HOMEOSTASIS PART III

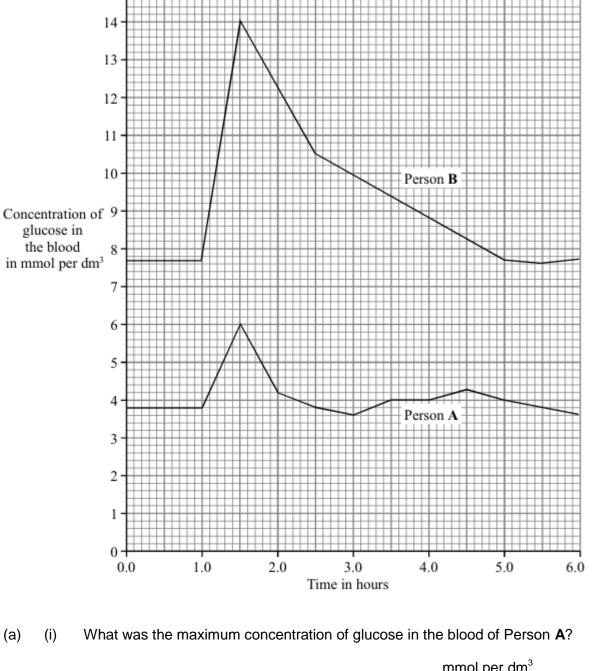
Q1.

(a)

The table shows the concentrations of some substances in one person's blood plasma, kidney filtrate and urine.

Substance	Concentration in grams per dm ³					
Substance	Plasma Filtrate		Urine			
Water	900.0	900.0	950.0			
Protein	78.0	0.0	0.0			
Glucose	0.8	0.8	0.0			
Amino acids	0.4	0.4	0.0			
Urea	0.3	0.3	20.0			
Sodium ions	2.8	2.8	3.5			

	Protein is not present in the filtrate.
E	Explain why.
_	
	Glucose is filtered out of the blood by the kidney and is then completely eabsorbed back into the blood.
١	What is the evidence for this in the table?
	Glucose is reabsorbed into the blood by active transport.
	Give two ways in which active transport differs from diffusion.
	I


	The	concentration	on of urea is muc	h higher in the u	rine than in the filtrate.
	Expl	ain what cau	uses this.		
					(Total 6 n
			special 'sports do present in a sport		during a marathon race. The table
			Substance	Percentage	
			Water		
			Sugar	5.0	
			lons	0.2	
(a)	Com	nplete the ta	ble to show the p	ercentage of wat	er in the sports drink.
(b)			ats and also brea	-	ng the race.
	(i)	Why does	the runner need	to sweat?	
	(ii)	Which two	substances in th	ne table are lost f	rom the body in sweat?
	(iii)	Which sub	ostance in the tab	le is lost from the	e body during breathing?
	Цои	doos the su	igar in the sports	drink help the at	hlete during the marathon?

(Total 6 marks)

Give	e one other way of treating kidney failure.
	e patient's body may reject a transplanted kidney unless doctors take cautions.
Sor	me of these precautions are listed below.
	A donor kidney is specially chosen.
	The recipient's bone marrow is treated with radiation.
	The recipient is treated with drugs.
	The recipient is kept in sterile conditions.
Exp	plain how each of these precautions may help the patient to survive.
	(Tota

Q4.

The graph shows the concentration of glucose in the blood of two people. Person $\bf A$ is a non-diabetic. Person $\bf B$ has diabetes. Each person ate 75 grams of glucose at 1.0 hours.

a)	(1)	What was the maximum concentration of glucose in the blood of Person A?	
		mmol per dm ³	(1)
	(ii)	After eating the glucose, how long did it take for the concentration of glucose in the blood of Person B to return to normal?	(1)
		hours	(1)

(b) A diabetic person does not produce enough insulin.

(i) Which organ produces insulin?

15

(ii) Write the letter X on the graph to show one time when the blood of Person A

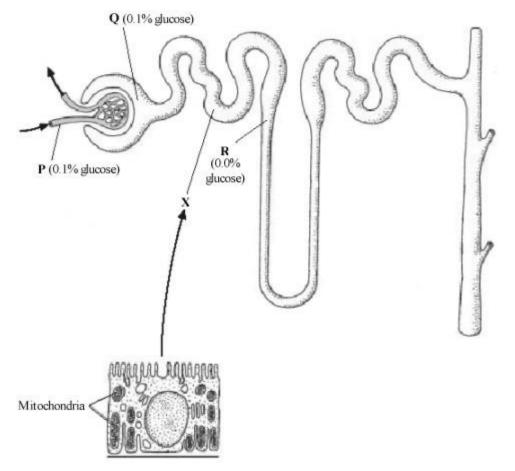
(ii) Write the letter **X** on the graph to show one time when the blood of Person **A** would contain large amounts of insulin.

(1)

				(Total 8 r
		ntrations of some substa ey and in the urine.	ances in human blood plasn	na, in the
mato produ				
		Concentration in	n grams per dm³	
Substance	ce Blood	Concentration in	ı	
	De Blood		1	
Substance	1.0	l plasma Filtr	rate Urine	
Substanc Glucose	1.0	I plasma Filtr	o.0	
Substance Glucose Amino acc	1.0 ids 0.5	I plasma Filtr 1.0 0.5	0.0 0.0	
Substance Glucose Amino acc Urea	1.0 ids 0.5 0.3	1 plasma Filtr 1.0 0.5 0.3	0.0 0.0 0.0 20.0	
Substance Glucose Amino acc Urea Protein	1.0 ids 0.5 0.3 80.0	1 plasma Filtr 1.0 0.5 0.3 0.0	0.0 0.0 20.0 0.0	

