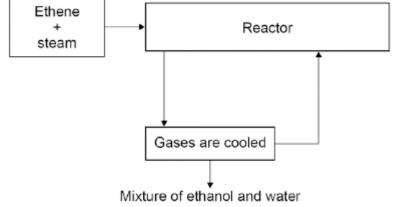
Chemistry of the atmosphere

(c) What is the test for chlorine gas?

1.			
This	question is about mixtu	ures and analysis.	
(a)	Which two substance	s are mixtures?	
	Tick two boxes.		
	Air		
	Carbon dioxide		
	Graphite		
	Sodium Chloride		
	Steel		(2)
(b)	Draw one line from ea	ach context to the correct meaning.	(2)
	Context	Meaning	
		A substance that has had nothing added to it	
	Pure substance in chemistry	A single element or a single compound	
		A substance containing only atoms which have different numbers of protons	
	Pure substance in everyday life	A substance that can be separated by filtration	
		A useful product made by mixing substances	
			(2)

	Tick one box.			
	A glowing splint relights			
	A lighted splint gives a po	рр		
	Damp litmus paper turns	white		
	Limewater turns milky		(1)
(d)	A student tested a metal of	chloride solution with sodium h	ydroxide solution.	
	A brown precipitate forme	d.		
	What was the metal ion in	the metal chloride solution?		
	Tick one box.			
	Calcium			
	Copper(II)			
	Iron(II)			
	Iron(III)			
			(Total 6 mark	1) s)
			·	•
Q2.				
Gree	nhouse gases affect the te	mperature of the Earth.		
(a)	Which gas is a greenhous	e gas?		
	Tick one box.			
	Argon			
	Methane			
	Nitrogen			
	Oxygen			
			(1)
(b)	An increase in global tem	perature will cause climate cha	nge.	

What is **one** possible effect of climate change?


Tick one box.						
Deforestation						
Global dimming						
Sea levels rising						
Volcanic activity						(1)
Carbon dioxide is al	so a greenh	nouse gas.				(1)
The figure below sh has changed since		e concentra	tion of carb	on dioxide	in the atmosphe	re
	400			/		
Carbon dioxide concentration in parts per million	300					
	200					
	1850	1900	1950 Year	2000	2050	
Which process is the on the figure above		the change	e in carbon	dioxide cor	ncentration show	n
Tick one box.						
Burning of fossil fue	els					
Carbon capture						
Formation of sedim	entary rock	S				
Photosynthesis						
Give three conclusion	ons that car	n be made f	rom the figu	ure above.		(1)
1						
2						

(c)

(d)

The table	below g	ives information a	about four ald	cohols.		
Alco	hol	Form	ıula	Melting point in °C	Boiling point in °C	
Methano	l	CH₃OH		-94	65	
Ethanol		CH ₃ CH ₂ OH		-118	78	
Propanol		CH ₃ CH ₂ CH ₂ OH		-129	97	
Butanol		CH ₃ CH ₂ CH ₂ CH ₂	₂OH	-89	118	
Tic A n ato	k one bo nolecule ms	of ethanol has 5				
Tic A n ato But Me	k one bo nolecule ms tanol has thanol h	ox. of ethanol has 5 s the highest boilings as the largest mo	ng point lecules			
Tic A n ato But Me	k one bo nolecule ms tanol has thanol h	ox. of ethanol has 5 s the highest boili	ng point lecules			
Tic A n ato But Me	k one bonolecule ms tanol has thanol has been been been been been been been bee	ox. of ethanol has 5 s the highest boilings as the largest mo	ng point lecules elting point	ovalent bonds.		
Tic A n ato But Me Pro	k one bonolecule ms tanol has thanol has opanol has	ox. of ethanol has 5 s the highest boiling as the largest mo as the highest me	ng point lecules elting point ive single co		d formula for methanol	-
Tic A n ato But Me Pro	k one bonolecule ms tanol has thanol has opanol has	ox. of ethanol has 5 s the highest boiling as the largest mo as the highest me	ng point lecules elting point ive single co	mplete the displaye	d formula for methanol	-

(d) **Figure 2** shows a flow diagram of the process to produce ethanol.

Complete the wor	rd equation for the reac	tion to produce eth	anol.
	+		→ ethanol
What happens to	the unreacted ethene?		
After a few days,	nanol. vas left open in air. the wine tasted of vineq tion of ethanoic acid in v		
Explain how oxida	ation causes the wine to	o taste of vinegar a	ifter a few days.

(3) (Total 8 marks)

Q4.

This question is about hydrocarbons.

(a) The names and formulae of three hydrocarbons in the same homologous series are:

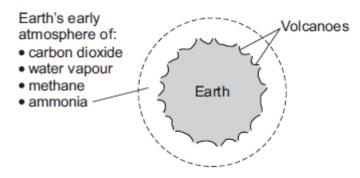
Ethane	C_2H_6
Propane	C_3H_8
Butane	C_4H_{10}

Which homolo	ogous series conta	ains ethane, pro	pane and buta	nne?	
Tick one box					
Alcohols					
Alkanes		Ī			
Alkenes					
		_ ¬			
Carboxylic ad	cids				
D	Nie we	-1			
Propane (C ₃ H ₈) is used as a fuel.					
Complete the	equation for the c	complete combus	stion of propar	ne.	
Octane (C ₈ H ₁₈	₃) is a hydrocarbo				
Octane (C ₈ H ₁₈ Explain why o	by gives information as a fuel.	n found in petrol arbon. on about the pol	Ilutants produc		
Octane (C_8H_{18} Explain why o	bw gives information as a fuel.	n found in petrol arbon. on about the pole amounts of pole	lutants produc		
Octane (C ₈ H ₁₈ Explain why o	by gives information as a fuel.	n found in petrol arbon. on about the pol	Ilutants produc		
Octane (C ₈ H ₁₈ Explain why o	gives information as a fuel. Relative Oxides of	on about the pole amounts of po	lutants produc		

