange drinks contain the additives E102
(Tartrazine), E104 (Quinoline Yellow) and E110 (Sunset Yellow). These three coloured additives are thought to cause hyperactivity in children.
(a) State two reasons that a manufacturer might give to justify the use of these additives.

1. \qquad
2. \qquad
\qquad
(b) Some scientists asked 4000 twelve-year-old children to help them investigate if there is a link between these three coloured additives and hyperactivity.

How would the scientists use these 4000 children to investigate if there is a link between these three coloured additives and hyperactivity in children?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) A manufacturer used an independent scientist to show that their orange drink did not contain these three coloured additives.
(i) Suggest why the manufacturer would use a scientist who was independent instead of using their own scientist.
\qquad
\qquad
(ii) The scientist had samples of E102, E104 and E110 and the orange drink. The scientist used paper chromatography for the test.

Describe how the scientist could use the results to show if the orange drink contained any of these three coloured additives.

You may include a diagram of the paper chromatography results.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q23.

A bottle of washing soda was found in a school laboratory.
The chemical name of washing soda is sodium carbonate.

A student tested the washing soda to prove that it was sodium carbonate.
(a) The student did a flame test to show that washing soda is a sodium compound. The student used a clean wire to put the washing soda into the flame.
(i) Why should the wire be clean when used for a flame test?
\qquad
(ii) The table shows some properties of metals.

Two of these are properties that the wire must have if it is used for a flame test.

Tick (\checkmark) the two correct properties.

Property	Tick (\checkmark)

Good electrical conductor	
High density	
High melting point	
Low boiling point	
Unreactive	

(iii) Which one of the following flame colours shows that washing soda is a sodium compound?

Draw a ring around your answer.
brick-red lilac yellow-orange
(b) The student used dilute hydrochloric acid to show that washing soda was a carbonate. Carbon dioxide gas was given off.
(i) Describe what you see happening when a gas is given off.
\qquad
\qquad
(ii) The student used limewater to prove that the gas given off was carbon dioxide.

Complete this sentence by choosing the correct word from the box.

clear	colourless	milky

When carbon dioxide reacts with limewater, the limewater turns
\qquad
(c) Instrumental methods are used to identify chemicals.

Give two advantages of instrumental methods compared with chemical tests by considering:

- the length of time to carry out a test
- the amount of chemical used.
\qquad
\qquad
\qquad
\qquad

Q24.

Four bottles of chemicals made in the 1880s were found recently in a cupboard during a Health and Safety inspection at Lovell Laboratories.

The chemical names are shown below each bottle.
(a) You are provided with the following reagents:

- aluminium powder
- barium chloride solution acidified with dilute hydrochloric acid
- dilute hydrochloric acid
- silver nitrate solution acidified with dilute nitric acid
- sodium hydroxide solution.
- limewater
- red litmus paper
(i) Describe tests that you could use to show that these chemicals are correctly named.

In each case give the reagent(s) you would use and state the result.
Test and result for carbonate ions:

Test and result for chloride ions:
\qquad
\qquad
\qquad
Test and result for nitrate ions:
\qquad
\qquad
\qquad
Test and result for sulfate ions:
\qquad
\qquad
\qquad
(ii) Suggest why a flame test would not distinguish between these four chemicals.
\qquad
(b) Instrumental methods of analysis linked to computers can be used to identify chemicals.

Give two advantages of using instrumental methods of analysis.
\qquad
\qquad
\qquad
\qquad

Q25.
A student was investigating the reaction of lithium and water.
She added a few drops of universal indicator to water in a trough and added a piece of lithium.

The word equation for the reaction is:
lithium + water \longrightarrow lithium hydroxide + hydrogen
(a) (i) The lithium floated on the water.

State two other observations that the student would see during the reaction.

1. \qquad
2. \qquad
(ii) Balance the symbol equation for the reaction of lithium and water.

$$
2 \mathrm{Li}(\mathrm{~s})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow \quad \mathrm{LiOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

(iii) Describe a simple test and the result that would show the gas was hydrogen.
\qquad
\qquad
(iv) All Group 1 metals have similar reactions with water.

State why, in terms of electronic structure.
\qquad
\qquad
(b) Lithium and other Group 1 metals have different properties from the transition metals.