(D)		
		-
(c)	The volume of water removed in the urine is variable. Explain how the human reduces the volume of urine produced when less water is consumed.	body
		-
		-
	/7	- - - otal 6 mai
	(1	otal 6 mai
\/\he		
The	en people suffer from kidney failure, they may be treated with a dialysis machine patients' blood is passed through the machine where the composition of the blo sted.	
The adju	patients' blood is passed through the machine where the composition of the blo	od is
The adju (a)	patients' blood is passed through the machine where the composition of the blo sted. Name a waste substance, carried in the blood, which is removed by the dialyst	ood is
The adju (a)	patients' blood is passed through the machine where the composition of the blosted. Name a waste substance, carried in the blood, which is removed by the dialys machine. Doctors sometimes give these patients dialysis treatment, rather than a kidne	ood is
The adju (a)	patients' blood is passed through the machine where the composition of the blosted. Name a waste substance, carried in the blood, which is removed by the dialys machine. Doctors sometimes give these patients dialysis treatment, rather than a kidne transplant.	ood is
The adju (a)	patients' blood is passed through the machine where the composition of the blosted. Name a waste substance, carried in the blood, which is removed by the dialys machine. Doctors sometimes give these patients dialysis treatment, rather than a kidne transplant.	ood is
The adju (a)	patients' blood is passed through the machine where the composition of the blosted. Name a waste substance, carried in the blood, which is removed by the dialys machine. Doctors sometimes give these patients dialysis treatment, rather than a kidne transplant.	ood is
The	patients' blood is passed through the machine where the composition of the blosted. Name a waste substance, carried in the blood, which is removed by the dialys machine. Doctors sometimes give these patients dialysis treatment, rather than a kidne transplant.	ood is
The adju (a)	patients' blood is passed through the machine where the composition of the blosted. Name a waste substance, carried in the blood, which is removed by the dialys machine. Doctors sometimes give these patients dialysis treatment, rather than a kidne transplant.	ood is

(a)	(i)	are sometimes used to regulate human reproduction. What is a hormone?
	(ii)	How are hormones transported around the body?
(b)	horn	cribe the benefits and possible problems that may result from the use of nones to regulate human reproduction. You should refer to fertility drugs and raceptives in your answer.
	То	gain full marks in this question you should write your ideas in good English. Put n into a sensible order and use the correct scientific words.
	То	gain full marks in this question you should write your ideas in good English. Put


Q8.

- (a) Each day, a boy ate food containing 12 000 kilojoules of energy. The boy's body used 80 per cent of this energy to maintain his core temperature.
 - (i) Name the process which releases energy from food.

	Amount of energy used each day =	kJ
The diagrar	n shows a section through human skin.	
Capilla	ries Sweat glan	nd
Explain hov	v structure A helps to cool the body on a hot day.	

Q9.

The diagram shows the structure of a kidney tubule.

Cell in wall of Region X.

All of these cells have large numbers of mitochondria.

Give the full name of the process which takes place in the mitochondria.
The concentration of glucose in the blood at $\bf P$, and in the fluid at $\bf Q$, is 0.1 per cent The concentration of glucose in the fluid at $\bf R$ is 0.0 per cent.
Use information from the diagram, and your own biological knowledge, to explain the change in glucose concentration from point ${\bf P}$ through to point ${\bf R}$.

(2)

/ E
(5
•
/Tatal 7 mayles
(Total 7 marks

Q10.

Figure 1 shows a food chain containing three organisms.

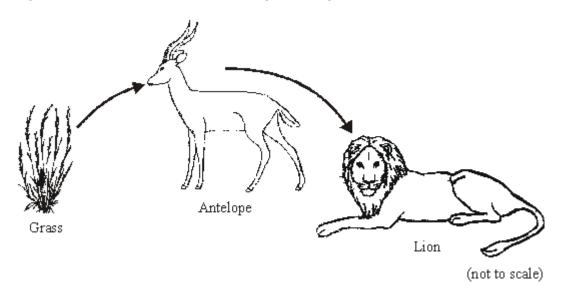


Figure 1

(a) (i) In this food chain, name:
the predator;
the prey.

(ii) What is the source of energy for the grass?

Draw a ring around one answer.

carbon dioxide light nitrates water

(1)

(iii) Figure 2 shows a pyramid of biomass for the organisms in Figure 1.Write the names of the organisms on the correct lines in Figure 2.

		\neg					
			—				
			<u> </u>				
	Figure	2					(1)
b) W	aste materials, like fae	ces from the	animals, w	vill decay,			()
(i)	What sort of organi	sms cause d	lecay?				
						_	(1)
(ii)	Three of the followi	ng conditions	s help deca	ay to occur	rapidly.		(.,
	Which conditions do	o this?					
	Draw a ring around	each of the	three answ	vers.			
	aerobic ana	erobic	cold	dry	moist	warm	(3)
(iii)	The list below gives by decay and can b			of these su	ubstances are μ	oroduced	, ,
	Which two substan	ces are thes	e?				
	Tick (✔) two boxes						
	Carbon dioxide						
	Mineral salts						
	Oxygen						
	Protein						

Q11.

The internal body temperature determines how much a person sweats. The graph shows the effect of different internal body temperatures on a person's rate of energy loss by sweating.

(2)

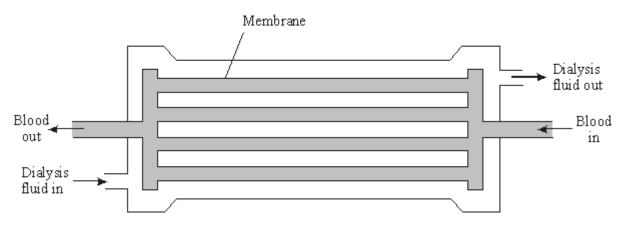
(Total 10 marks)

(a)	How much more energy was lost from the body each second by sweating when the body temperature was 37.6 °C than when it was 36.6 °C? Show clearly how you work out your final answer.

Amount of energy = _____ joules per second

(b) Explain why a person would feel more thirsty when the body temperature was 37.6 °C than when it was 36.6 °C.