(f)	Pollutants cause environment	al impacts.	(3)
	Draw one line from each polle pollutant.	utant to the environmental impact cause	d by the
	Pollutant	Environmental impact caused by the pollutant	
		Acid rain	
	Oxides of nitrogen	Flooding	
		Global dimming	
	Particulate matter	Global warming	
		Photosynthesis	
			(2) (Total 11 marks)
Q5. This	question is about organic com	nounds	
	rocarbons can be cracked to pr		
	equation shows the reaction for		
C ₁₈ F	·		
(a)	Which product of the reaction	shown is an alkane?	
	Tick one box.		
	C_2H_4		
	C_3H_6		
	C_4H_8		

	the other hyd				ity and viscosi e equation.	ty 01 ℃ ₁₈ ⊓ ₃₈	3
	Boiling poi	nt Flai	mmability		Viscosity		
Α	highest		lowest		highest		
В	highest		lowest		lowest		
С	lowest	ŀ	nighest		highest		
D	lowest	ŀ	nighest		lowest		
roperties of C_2 rick one box.	1 14, O31 16, O41	is and C	/61				
A							
3							
)	L						
he hydrocarbo	n C₄H ₈ was b	ournt in a	air.				
complete com	bustion occu	rred.					
	, A , B , C or D	, correc	ctly represe	ents	the incomplet	e combusti	on
/hich equation eaction?							
	H ₈ + 4C	\rightarrow	4CO	+	$4H_2$		
eaction?			4CO 4CO	+	4H ₂ O		
eaction? C₄ł C₄ł		\rightarrow	4CO		_		
eaction? C₄ł C₄ł	H ₈ + 40 ₂	$\frac{1}{2}$ \rightarrow	4CO	+	4H ₂ O		
eaction? C₄ł C₄ł	H ₈ + 40 ₂	$\frac{1}{2}$ \rightarrow	4CO ₂	+	4H ₂ O 4H ₂ O		

(d)	Propanoic acid is a carboxylic acid.	
	Which structure, A , B , C or D , shows propanoic acid?	
Α	B C D	
	=0 H H H H H H H H H H H H H H H H H H H	:О Н
	Tick one box.	
	A	
	В	
	c	
	D	
(e)	Propanoic acid is formed by the oxidation of which organic compound?	
	Tick one box.	
	Propane	
	Propene	
	Propanol	
	Polyester	
	(Total 5	mar
) .		
This	question is about the temperature of the Earth's atmosphere.	
(a)	Give one reason why it is difficult to produce models for future climate change.	
		_


The figure 2000.	e below sh	nows the c	change in	ı mean g	lobal air t	emperatu	re from 1	860 to
2000.	14.6							
	14.4							,
	14.2						,	
ean obal air	14.0-							
mperature °C	13.8				/			
Ü	13.6							
	13.4							
	0.0							
	1860	1880	1900	1920 Y	1940 ear	1960	1980	2000
Explain I the figure	now humar e above.	activities	have co	ntributed	I to the m	ain trend	shown fro	om 1910 in

Q7.

This question is about the Earth and its atmosphere.

(a) Figure 1 shows the Earth and its atmosphere billions of years ago.

Figure 1

	ntains nitrogen, oxygen, argon, carbon dioxide a
other gases. (i) Draw one line	bstance to a description of the substance.
Substance	Description of the substa
	compound
air	
carbon dioxide	element
carbon dioxide	hydrocarbon
argon	metal
	mixture
(ii) Which gas in th	nosphere is used when hydrocarbons burn?

oxygen

	Tick (✔) one box.	
	about 40%	
	about 60%	
	about 80%	
	re 2 shows the carbon dioxide percentage (%) in the Earth's atmosphere since rear 1800.	(1)
	Figure 2	
	0.040	
Carbon dioxide percent		
(%)	0.030	
	0.025	
	1800 1850 1900 1950 2000 2050 Year	
(i)	What was the carbon dioxide percentage in 1900?	
	%	(1
(ii)	Describe, in detail, how the carbon dioxide percentage changed from 1900 to 2015.	
		(2)
(iii)	Suggest two reasons for the change in the carbon dioxide percentage from 1900 to 2015.	
	1	

(iii) What percentage of the Earth's atmosphere is nitrogen?

2	
	(2)
	(Total 11 marks)

Q8.

This question is about hydrocarbons.

- (a) Most of the hydrocarbons in crude oil are alkanes.
 - (i) Large alkane molecules can be cracked to produce more useful molecules.

The equation shows the cracking of dodecane.

$$C_{12}H_{26} \longrightarrow C_4H_{10} + C_6H_{12} + C_2H_4$$

dodecane butane hexene ethene

Give two conditions used to crack large alkane molecules.

- 1. ______
- 2. _____
 - (2)

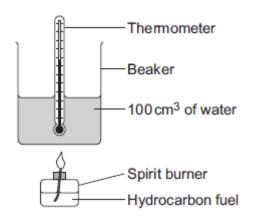
(ii) The products hexene and ethene are alkenes.

Complete the sentence.

When alkenes react with bromine water the colour changes

from orange to ______.