Tick (\boldsymbol{V}) two properties that are properties of Group 1 metals.
They react with oxygen.

They form coloured compounds.

They are strong and hard.

They have low melting points.

(c) The electronic structure of a potassium atom is 2, 8, 8, 1
(i) Draw a diagram to show the electronic structure of a potassium ion.

Show the charge on the potassium ion.
(ii) Potassium is more reactive than sodium.

Explain why, in terms of electronic structure.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q26.
Carbon dioxide is produced when metal carbonates are heated.
(a) (i) Draw a ring around the correct answer to complete the word equation.

magnesium carbonate \longrightarrow| magnesium |
| :--- |
| magnesium hydroxide |
| magnesium oxide |$+$ carbon dioxide

(ii) Draw a ring around the correct answer to complete the sentence.

The reaction to produce carbon dioxide from magnesium carbonate is \begin{tabular}{l|l|}

combustion.
decomposition.
fermentation.

\hline
\end{tabular}

(b) A student investigated what happens when metal carbonates are heated.

The student:

- used the apparatus to investigate heating four metal carbonates
- started the stop clock at the same time as he began to heat the metal carbonate
- stopped the stop clock when carbon dioxide was produced.

The student's results are shown in the table.

Metal carbonate	Time taken for the production of carbon dioxide to start in seconds
Calcium carbonate	163
Copper carbonate	24
Magnesium carbonate	92
Zinc carbonate	67

(i) Tick (\checkmark) the type of graph the student should draw from these results.

Type of graph	Tick (\checkmark)
Bar chart	
Line graph	
Scatter graph	

(ii) Use the Chemistry Data Sheet to help you to answer this question.

Draw a ring around the correct answer to complete the sentence.

The more reactive the metal in the carbonate the | less |
| :--- |
| more |
| same |
| time is |

taken for the production of carbon dioxide to start.
(iii) How did the student know that carbon dioxide was produced?

Use the diagram of the apparatus to help you to answer this question.
\qquad
\qquad
\qquad
\qquad

Q27.
Low sodium salt is used on food. This label is from a packet of low sodium salt.

Low Sodium Salt

Ingredients:
Sodium chloride
Potassium chloride
Drying agent: magnesium carbonate

A chemist tests the low sodium salt for the substances on the label.
(a) The chemist tests for sodium ions and potassium ions using a flame test.

Draw a ring around the correct answer to complete each sentence.
(i) In a flame test, sodium ions produce a

lilac red yellow

(ii) In a flame test, potassium ions produce a

| red |
| :--- | :--- |
| yellow |\quad colour.

(b) The chemist added hydrochloric acid to low sodium salt. Carbon dioxide gas was produced.

Describe the test for carbon dioxide and give the result of the test.
\qquad
\qquad
\qquad
\qquad
(c) The chemist made a solution of low sodium salt.
(i) Tick (\checkmark) one box to show the chemical used to test for chloride ions.

	Tick (\checkmark)
Barium chloride solution	
Silver nitrate solution	
Sodium sulfate solution	

(ii) Sodium hydroxide solution is used to test for magnesium ions.

Draw a ring around the colour of precipitate produced by this test.
brown
green
white

Q28.
Low sodium salt is used on food. This label is from a packet of low sodium salt.

Low Sodium Salt

Ingredients:
Sodium chloride
Potassium chloride
Drying agent: magnesium carbonate

A student tests the low sodium salt for the substances on the label.
(a) (i) The same test can be used to identify sodium ions and potassium ions.

Describe the test.
Give the result of the test for sodium ions and for potassium ions.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) It is difficult to identify potassium ions when sodium ions are present.

Suggest why.
\qquad
\qquad
(b) Describe how the student would test a solution of the low sodium salt for chloride ions.

Give the result of the test.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) To test for magnesium ions, the student adds a few drops of sodium hydroxide solution to a solution of the low sodium salt.

A white precipitate is produced.
This test also gives a white precipitate with aluminium ions and calcium ions.
(i) Describe how the student could confirm that the low sodium salt contains magnesium ions and not aluminium ions.
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Describe a test the student could do to confirm that the low sodium salt does not contain calcium ions.
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 11 marks)

Q29.