(c) Explain how sweating helps to control body temperature.


(2)

(2)

Q12.

A woman suffers a minor infection that affects her kidneys. She is sent to hospital for treatment with a dialysis machine.

A simplified diagram of a dialysis machine is shown below.

(a)	Explain why the membrane is important in the dialysis machine.				

(b) Some of the components of the woman's blood and of the dialysis fluid entering the machine are shown in the table.

Component	Woman's blood entering machine	Dialysis fluid entering machine
Blood cells	✓	*
Glucose	✓	✓
Urea	✓	*

Key: \checkmark = present x = absent

Use the information in the table to explain the composition of the dialysis fluid entering the machine.

(2)


_		
		an has blood group $oldsymbol{O}$.
(i)	What features of her blood make it group O ?
(ii)	Why must the blood in the dialysis machine, before her treatment begins, also be blood group O ?
		(Total 11
\	Why	is the removal of water from the body an example of homeostasis?
_	Why	is homeostasis important in the body?
- - \ -	Why	is homeostasis important in the body?
-		system also excretes a substance called urea.

(2)

(Total 4 marks)

Q14.

The pictures show three mammals and their average body temperature in °C.

NOT TO SCALE

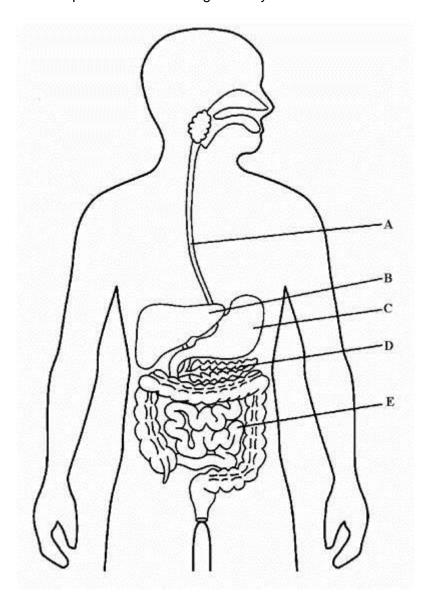
body temperature when the temperature of the environment falls.

Describe three different ways by which most mammals are able to maintain a constant

(Total 6 marks)

Q15.

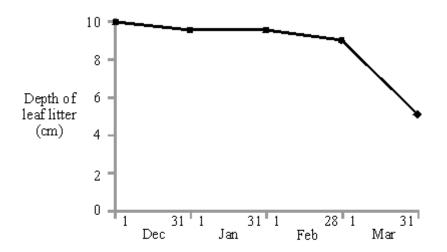
Coordination of the body can be affected by chemicals called hormones


- (a) (i) Where are hormones produced?

 - (ii) How do hormones move around the body?

Insu	ulin is a hormone.	
(i)	Where is insulin produced?	
(ii)	Explain the role of insulin in controlling blood sugar levels.	
		(Total 7

Q16.


The diagram shows part of the human digestive system.

(i) Name part **B**.

	(Tota
One	e food chain in the wood is:
	Hazel tree nuts \rightarrow squirrels \rightarrow owls
(i)	What does this food chain tell us?
(ii)	Which one of the organisms in the food chain is a producer?
(iii)	This year the hazel bushes have produced very few nuts.
	Explain, as fully as you can, how this might affect the populations of: 1. squirrels;
	2. owls.

(b) An area of the floor of the wood 1 m² was fenced off so that animals could not reach it. The graph below shows the depth of leaf litter (dead leaves) inside the fence over the next few months.

Explain, as fully as you can, why the depth of the leaf litter decreased; (i) (1) (ii) how this decrease happened. (1) (iii) In which month does leaf litter disappear fastest? Explain why. (2) (Total 11 marks) During respiration, sugar is oxidised to release energy. Complete the equation for respiration.

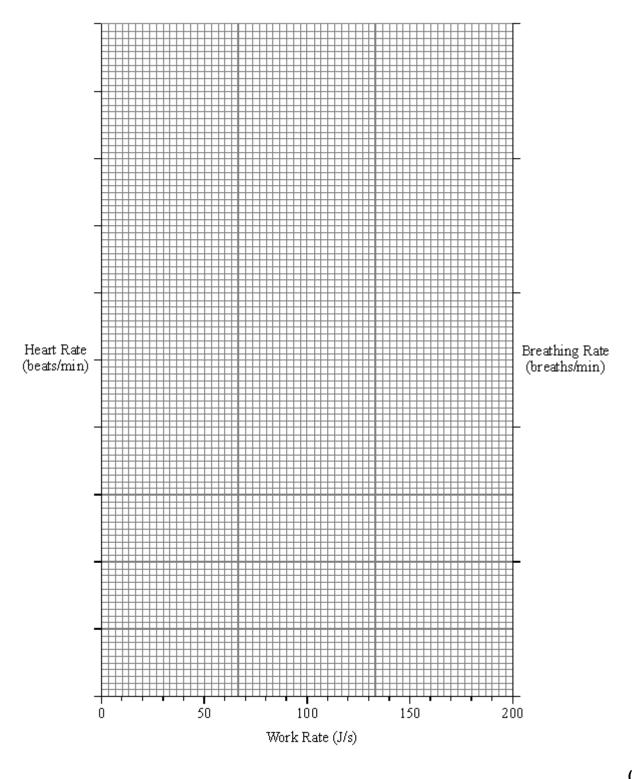
(b) The photograph below shows an athlete using an exercise machine. The machine can be adjusted to vary the rate at which the athlete is required to work.

____ + energy

(3)

Q18.