(1)


(iii) Butane (C_4H_{10}) is an alkane.

Complete the displayed structure of butane.

(1)

(b) A group of students investigated the energy released by the combustion of four hydrocarbon fuels.

The diagram below shows the apparatus used.

Each hydrocarbon fuel was burned for two minutes.

Table 1 shows the students' results.

Table 1

	A	After two minut	es		
Name and formula of hydrocarbon fuel	Mass of fuel used in g	Temperature increase of water in °C	Energy released by fuel in kJ	Energy released by 1.0 g of fuel in kJ	Relative amount of smoke in the flame
Hexane, C ₆ H ₁₄	0.81	40	16.80	20.74	very little smoke
Octane, C ₈ H ₁₈	1.10	54	22.68	20.62	some smoke
Decane, C ₁₀ H ₂₂	1.20	58	24.36		smoky
Dodecane, C ₁₂ H ₂₆	1.41	67	28.14	19.96	very smoky

Suggest one improvement to the apparatus, or the use of the apparatus would make the temperature increase of the water for each fuel more	kJ
would make the temperature increase of the water for each fuel more	
accurate.	s, that
Give a reason why this is an improvement.	

(iii) The students noticed that the bottom of the beaker became covered in a black

Name this black subst	tance.	
Suggest why it is prod	lucea.	
A student concluded	that hexane is the best of the four fuels.	
Give two reasons why	y the results in Table 2 support this conclusi	on.
1		
)		
··		

(c) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Most car engines use petrol as a fuel.

- Petrol is produced from the fractional distillation of crude oil.
- Crude oil is a mixture of hydrocarbons.
- Sulfur is an impurity in crude oil.

Car engines could be developed to burn hydrogen as a fuel.

- Hydrogen is produced from natural gas.
- Natural gas is mainly methane.

Table 2 shows information about petrol and hydrogen.

Table 2

	Petrol	Hydrogen
State of fuel at room temperature	Liquid	Gas
Word equation for combustion of the fuel	petrol + oxygen → carbon dioxide + water	hydrogen + oxygen → water
Energy released from combustion of 1 g of the fuel	47 kJ	142 kJ

Describe the **advantages** and **disadvantages** of using hydrogen instead of petrol in car engines.

Use the information given and your knowledge and understanding to answer this question.

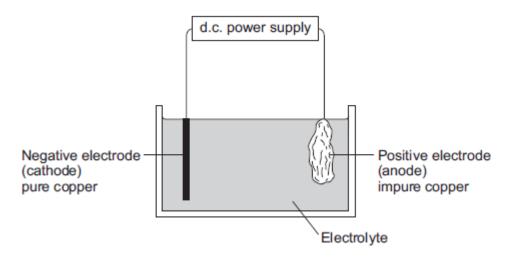
(6)

(Total 18 marks)

Q9.

This question is about copper.

(a) Copper can be extracted by smelting copper-rich ores in a furnace.


The equation for one of the reactions in the smelting process is:

$$Cu_2S(s) + O_2(g)$$
 2 $Cu(s) + SO_2(g)$

Explain why there would be an environmental problem if sulfur dioxide gas escaped into the atmosphere.

(2)

(b) The impure copper produced by smelting is purified by electrolysis, as shown below.

Copper atoms are oxidised at the positive electrode to Cu²⁺ ions, as shown in the half equation.

Cu(s)
$$\longrightarrow$$
 Cu²⁺(aq) + 2e⁻

(i) H	ow does t	he half e	equation	show that	copper	atoms	are oxidised	?
-------	-----------	-----------	----------	-----------	--------	-------	--------------	---

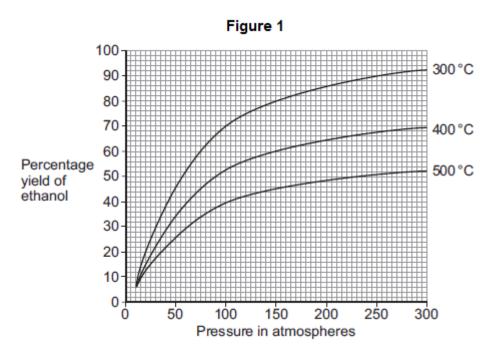
Write a balanced half equation for the reaction at the negative electrode. (iii) Suggest a suitable electrolyte for the electrolysis. Copper metal is used in electrical appliances. Describe the bonding in a metal, and explain why metals conduct electricity. Soil near copper mines is often contaminated with low percentages of copper compounds. Phytomining is a new way to extract copper compounds from soil. Describe how copper compounds are extracted by phytomining.		to produce copper atoms.
Copper metal is used in electrical appliances. Describe the bonding in a metal, and explain why metals conduct electricity. Soil near copper mines is often contaminated with low percentages of copper compounds. Phytomining is a new way to extract copper compounds from soil.		Write a balanced half equation for the reaction at the negative electrode.
Describe the bonding in a metal, and explain why metals conduct electricity. Soil near copper mines is often contaminated with low percentages of copper compounds. Phytomining is a new way to extract copper compounds from soil.	(iii)	Suggest a suitable electrolyte for the electrolysis.
Soil near copper mines is often contaminated with low percentages of copper compounds. Phytomining is a new way to extract copper compounds from soil.	Сор	per metal is used in electrical appliances.
compounds. Phytomining is a new way to extract copper compounds from soil.	Desc	cribe the bonding in a metal, and explain why metals conduct electricity.
compounds. Phytomining is a new way to extract copper compounds from soil.		
compounds. Phytomining is a new way to extract copper compounds from soil.		
compounds. Phytomining is a new way to extract copper compounds from soil.		
compounds. Phytomining is a new way to extract copper compounds from soil.		
compounds. Phytomining is a new way to extract copper compounds from soil.		
compounds. Phytomining is a new way to extract copper compounds from soil.		
Describe how copper compounds are extracted by phytomining.		
	com	pounds.
	com	omining is a new way to extract copper compounds from soil.
	com _l Phyt	omining is a new way to extract copper compounds from soil.
	com	omining is a new way to extract copper compounds from soil.
	com	omining is a new way to extract copper compounds from soil.