Two fuels that can be used for cars are:

- petrol from crude oil
- ethanol made from sugar in plants.
(a) A student used the apparatus shown to investigate the reaction to make ethanol from sugar.

(i) Draw a ring around the correct answer to complete the sentence

This reaction to make ethanol from sugar is | combustion. |
| :--- |
| decomposition. |
| fermentation. |

(ii) Complete the sentences.

The limewater turns \qquad .

This happens because \qquad .
(b) In 1970, the Brazilian Government stated that all petrol must contain more than 25% ethanol.

The reasons for this statement in 1970 were:

- Brazil did not have many oilfields
- Brazil has a climate suitable for growing sugar cane.

The graph shows the amount of ethanol used as a fuel in Brazil from 1970 to 2000.

(i) Use the graph to describe the changes in the amount of ethanol used as a fuel in Brazil from 1970 to 2000.
\qquad
\qquad
\qquad
\qquad
(ii) In 2011, the Brazilian Government decided to reduce the amount of ethanol in petrol to 18%.

Suggest one reason for their decision.
\qquad
\qquad
(Total 6 marks)

Q30.
Limestone is used as a building material. Acid rain erodes limestone.
(a) Limestone contains calcium carbonate.

The symbol equation for the reaction of calcium carbonate with hydrochloric acid is shown.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Describe a test to show that carbon dioxide is produced in this reaction.
Give the result of the test.
\qquad
\qquad
(b) Gases from vehicle exhausts produce sulfuric acid and nitric acid.

A student investigated the reaction of these two acids with calcium carbonate (limestone).
The type of acid was changed but all other variables were kept the same.
The student measured the volume of carbon dioxide produced each minute for a total of 10 minutes. He did this first for the reaction between dilute sulfuric acid and a cube of calcium carbonate (limestone).
The student repeated the experiment using dilute nitric acid in place of the dilute sulfuric acid.
The results are shown below.

(i) State two variables that must be kept the same for this investigation.
\qquad
\qquad
\qquad
\qquad
(i) Reacting calcium carbonate with sulfuric acid gave different results to nitric acid.

The symbol equations for the reaction of calcium carbonate with sulfuric acid and with nitric acid are shown below.
$\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s})+\mathrm{H} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})$
$\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$
Describe how the results for sulfuric acid are different and use the symbol equations to explain this difference.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q31.

An article began:

Ban yellow additives

Quinoline yellow (E104) is suspected of causing hyperactivity, asthma and rashes in children.
(a) A student tested a food to find out if it contained quinoline yellow (E104).

The student's results are shown below.

(i) Draw a ring around the correct answer to complete the sentence.

This method of detecting and identifying colours is called \quad| chromatography. |
| :--- |
| distillation. |
| electrolysis. |

(ii) Using the student's results, how many different colours are in the food? \qquad
(iii) Using the student's results, how can you tell that the food does not contain quinoline yellow (E104)?
\qquad
\qquad
(b) Quinoline yellow (E104) is used in foods such as sweets, drinks and ice cream.
(i) Give one reason why quinoline yellow (E104) is added to foods.
\qquad
\qquad
(ii) Suggest what should be done to decide if quinoline yellow (E104) should be banned.
\qquad
\qquad

Q32.

Cheshunt mixture is a powder containing copper sulfate, CuSO_{4}, and ammonium carbonate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

(a) A student tested the Cheshunt mixture.
(i) Hydrochloric acid was added.

A gas was produced that turned limewater milky.
Complete the sentence.
The gas was \qquad which shows that \qquad ions are in the mixture.
(ii) Sodium hydroxide solution was added.

A gas was produced that indicates that ammonium ions are in the mixture.
Complete the sentence.
The gas was \qquad which turns
\qquad blue.
(b) Cheshunt mixture is dissolved in water before it is used.

When the student dissolved the Cheshunt mixture in water it formed a blue solution.
(i) Suggest how the student knew that copper ions are in this solution.
\qquad
\qquad
(ii) The student tested the Cheshunt solution and the result of the test indicated that sulfate ions are in the solution.

Complete the sentence.
The student added a solution of \qquad in the presence of
dilute hydrochloric acid and a \qquad precipitate was produced.