(a)

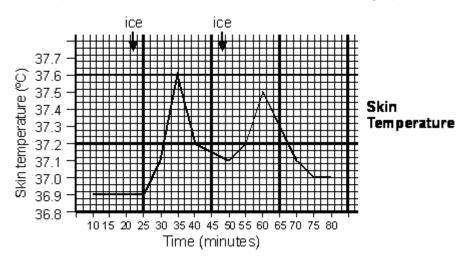


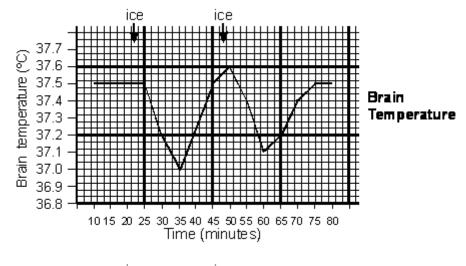
The athlete's heart rate and breathing rate were measured at different work rates.

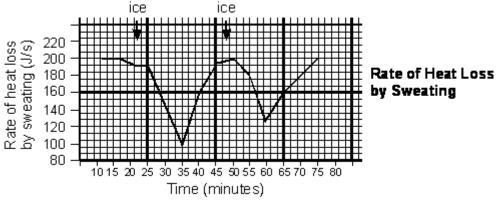
The table below shows the results which were obtained.

WORK RATE (J/s)	HEART RATE (beats/min.)	BREATHING RATE (breaths/min.)
0 86		9.6
60	106	10.0
80	112	10.4
100	122	10.4
120	135	11.4
140	143	14.5
160	156	15.8
200	174	30.5

Plot the data on the graph paper below.


Explain, as fully as you can, the advantages to the body in the change in breathing and heart rates.				


(3)


This sugg		of heart-beat is a response to a stimulus. For this response
	the stimulus;	
(i)		
(i) (ii)	the co-ordinator;	

Q19.

The graphs show the results of an investigation into the control of sweating in humans. The subject was placed in a chamber where the temperature was maintained at 45°C. The subject swallowed ice at the times indicated on the graphs.

(a) What was the relationship between swallowing ice and the subject's

(i)	skin temperature?		

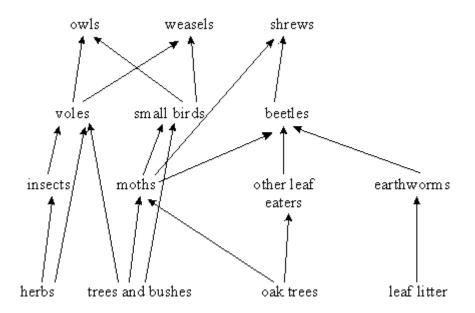
(1)

(1)

(1)

(ii) brain temperature?

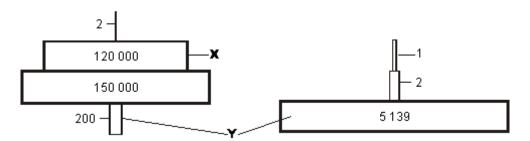
(iii) rate of heat loss by sweating?


(b) Explain, as fully as you can, why the subject's brain temperature, skin temperature and rate of heat loss by sweating were affected by swallowing ice in the way shown by the graphs.

(8) (Total 11 marks)

Q20.

The diagram below shows a food web for a wood.


(a) The diagrams below show a pyramid of the numbers and a pyramid of the biomass for 0.1 hectare of this wood.

Pyramid of Numbers numbers/0.1 hectare

(b)

Pyramid of Biomass biomass (grams per square metre)

(3)

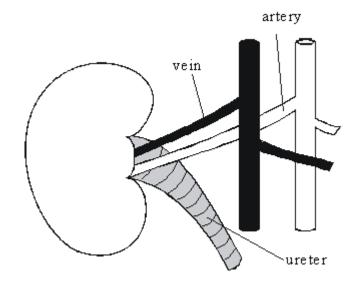
(i)	Name one organism from the level labelled X.	
		(1)
(ii)	Explain, as fully as you can, why the level labelled Y is such a different width	

)	Explain, as fully as you can, why the level labelled Y is such a different width in the two pyramids.

Explain, as fully as you can, what eventually happens to energy from the sun which is captured by the plants in the wood.

11	U)
	uı

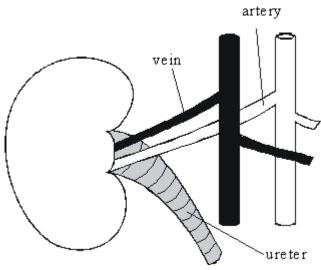
(3)


(Total 14 marks)

റ	2	1	

(a) Describe, as fully as you can, the job of

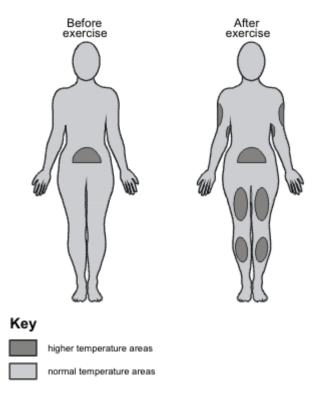
(i)	the circulatory system.	
		(2
(ii)	the digestive system.	


(b)

The drawing shows a kidney, its blood supply and the ureter (a tube which carries urine from the kidney to the bladder). The amount and composition of the urine flowing down the ureter change if the blood in the artery contains too much water. Describe these changes and explain how they take place.

· ·	•		

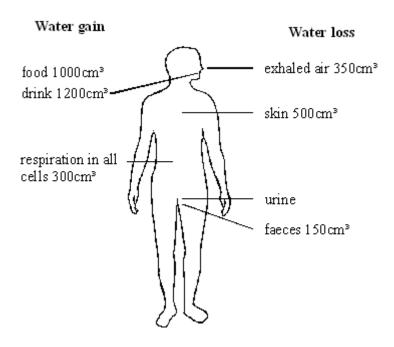
Q22.



	om the kidney to the bladder). The amount and composition of the urine down the ureter changes if the blood in the artery contains too much
	Describe these changes and explain how they take place.
	escribe, as fully as you can, two methods of treating patients who suffer
fro	om kidney failure.
fro	
fro	om kidney failure.
fro	om kidney failure.
fro	om kidney failure.
frc 1. — — — —	om kidney failure.