(e) A compound in a copper ore has the following percentage composition by mass: 55.6% copper, 16.4% iron, 28.0% sulfur.

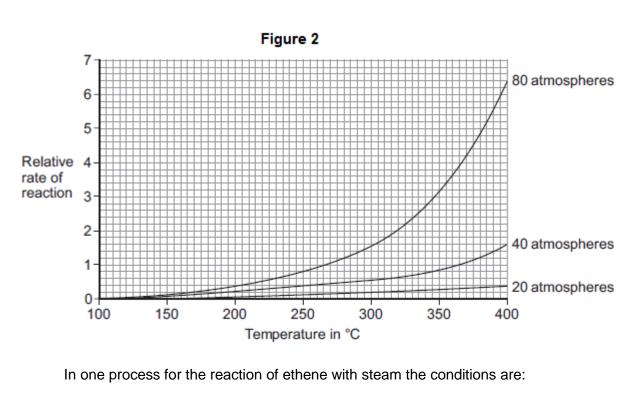
Υοι	u must show a	all of your working.		
		an er yeen nennig.		
	 			
	 			
		Empirical for	mula =	
			(Total 1	6 n
ALIDS	etion is about	ethanol		
-	stion is about		of augusta from planta	
Eth	nanol can be r	made by fermentation c		
-	nanol can be r What is a s	made by fermentation o	r fermentation?	
Eth	nanol can be r What is a s	made by fermentation c	r fermentation?	
Eth	nanol can be r What is a s	made by fermentation o	r fermentation?	
Eth	nanol can be r What is a s Draw a ring	made by fermentation of suitable temperature for ground the correct an	r fermentation?	
Eth	Mhat is a s Draw a ring	made by fermentation of suitable temperature for g around the correct an 25 °C	r fermentation?	
Eth	Mhat is a s Draw a ring O °C Fermentation	made by fermentation of suitable temperature for g around the correct an 25 °C on produces a dilute so	r fermentation? swer. 450 °C	
Eth (i)	Mhat is a s Draw a ring O °C Fermentation	made by fermentation of suitable temperature for g around the correct an 25 °C on produces a dilute so	r fermentation? swer. 450 °C Dolution of ethanol in water.	
Eth (i)	Mhat is a s Draw a ring O °C Fermentation	made by fermentation of suitable temperature for g around the correct an 25 °C on produces a dilute so	r fermentation? swer. 450 °C Dolution of ethanol in water.	
Eth (i)	Mhat is a s Draw a ring O °C Fermentation Name the p	made by fermentation of suitable temperature for g around the correct an 25 °C on produces a dilute so	r fermentation? swer. 450 °C Dution of ethanol in water. ethanol from this dilute solution.	
Eth (i)	what is a something of the properties of the pro	made by fermentation of suitable temperature for g around the correct an 25 °C on produces a dilute so process used to obtain y fermentation can be used to complete the correct and the corre	r fermentation? swer. 450 °C Dution of ethanol in water. ethanol from this dilute solution.	
Eth (i) (ii)	what is a something of the properties of the pro	made by fermentation of suitable temperature for g around the correct an 25 °C on produces a dilute so process used to obtain y fermentation can be used to complete the correct and the corre	r fermentation? swer. 450 °C Duttion of ethanol in water. ethanol from this dilute solution.	

Q10.

fossil fuels.			


(2)

(c) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.


Ethanol can also be made by reacting ethene with steam in the presence of a catalyst.

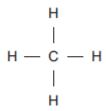
$$C_2H_4(g) + H_2O(g) \rightleftharpoons C_2H_5OH(g)$$

Figure 1 shows how the percentage yield of ethanol changes as the pressure is changed at three different temperatures.

Figure 2 shows how the rate of reaction changes as the temperature changes at three different pressures.

- 300 °C
- 65 atmospheres
- a catalyst.

Use the information in Figure 1 and Figure 2 , and your own knowledge, to justify this choice of conditions.


(6)

(Total 12 marks)

Q11.

Methane (CH₄) is used as a fuel.

(a) The displayed structure of methane is:

Draw a ring around a part of the displayed structure that represents a covalent bond.

(1)

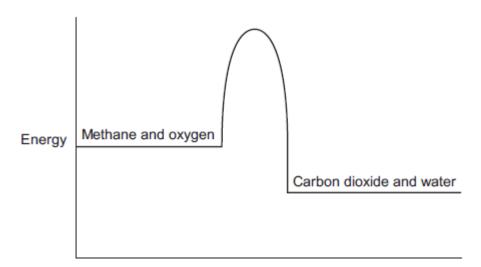
(1)

(b) Why is methane a compound?

Tick (✓) one box.

Methane contains atoms of two elements, combined chemically.

Methane is not in the periodic table.


Methane is a mixture of two different elements.

(c) Methane burns in oxygen.

(i) The diagram below shows the energy level diagram for the complete combustion of methane.

Draw and label arrows on the diagram to show:

- the activation energy
- the enthalpy change, ΔH .

