DISTANCE AND DISPLACEMENT

Q1.

A train travels from town \mathbf{A} to town \mathbf{B}.
Figure 1 shows the route taken by the train.
Figure 1 has been drawn to scale.
Figure 1

(a) The distance the train travels between \mathbf{A} and \mathbf{B} is not the same as the displacement of the train.

What is the difference between distance and displacement?
\qquad
\qquad
\qquad
(b) Use Figure 1 to determine the displacement of the train in travelling from \mathbf{A} to \mathbf{B}.

Show how you obtain your answer.
\qquad
\qquad
Displacement = km

Direction $=$ \qquad
(c) There are places on the journey where the train accelerates without changing speed.

Explain how this can happen.
\qquad
\qquad
\qquad
(d) Figure 2 shows how the velocity of the train changes with time as the train travels along a straight section of the journey.

Figure 2

Estimate the distance travelled by the train along the section of the journey shown in Figure 2.

To gain full marks you must show how you worked out your answer.
\qquad
\qquad
\qquad
\qquad
Distance = m

Q2.
Figure 1 shows a golfer using a runway for testing how far a golf ball travels on grass. One end of the runway is placed on the grass surface.
The other end of the runway is lifted up and a golf ball is put at the top.
The golf ball goes down the runway and along the grass surface.
Figure 1

(a) A test was done three times with the same golf ball.

The results are shown in Figure 2.
Figure 2

(i) Make measurements on Figure 2 to complete Table 1.

Table 1

Test	Distance measured in centimetres
1	8.5
2	
3	

(ii) Calculate the mean distance, in centimetres, between the ball and the edge of the runway in Figure 2.
\qquad
Mean distance =
\qquad cm
(iii) Figure 2 is drawn to scale.

Scale: $1 \mathrm{~cm}=20 \mathrm{~cm}$ on the grass.

Calculate the mean distance, in centimetres, the golf ball travels on the grass surface.
\qquad
Mean distance on the grass surface $=$ \qquad cm
(iv) The distance the ball travels along the grass surface is used to estimate the 'speed' of the grass surface.

The words used to describe the 'speed' of a grass surface are given in Table 2.

Table 2

'Speed' of grass surface	Mean distance the golf ball travels in centimetres
Fast	250
Medium fast	220
Medium	190
Medium Slow	160
Slow	130

Use Table 2 and your answer in part (iii) to describe the 'speed' of the grass surface.
\qquad
(b) The shorter the grass, the greater the distance the golf ball will travel. A student uses the runway on the grass in her local park to measure the distance the golf ball travels.
(i) Suggest two variables the student should control.
\qquad
\qquad
\qquad
(ii) She carried out the test five times.

Her measurements, in centimetres, are shown below.
$\begin{array}{lllll}75 & 95 & 84 & 74 & 79\end{array}$

What can she conclude about the length of the grass in the park?
(c) Another student suggests that the 'speed' of a grass surface depends on factors other than grass length.

She wants to test the hypothesis that 'speed' depends on relative humidity.
Relative humidity is the percentage of water in the air compared to the maximum amount of water the air can hold. Relative humidity can have values between 1% and 100%.

The student obtains the data in Table 3 from the Internet.
Table 3

Relative humidity expressed as a percentage	Mean distance the golf ball travels in centimetres
71	180
79	162
87	147

(i) Describe the pattern shown in Table 3.
\qquad
\qquad
(ii) The student writes the following hypothesis:
'The mean distance the golf ball travels is inversely proportional to relative humidity.'

Use calculations to test this hypothesis and state your conclusion.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) The data in Table 3 does not allow a conclusion to be made with confidence.

Give a reason why.
\qquad
\qquad
(d) In a test, a golf ball hits a flag pole on the golf course and travels back towards the edge of the runway as shown in Figure 3.

Figure 3

The distance the ball travels and the displacement of the ball are not the same.
What is the difference between distance and displacement?
\qquad
\qquad
\qquad
\qquad

Q3.
The manufacturer of a family car gave the following information.
Mass of car 950 kg
The car will accelerate from 0 to $33 \mathrm{~m} / \mathrm{s}$ in 11 seconds.
(a) Calculate the acceleration of the car during the 11 seconds.
\qquad
\qquad
\qquad
(b) Calculate the force needed to produce this acceleration.
\qquad
\qquad
\qquad
(c) The manufacturer of the car claims a top speed of 110 miles per hour. Explain why there must be a top speed for any car.
\qquad
\qquad

Q4.

The graph shows the speed of a runner during an indoor 60 metres race.

(a) Calculate the acceleration of the runner during the first four seconds. (Show your working.)
\qquad
\qquad
\qquad
(b) How far does the runner travel during the first four seconds?
(Show your working.)
\qquad
\qquad
\qquad
(c) At the finish, a thick wall of rubber foam slows the runner down at a rate of $25 \mathrm{~m} / \mathrm{s}^{2}$. The runner has a mass of 75 kg .
Calculate the average force of the rubber foam on the runner.
(Show your working.)
\qquad
\qquad
\qquad
Answer \qquad newtons (N)