Q23.

The temperature at the surface of the skin can be measured by using a technique called thermography. Areas with higher temperature appear as a light shade on the thermographs. The drawings below show the results of an investigation in which thermographs were taken before and after exercise.


Explain, as fully as you can, the body mechanisms which affected the skin temperature to give the results shown in the drawings.

(Total 8 marks)

(Total 13 marks)

Q24.

The diagram shows the mean daily input and output of water for an adult.

The kidneys keep the water content of the body constant by controlling the volume of water passed out in the urine.

(i)	Use data from the diagram to calculate the mean daily output of water in urine.
	Show your working.

	Answer cm ³	(2)
(ii)	Describe how the amount of water in the body is controlled by the kidneys.	
		_
		_

(Total 5 marks)

(3)

Q25.

Read the following passage which is from an advice book for diabetics.

Insulin Reactions

Hypoglycaemia or 'hypo' for short, occurs when there is too little sugar in the blood. It is important always to carry some form of sugar with you and take it immediately you feel a 'hypo' start. A hypo may start because:

- · you have taken too much insulin, or
- you are late for a meal, have missed a meal altogether, have eaten too little at a meal, or
- · you have taken a lot more exercise than usual.

The remedy is to take some sugar.

(a)

An insulin reaction usually happens quickly and the symptoms vary – sweating, trembling, tingling of the lips, palpitations, hunger, pallor, blurring of the vision, slurring of speech, irritability, difficulty in concentration.

Do not wait to see if it will pass off, as an untreated 'hypo' could lead to unconsciousness.

Explain why.
Explain why there is too little sugar in the blood if too much insulin is taken.
Explain why there is too little sugar in the blood if too much insulin is taken.
Explain why there is too little sugar in the blood if too much insulin is taken.
Explain why there is too little sugar in the blood if too much insulin is taken.

		_
		-
		•
(b)	Suggest why sugar is recommended for a 'hypo', rather than a starchy food.	
		_
		_
		_
		_
(c)	Explain how the body of a healthy person restores blood sugar level if the level drops too low.	
		_
		_
		_
		_
(d)	Explain, using insulin as an example, what is meant by negative feedback.	
		_
		_
		_
		_
	(Total 17	ma
	· ·	
26.	triduction we were the triangle from the liquid part of the blood	
	kidneys remove waste materials from the liquid part of the blood.	
(a)	What name is given to the solution of waste stored in the bladder?	
(b)	The table shows the concentration of certain substances	
	in the liquid want of the bland	
	in the liquid part of the blood	

in the solution in the bladder.

	С	ONCENTRATION (9	` ′			
SUBSTANCE	IN LIQUID PART OF BLOOD	IN LIQUID THAT HAS BEEN FILTERED IN THE KIDNEYS	IN LIQUID IN THE BLADDER			
Protein	7.0	0	0			
Salt	0.35	0.35	0.5			
Glucose	0.1	0.1	0			
Urea	0.03	0.03	2.0			

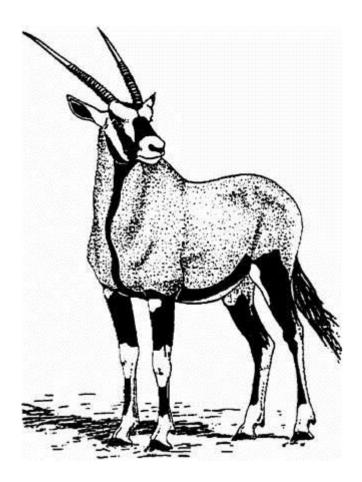
(ii) Suggest one reason why this substance does not pass out of the block	
	od.
What happens to the glucose in the liquid that is filtered in the kidneys?	
Explain why the concentration of urea in the liquid in the bladder is much grant han the concentration of urea in the liquid that is filtered in the kidneys.	eater

Q27.

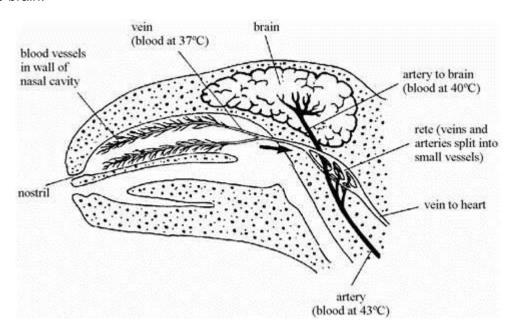
The kidneys remove waste materials from the liquid part of the blood.

The table shows the concentration of certain substances

- in the liquid part of the blood
- in the liquid that has just been filtered from the blood in the kidneys
- in the solution in the bladder.


	С	ONCENTRATION (ON (%)			
SUBSTANCE	IN LIQUID PART OF BLOOD	IN LIQUID THAT HAS BEEN FILTERED IN THE KIDNEYS	IN LIQUID IN THE BLADDER			
Protein	7.0	0	0			
Salt	0.35	0.35	0.5			
Glucose	0.1	0.1	0			
Urea	0.03	0.03	2.0			

(i)	Which one of these substances does not pass into the liquid that is filtered in the kidneys?
(ii)	Suggest one reason why this substance does not pass out of the blood.
	lain why the concentration of urea in the liquid in the bladder is much greater the concentration of urea in the liquid that is filtered in the kidneys.
(i)	Describe how a kidney dialysis machine works.
	Use the data in the table to suggest the concentration that the salt in the
(ii)	dialysis fluid should be. Explain your answer.


exercise.		
	ation produces excess heat. Explain a rise in the core (deep) body tempe	
-	 	

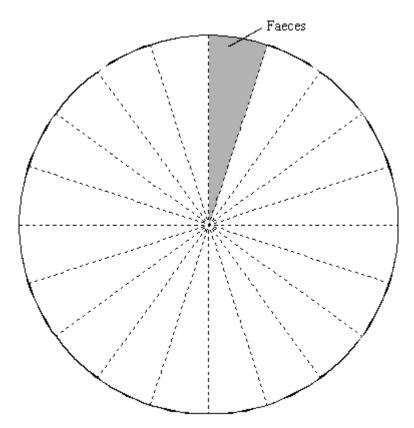
Q29.