(2)

(ii) Complete and balance the symbol equation for the complete combustion of methane.

(2)

Expl:	ain why, in terms c ing, the combustio	of the energy involved in b n of methane is exotherm	ond breaking and bond ic.
nane i	eacts with chloring	e in the presence of sunlig	ht.
	eacts with chlorine		ht.
equat	ion for this reactior		
equat	ion for this reaction H C H C H H H H	n is: $\begin{array}{ccc} H & & H \\ CI & \longrightarrow & H - C \\ & & & \end{array}$	—CI + H—CI
equat	ion for this reaction H C H C H H H H	n is: $\begin{array}{ccc} H & & H \\ CI & \longrightarrow & H - C \\ & & H \end{array}$	—CI + H—CI
equat	ion for this reaction H C — H + CI — H d dissociation ene	rgies are given in the table Bond dissociation energy	—CI + H—CI
equat	ion for this reaction H C — H + CI — H d dissociation ene	rgies are given in the table Bond dissociation energy in kJ per mole	—CI + H—CI
equat	ion for this reaction H C — H + CI — H d dissociation ene Bond C-H	rgies are given in the table Bond dissociation energy in kJ per mole 413	—CI + H—CI

(d)

Methane also reacts with bromine in the pres	ence of sunlight.
H H−C−H + Br−Br	H -C-Br + H-Br H
This reaction is less exothermic than the reachlorine.	ction between methane and
The enthalpy change, ΔH , is -45 kJ per mole	.
What is a possible reason for this?	
Tick (✓) one box.	
CH₃Br has a lower boiling point than CH₃Cl	
he C-Br bond is weaker than the C-Cl ond.	
he H-Cl bond is weaker than the H-Br ond.	
Chlorine is more reactive than bromine.	
	(Total 15

Q12.

Crude

To make crude oil more useful it is separated into fractions. (a)

Use the correct word from the box to complete each sentence.

boiling	compound	decomposition	distillation
	filtration	mixture	molecule

Crude oil is a ______ of different substances. (i)

The substances in crude oil have different (ii)

(1)

	points.
(iii)	Crude oil is separated by fractional
Petr	ol is one of the fractions produced from crude oil.
Car	engines use a mixture of petrol and air.
The	diagram shows some of the gases produced.
Oxy	Petrol Carbon dioxide Nitrogen oxides
	[™] Water vapour
(i)	What type of reaction happens to petrol in a car engine?
	Tick (✓) one box.
	combustion
	decomposition
	neutralisation
(ii)	Petrol contains octane (C ₈ H ₁₈).
	Complete the word equation for the reaction of octane with oxygen.
	octane + +
(iii)	Cars use sulfur-free petrol as a fuel.
(111)	
	Describe why sulfur should be removed from petrol.

(c)	Son	me fractions from crude oil contain large hydrocarbon molecules.	
	The	ese molecules can be cracked to produce smaller, more useful molecules.	
	An e	equation for cracking decane is:	
		$C_{10}H_{22}$ \longrightarrow C_3H_8 + C_2H_4 + C_5H_{10} decane propane ethene pentene	
	(i)	Why is propane useful?	
		Tick (✓) one box.	
		Propane is a polymer.	
		Propane is an alloy.	
		Propane is a fuel.	
			(1)
	(ii)	Draw bonds to complete the displayed structure of ethene.	
		H H	
		н н	(1)
	(iii)	What is the colour change when bromine water reacts with ethene?	
	-	Tick (✓) one box.	
	(Orange to colourless	
	(Orange to green	
	(Orange to red	
			(1)
	(iv)	Complete the sentence.	
		Pentene is useful because many pentene molecules can join together	
		to form	(1)

(1)

_	•	_
$\boldsymbol{\cap}$	4	2
w	•	·J.

This question is about life, the Earth and its atmosphere.

There a	There are many theories about how life was formed on Earth.			
Suggest	one reason why there a	re many theories.		
		sessed on using good specialist terms where		
This Ear	th and its atmosphere to	day are not like the early	Earth and its atmospher	
	early Earth	The Earth tod	ay	
	of the surface ed by volcanoes	Most of the surf		
	Most of the atmos was carbon dioxi water vapour		Most of the atmosphere s nitrogen and oxygen	
		rface of the early Earth a ne Earth and its atmosph		

(3)

0	1	1

	Describe how crude oil is separated into fractions.
_	
-	
-	
-	
-	
-	
-	
	Fuel oil is one of the fractions from crude oil.
(Power stations burn fuel oil to generate electricity. The waste gases from the combustion of fuel oil contain carbon dioxide, water vapour, sulfur dioxide and oxides of nitrogen.
	The waste gases are passed through a suspension of limestone in water. Limestone s mainly calcium carbonate.
	Suggest how the use of a suspension of limestone decreases one of the environmental impacts that the waste gases would cause.
-	
-	
_	
-	

- (c) Some fractions from crude oil contain large hydrocarbon molecules.
 - (i) Hydrocarbon molecules, such as decane, can be cracked to produce smaller,

		Write the correct formula of the third product to complete the chemical equation.	
		You do not need to give the name of this product.	
		$C_{10}H_{22}$ - C_5H_{10} + C_3H_8 +	
		decane pentene propane	(1)
	(ii)	Pentene is used to produce poly(pentene).	
		Complete the equation and the displayed structure of poly(pentene).	
		Pentene Poly(pentene)	
		$ \begin{array}{cccc} H & H \\ & \\ n & C = C \\ & \\ H & C_3H_7 \end{array} $ $ \begin{bmatrix} C & C \end{bmatrix} $	
		H C ₃ H ₇	
			(3)
	(iii)	Some polymers are described as smart polymers.	
		polymer.	(1)
		(Total 12 m	arks)
Q15.	ulfur is a	a non-metal.	
Sı	ılfur burr	rns in the air to produce sulfur dioxide, SO_2	
(a) Why	by is it important that sulfur dioxide is not released into the atmosphere?	
•		< (✔) one box.	
		ur dioxide causes acid rain.	
	Sulfu	ur dioxide causes global dimming.	
	Sulfu	ur dioxide causes global warming.	
) Sulfi	fur dioxide dissolves in water	(1)

more useful molecules.