The gemsbok is a large herbivore that lives in herds in desert areas of South Africa. Gemsboks feed on plants that are adapted to living in dry conditions. There are not many rivers, lakes or ponds that can provide drinking water for the animals. The desert areas are hot during the day but cool at night. As the air cools at night it becomes moist, and the plants absorb the moisture.

Although the gemsbok lives in hot conditions, it does not sweat. During the day its body temperature can rise, but it is important that blood reaching the brain does not rise above 40°C. The drawing shows how the blood system is adapted to cool the blood which flows to the brain.

(i) Suggest an advantage to the gemsbok of **not** sweating.

i)	How	does the structu	ure of the rete help in	keeping the brain (cool?
					(Total 5 i
he t ay.	able sl	nows four ways	in which water leaves	the body, and the	amounts lost on a coo
		[WATER LC	DSS (cm³)	7
			COLD DAY	HOT DAY	
		Breath	400	the same	
		Breath Skin	400 500	the same	
				the same	
		Skin	500	the same	
h)	(i)	Skin Urine Faeces	500 1500 150		int of water lost would
h)		Skin Urine Faeces Fill in the table	500 1500 150		
à)		Skin Urine Faeces Fill in the table be less	500 1500 150 to show whether on a	hot day the amou	
))		Skin Urine Faeces Fill in the table be less The first answe	500 1500 150 to show whether on a more	the san	ne


Q31.

The table shows how much water is lost in different ways from a student's body.

Way in which water is lost	Percentage of total
Breath	15
Faeces	5
Sweat	50
Urine	30

(a) Complete the pie chart.

One part has been done for you. Remember to label the pie chart.

/ .

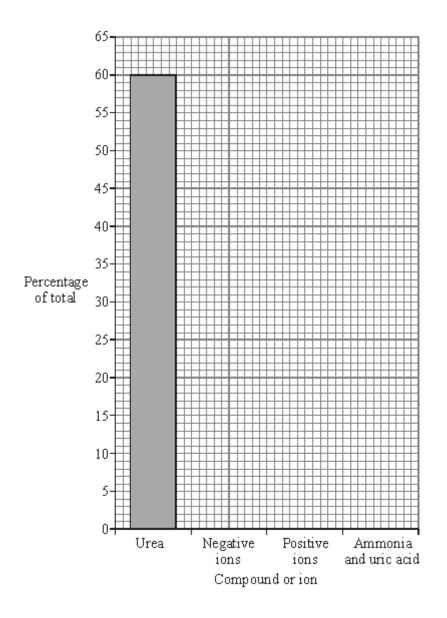
(3)

(b) The table is about waste products which are removed from the student's body.Complete the table by using the correct words from the box.

amino acids	breath	circulation	digestion	fatty acids
gluco	se res	spiration s	weat	urine

Waste product	How it is produced	How it leaves the body
carbon dioxide	by	in
urea	from	in

(4)


(Total 7 marks)

Q32.

(a) The table shows the compounds and ions dissolved in a student's urine.

Compound or ion	Percentage of total
urea	60
negative ions	25
positive ions	10
ammonia and uric acid	5

(i) Complete the bar chart. One bar has been drawn for you.

(ii)	There is a total of 10 g of compounds and ions dissolved in a sample of this student's urine. Calculate the mass of urea in the sample. Show clearly how you work out your answer.	
	Mass of urea g	(2)

(b) Use words from the box to complete the sentences.

anus	bladder	kidneys	liver	lungs

Plasma transports carbon dioxide from the body to the _____ .

Plasma transports urea from the _____ to the _____

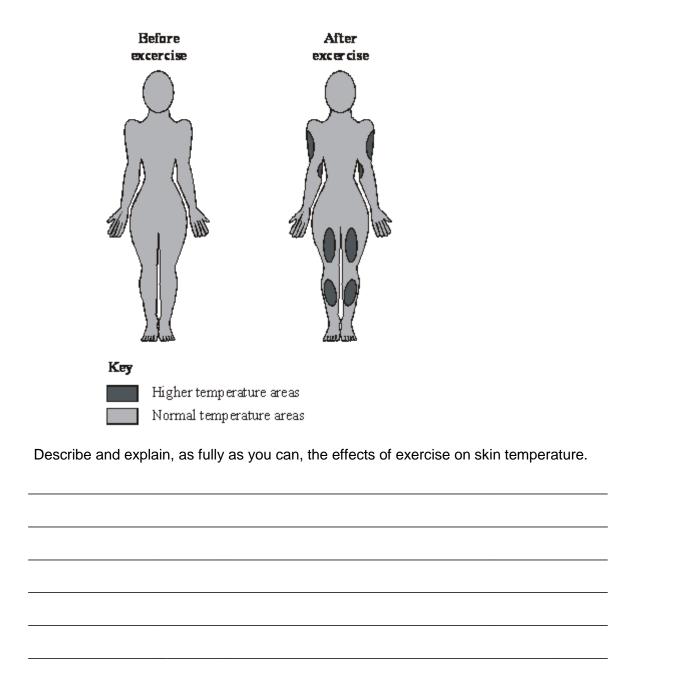
(3)

(2)

Q33.

The table shows the amounts of some of the substances filtered, reabsorbed and excreted by the kidneys in one day.

Substance	Amount filtered	Amount reabsorbed	Percentage reabsorbed	Amount excreted
water		178.5 litres	99.2 %	1.5 litres
urea	56 g	28 g	50 %	28 g
glucose	800 units	800 units	100 %	0
sodium	25 200 units	25 050 units		150 units
chloride	18 000 units	17 850 units	99.2 %	150 units

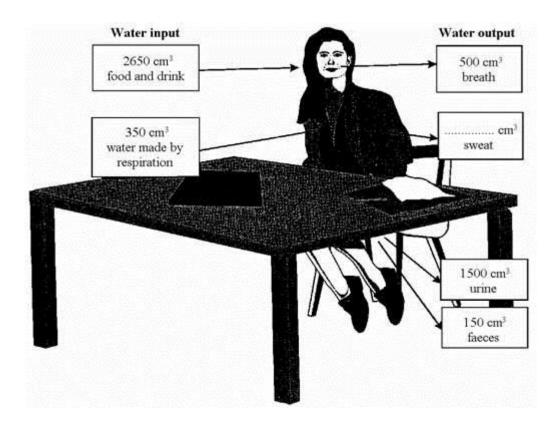

Amount	litres
percentage of the filtered sodium that was react out your answer.	absorbed. Show clearly

Q34.

The temperature at the surface of the skin can be measured by using a technique called thermography.

In this technique, areas with higher temperature appear as a different colour on the thermographs.

The drawings below show the results of an investigation in which thermographs were taken from a person before and after exercise.



(Total 3 marks)

Q35.

The diagram shows a water balance for a girl who spends most of the day working at a desk. It is not complete.

(a) Complete the diagram by writing in the volume of sweat produced.

(b) The next day she spent much of the day training, doing many different types of exercise.

State how **each** of the following would change and why it would be different from the previous day.

(1)

The amount of water b	preathed out.
The amount of urine porevious day.	passed, if she had the same water intake as on the

(c) Which organ controls the amount of water in the body?

/4\	
(1)	
\ · /	

(Total 8 marks)

$\boldsymbol{\smallfrown}$	1	\sim
L.J	-5	n
•	•	v.

Information is passed to target organs in the body by hormones.

(a)	(i)	How do hormones travel around the body?	
			(1
	(ii)	What name is given to the organs that secrete hormones?	
			(1
(b)	Exp	plain the cause of diabetes and how it is controlled.	

(3) (Total 5 marks)

Q37.

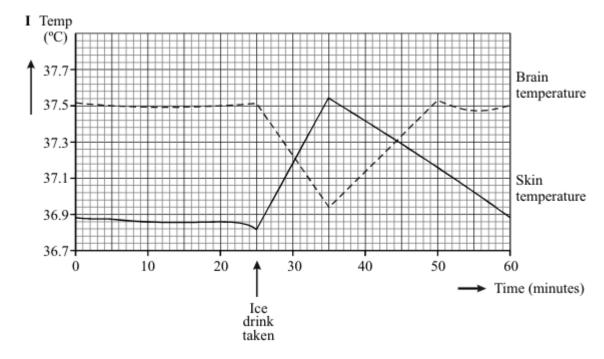
The table compares the percentages of various substances in a person's blood and their urine.

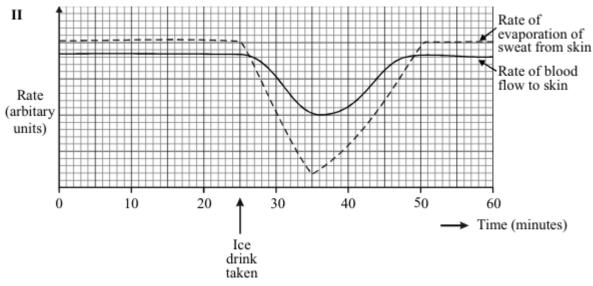
Substance	Blood	Urine
Water	92.00%	95.00%
Glucose	0.10%	0
Salt	0.37%	0.60%
Urea	0.03%	2.10%

		0	0.0070	2.1070	
(a)	Ηον	v does the level of ure	a in urine compare wit	th the level of urea in t	he blood?
					(2)

(b) The kidney produces urine by filtering the liquid part of blood and then re-absorbing some of the filtered substances.

Use this information to explain the difference in the level of urea in urine compared to the level of urea in blood.


(2)

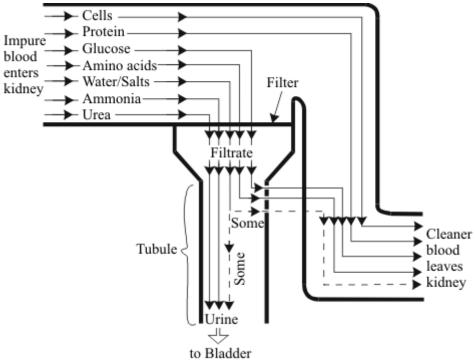

(Total 4 marks)

Q38.

On a hot day, a student has an iced drink.

Graphs I and II show some of the changes to the student's body produced by the iced drink.

Use the information from the graphs to explain, as fully as you can, why the temperature of the student's skin rises after she has taken the iced drink.

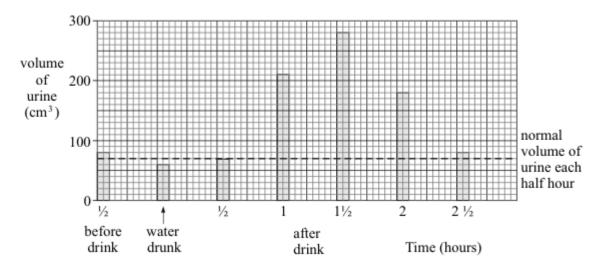

(Tota	
	hrooms can be grown on compost. The compost is made by mixing straw and manure ch rot down.
a)	Write down three things which are needed for the straw and manure to rot.
,	1
	2
	3
b)	Some substances, like plastic, are not biodegradable.

Q40.

The job of our kidneys is to remove unwanted substances from our blood.

Substances which are needed in the blood must not be lost.