Sulf	ur dioxide is a gas at room temperature.
The	bonding in sulfur dioxide is covalent.
Expl poin	ain, in terms of its structure and bonding, why sulfur dioxide has a low boiling
	nis question you will be assessed on using good English, organising information rly and using specialist terms where appropriate.
clea	
c <i>lea</i> Sulfi	rly and using specialist terms where appropriate.
clea Sulfu t is i	rly and using specialist terms where appropriate. ur dioxide is produced when fossil fuels are burned.
clea Sulfu t is Thre	rly and using specialist terms where appropriate. ur dioxide is produced when fossil fuels are burned. mportant that sulfur dioxide is not released into the atmosphere. e of the methods used to remove sulfur dioxide from gases produced when
clea Sulfu It is Thre	rly and using specialist terms where appropriate. ur dioxide is produced when fossil fuels are burned. mportant that sulfur dioxide is not released into the atmosphere. e of the methods used to remove sulfur dioxide from gases produced when I fuels are burned are:

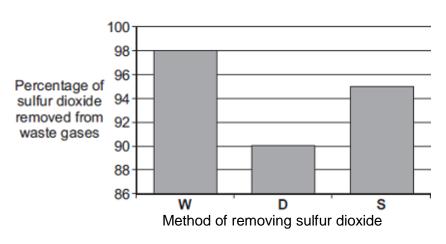


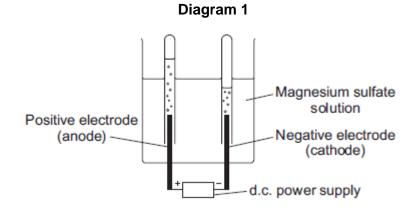
Table 1

Method	Material used	How material is obtained
w	Calcium carbonate, CaCO₃	Quarrying
D	Calcium oxide, CaO	Thermal decomposition of calcium carbonate: CaCO ₃ CaO + CO ₂
s	Seawater	From the sea

Table 2

Method	What is done with waste material	
W Solid waste is sold for use in buildings. Carbon dioxide is released into the atmosphere.		
D	D Solid waste is sent to landfill.	
s	Liquid waste is returned to the sea.	

Evaluate the three methods of removing sulfur dioxide from waste gases.
Compare the three methods and give a justified conclusion.

(6)

(Total 12 marks)

Q16.

Diagram 1 shows the apparatus used to electrolyse magnesium sulfate solution.

Gases were given off at both electrodes.

(a) The gas collected at the anode was oxygen.

Draw **one** line from the test for oxygen to the correct result.

Test	Result
	The splint relights
Place a glowing splint in the tube of the gas	The splint goes out
	There is a squeaky pop

(1)

(b) (i) The gas collected at the cathode was hydrogen.

Describe how to test the gas to show that it is hydrogen.

Result
Why is hydrogen, and not magnesium, produced at the cathode?
ident wanted to use electrolysis to silver plate a metal spoon. Give one reason why metal spoons are sometimes silver plated.
Diagram 2 shows the apparatus the student used. The student did not set the apparatus up correctly.
Diagram 2
d.c. power supply
Copper sulfate solution Pure silver
The student found that the metal spoon eroded and a thin layer of copper formed on the pure silver electrode.
Suggest two changes that the student must make to his apparatus to be able to silver plate the metal spoon. Give a reason for each change.

	(iii)	Why is it difficu	It to electrop	late plastic	spoons?			(4)
								(1) (Total 10 marks)
Q17.								
	il fuels	s contain carbor	١.					
(a)	The	figure below rep	oresents a ca	arbon atom.				
			9					
	Draw	a ring around t	he correct a	nswer to co	mplete each	n senten	ce.	
((i)	The name of th	e particle wi	th a positive	e charge is	an elec	on.	
								(1)
((ii)	The centre of	the atom is	called the	energy molecu nucleus	le.		
	(iii)	Use the Chem	istry Data S	heet to help	you to ans	war this v	question	(1)
	(111)	Use the correct						
	[
		4	6	8	10	12		
	Т	he mass numbe	er of this car	bon atom is				

		In the periodic table, carbo	on is in Group			
(b)	Coa	al is a fossil fuel.				
	A pi	ece of coal contains:				
	•	80% carbon				
	•	9% oxygen				
	•	1% sulfur				
	•	5% hydrogen.				
	The	rest of the coal is other el	ements.			
	(i)	What is the percentage	of other elements	s in this piece of coal?		
					%	
						(1)
	(ii)	Coal burns in air to prod	uce carbon dioxi	de, sulfur dioxide and water.		
		Draw one line from each product.	h product to the t	ype of pollution caused by e	ach	
		Product		Type of pollution		
				Acid rain		
		Carbon dioxide	•			
				Global dimming		
		Sulfur dioxide	•			
				Global warming		
		Water				
				No pollution		
						(3)

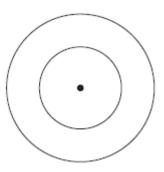
Q18.