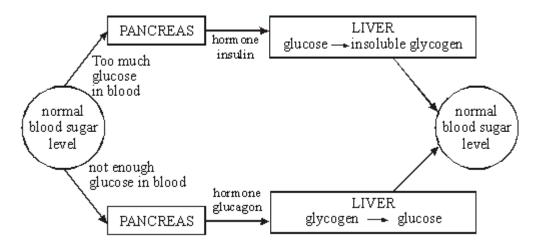
The flow-diagram below shows how the kidneys do this job.



A m	an has 5 litres of blood in his body.
n oı	ne day: • the kidneys filter out 170 litres of liquid from the blood.
	 he produces 1.5 litres of urine.
i)	What % of the filtered liquid is reabsorbed?
ii)	The man became ill because his kidneys would not absorb as much of the filtered liquid.
	Write down two ways the man would be affected by this.

(c) In an experiment the man drank 800cm³ of water.

The diagram shows the effect this had on the volume of urine the man produced


each 30 minutes.

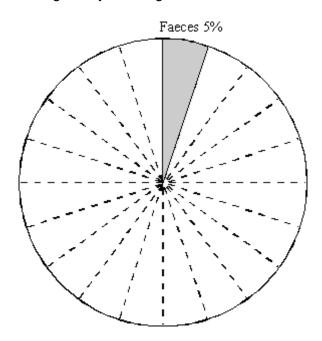
Describe, in as much detail as you can, how drinking the water affected the volur of urine produced afterwards.		

(5) (Total 13 marks)

Q41.

The diagram shows how the blood sugar level is controlled in the body.

Explain fully what would happen if somebody ate some glucose tablets.


(Total 4 marks)

Q42.

The table below shows how the body loses water.

HOW WATER IS LOST	% (PERCENTAGE)
Breathing	10
Faeces	5
Sweat	45
Urine	40

Complete the diagram by showing the water loss for breathing, sweat and urine.

(Total 3 marks)

Q43.

Kidneys are important as they remove waste from blood and balance our water needs.

Kidney failure can be treated by transplant or dialysis using a kidney "machine".

The money for expensive treatment for a few people could be used to provide more patients with less expensive treatment for other complaints.

Dialysis – kidney "machines"		
Most expensive		
Need own machine or share machine in hospital		
Restricted life – special diet, must return to machine		
Can be used while patient waits for transplant		

Kidney transplant	
Very expensive but cheaper than dialysis	
Need kidney from relative or from "newly" dead person	
Independent	
Transplant may be rejected	

(Total 5 marks)

Discuss the advantages and disadvantages of using dialysis or kidney transplants to keep people alive.	
	_
	_

Q44.

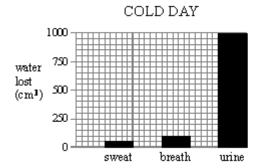
The figures below show the levels of carbon dioxide in air from 150 000 years ago.

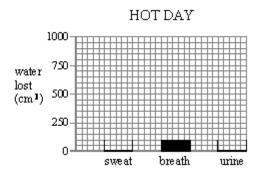
TIME	CARBON DIOXIDE CONCENTRATION	
1500 years ago	270 parts per million	
1800 AD	290 parts per million	
1957	315 parts per million	
1983	340 parts per million	

(a)	Explain why carbon dioxide levels in the atmosphere are changing.			

uggested that the increased level of carbon dioxide in the air is causing the phere to warm up (the "Greenhouse Effect").
ribe, as fully as you can, two major effects of global warming and how thes ffect the human population.

Q45.


The table shows how much water is lost from a boy's body on a cold day and on a hot day.


(6)

(Total 9 marks)

WATER LOST (cm³)	COLD DAY	HOT DAY
in sweat	50	300
in breath	100	100
in urine	1000	750

(a) Use the figures in the table to complete the bar-chart for a hot day.

(b) How do the figures for the hot day compare with those for the cold day? Answer in as much detail as you can.

(4)

(c) The boy does the same things for the same amount of time on both days. Explain why the amounts of water lost in sweat and urine change.

Sweat			
-			

Urine _			

(2) (Total 8 marks)

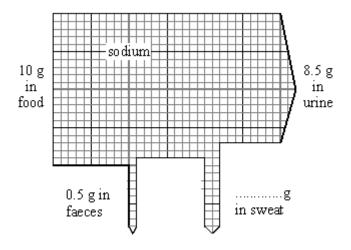
(2)

Q46.

The table shows how much water is lost from a boy's body on a cold day and on a hot day.

WATER LOST (cm³)	COLD DAY	HOT DAY
in sweat	50	300
in breath	100	100
in urine	1000	750

(a)	How do the figures for the hot day compare with those for the cold day?
	Answer in as much detail as you can.



	Explain why the amounts of water lost in sweat and urine change.
	Sweat
	Urine
	The rate at which the kidney re-absorbs water depends on the percentage of water in the blood.
)	content dood normal water content of blood
	TIME ————————————————————————————————————
d	HIGH which ney sorbs ater
	Describe, as fully as you can, what the graphs tell you.
	How does your body control the rate at which your kidney re-absorbs water?
	Tiow does your body control the rate at which your kidney re-absorbs water:

Q47.

To stay healthy, the amount of sodium in your body must not change very much.

On average, a girl takes in 10 grams of sodium a day in the food she eats. The diagram shows what happens to this sodium.

(a) Add the missing figure to the diagram.

(b) The girl goes on holiday to a very hot place.Her diet stays the same but she now loses 12g of sodium each day in sweat.

(i) How will this affect the amount of sodium she loses each day in her urine?

(ii) What should the girl do to make sure that her body still contains enough sodium?

(c) Usually, there is no glucose in urine. All of the glucose is re-absorbed from your kidney tubules back into your blood. Complete the following sentences to describe how this happens.

The glucose is re-absorbed by a process called _____

This process is needed because some of the glucose is re-absorbed against

(Total 5 marks)

(1)

(1)

(1)

(2)