Some theories suggest that the Earth's early atmosphere was the same as Mars' atmosphere today.

The table below shows the percentage of four gases in the atmosphere of Mars today and the atmosphere of Earth today.

(Total 8 marks)

Gasas	The atmo	sphere of
Gases	Mars today	Earth today


Carbon dioxide	95.00%	0.04%
Nitrogen	3.50%	78.00%
Argon	1.00%	0.96%
Oxygen	0.50%	21.00%

(a)	Whi	ch one of the gases in the tab	ple is a noble gas?	
(b)	Drav	w a ring around the correct an	nswer to complete each sentence.	(1)
	(i)	Noble gases are in Group	0 1 7	(4)
	(ii)	Noble gases are	slightly reactive. unreactive. very reactive.	(1)
(c)		percentage of carbon dioxide 0.04% in the Earth's atmosph	e in the Earth's early atmosphere was 95.00%. ere today.	
	(i)	Calculate the decrease in th atmosphere.	e percentage of carbon dioxide in the Earth's	
			Decrease in percentage =%	(1)
	(ii)	Give two reasons for this de	crease.	(-)
				(2)
			(Total 6 ma	arks

Q19.

Fossil fuels contain carbon and hydrogen.

(a) (i) Use the Chemistry Data Sheet to help you to answer this question.Complete the figure below to show the electronic structure of a carbon atom.

(ii)	Complete the word equation for the oxidation of hydrogen.				
	hydrogen + oxygen ——►	(1			

,	رh)	١	$C_{\alpha\alpha}$	io	_	foodil	fuol	ı
((b))	Coai	15	а	fossil	ruei	١.

Coal contains the elements hydrogen, sulfur, oxygen and carbon.

Name **two** products of burning coal that have an impact on the environment.

What impact does each of the products you named have on the environment?

(Total 6 marks)

(1)

Q20.

Scientists study the atmosphere on planets and moons in the Solar System to understand how the Earth's atmosphere has changed.

(a) Millions of years ago the Earth's atmosphere was probably just like that of Mars today.

The table shows data about the atmosphere of Mars and Earth today.

Mars	today	Earth	today
nitrogen	3%	nitrogen	78%
oxygen	trace	oxygen	21%
water	trace	water	trace
Carbon dioxide	95%	Carbon dioxide	trace
Average surface te	mperature −23°C	Average surface te	mperature 15°C

The percentages of some gases in the Earth's atmosphere of millions of years ago have changed to the percentages in the Earth's atmosphere today.

For two of these gases describe now the percentages have changed and suggest what caused this change.	τ

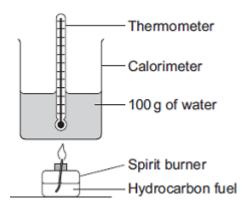
(b) Titan is the largest moon of the planet Saturn.
Titan has an atmosphere that contains mainly nitrogen.
Methane is the other main gas.

Main gases in Titan's atmosphere	Percentage (%)	Boiling point in °C
Nitrogen	95	-196
Methane	5	-164
Average surface temperate	ure −178°C	

When it rains on Titan, it rains methane!
Use the information above and your knowledge and understanding to explain why.

(2)

(c)		raviolet radiation from the Sun produces simple alkener propene (C_3H_6) from methane in Titan's atmosphere.	s, such as ethe	ene (C ₂ H ₄)
	Sta	te the general formula for alkenes.		
				(1 (Total 5 marks
Q21.			ofton wood oo	fuele
(a)		I hydrocarbons, for example methane and octane, are thane can be represented as:	onen used as	rueis.
(a)	IVIC	Н		
		н—с—н 		
		H—C—H		
		Н		
	(i)	The formula of methane is		· (1
	(ii)	Draw a ring around the correct answer to complete t	he sentence.	`
			double.	
	In a	saturated hydrocarbon molecule all of the bonds are	ionic.	
			single.	
				(1
	(iii)	Draw a ring around the correct answer to complete the	ne sentence.	
				alcohols.
	The	homologous series that contains methane and octane	is called the	alkanes.
				alkenes.
				(1
(b)	(i)	The complete combustion of petrol produces carbon and sulfur dioxide.	i dioxide, wate	r vapour
		Name three elements petrol must contain.		
		1		
		2		
		3		
	/::\	The exhaust gacon from care can contain exidence	oitrogon	(3
	(ii)	The exhaust gases from cars can contain oxides of r	iitiogett.	


		Complete the sentence.
		Nitrogen in the oxides of nitrogen comes from
	(iii)	The sulfur dioxide and oxides of nitrogen from cars cause an environmental problem.
		Name the problem and describe one effect of the problem.
		Name of problem
		Effect of problem
(c)	Whe	en a fuel burns without enough oxygen, there is incomplete combustion.
	One	gaseous product of incomplete combustion is carbon monoxide.
	Nam	ne one solid product of incomplete combustion.
(d)	A st	udent investigated how well different hydrocarbon fuels would heat up 100 g of

water.

Her hypothesis was:

The more carbon atoms there are in a molecule of any fuel, the better the fuel is.

The apparatus the student used is shown in the diagram.

She burned each hydrocarbon fuel for 2 minutes.

Her results are shown in the table.

hydrocarbon carbor in a m hydro	ther of natoms change of water in °C after 2 minutes	Temperature change per g of fuel burned	Observations
---------------------------------	--	---	--------------

Pentane	5	30	60	no smoke
Hexane	6	40	57	very small amount of smoke
Octane	8	55	55	small amount of smoke
Decane	10	57	52	large amount of smoke
Dodecane	12	60	43	very large amount of smoke

The student investigated only hydrocarbons.

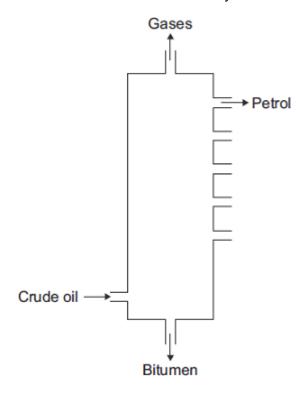
Look carefully at her results.

(e)

How well do the student's results support her hypothesis?

The more carbon atoms there are in a molecule of any fuel, the better the fuel is. Give reasons for your answer. (4) A 0.050 mol sample of a hydrocarbon was burned in excess oxygen. The products were 3.60 g of water and 6.60 g of carbon dioxide. Calculate the number of moles of carbon dioxide produced. (i) Relative atomic masses: C = 12; O = 16.

Moles of carbon dioxide = _____


	(ii)	When the hydrocarbon was burned 0.20 mol of water were produced.	
		How many moles of hydrogen atoms are there in 0.20 mol of water?	
		Moles of hydrogen atoms =	
	(iii)	The amount of hydrocarbon burned was 0.050 mol.	(1)
	(111)		
		Use this information and your answers to parts (e) (i) and (e) (ii) to calculate the molecular formula of the hydrocarbon.	
		If you could not answer parts (e) (i) or (e) (ii) use the values of 0.20 moles carbon dioxide and 0.50 moles hydrogen. These are not the answers to parts (e) (i) and (e) (ii) .	
		Formula =	
		(Total 19 m	(2) narks)
_			
2. Crud	de oil i	is a mixture of many different chemical compounds.	
(a)	Fue	els, such as petrol (gasoline), can be produced from crude oil.	
	(i)	Fuels react with oxygen to release energy.	
		Name the type of reaction that releases energy from a fuel.	
			(1)
	(ii)	Fuels react with oxygen to produce carbon dioxide. The reaction of a fuel with oxygen can produce a different oxide of carbon.	
		Name this different oxide of carbon and explain why it is produced.	
			(2)

(2)

(b) Most of the compounds in crude oil are hydrocarbons.

Q22.

Hydrocarbons with the smallest molecules are very volatile.

In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Describe and explain how **petrol** is separated from the mixture of hydrocarbons in crude oil.

Ose the diagram and your knowledge to answer this question.

(Total 9 marks)

(6)

formed.

The amount of carbon dioxide continues to change because of human activities.

(a) Cement is produced when a mixture of calcium carbonate and clay is heated in a rotary

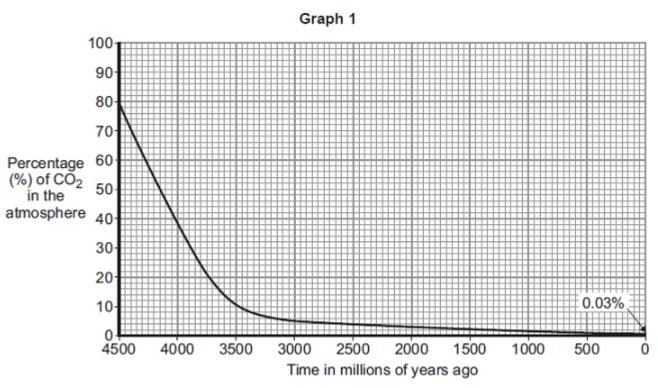
kiln. The fuel mixture is a hydrocarbon and air.

Hydrocarbons react with oxygen to produce carbon dioxide. Calcium carbonate decomposes to produce carbon dioxide.

(i) Complete each chemical equation by writing the formula of the other product.

$$CH_4 + 2O_2 \longrightarrow 2 \dots + CO_2$$

 $CaCO_3 \longrightarrow \dots + CO_2$

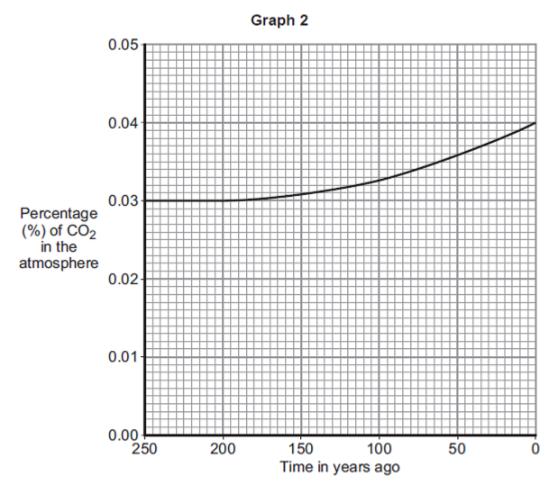

(ii) Hydrocarbons and calcium carbonate contain locked up carbon dioxide.

What is <i>locked up</i> carbon dioxide?		

(2)

(2)

(b) Graph 1 shows how the percentage of carbon dioxide in the atmosphere changed in the last 4500 million years.



Use information from **Graph 1** to answer these questions.

(i) Describe how the percentage of carbon dioxide has changed in the last 4500 million years.

ged.
god.

(c) **Graph 2** shows how the percentage of carbon dioxide in the atmosphere changed in the last 250 years.

Should we be concerned about this change in the percentage of carbon dioxide? Explain your answer.

(
'	
(Tota 10 mark	