INDUCED POTENTIAL, TRANSFORMERS: NAT GRID

Q1.

Figure 1 shows the construction of a simple transformer.
Figure 1

(a) Why is iron a suitable material for the core of a transformer?

Tick one box.
It is a metal.

It will not get hot.

It is easily magnetised.

It is an electrical conductor.

(b) A student makes three simple transformers, \mathbf{J}, \mathbf{K} and \mathbf{L}.

Figure 2 shows how the potential difference across the secondary coil of each transformer varies as the potential difference across the primary coil of each transformer is changed.

Figure 2

How can you tell that transformer \mathbf{J} is a step-down transformer?
\qquad
\qquad
(c) Each of the transformers has 50 turns on the primary coil.

Calculate the number of turns on the secondary coil of transformer \mathbf{L}.
Use the correct equation from the Physics Equations Sheet.
\qquad
\qquad
\qquad
Number of turns on the secondary coil = \qquad
(Total 5 marks)

Q2.
Figure 1 shows the structure of a traditional transformer.
Figure 1

(a) There is an alternating current in the primary coil of the transformer.

State what is produced in the iron core.
\qquad
\qquad
(b) A transformer has only one turn of wire on the secondary coil.

The potential difference across the secondary coil is 11.5 V
The potential difference across the primary coil is 230 V
Calculate the number of turns on the primary coil.
\qquad
\qquad
\qquad
\qquad
Number of turns on the primary coil $=$ \qquad
(c) In most transformers, the power output is less than the power input.

State why.
\qquad
\qquad
(d) Two students investigated how magnets can be used to produce a potential difference.
The students held a coil of wire above a magnet. The students quickly lowered the coil so that the magnet was inside the coil, as shown in Figure 2.

Figure 2

The students recorded the maximum potential difference for coils with different numbers of turns of wire. The results are shown in the table.

Number of turns of wire in the coil	Maximum potential difference in volts	
	Results from student 1	Results from student 2
5	0.09	0.08

10	0.20	0.15
15	0.31	0.25
20	0.39	0.33
25	0.51	0.39

(i) State the resolution of the voltmeter.

Give one reason why the resolution of the voltmeter is suitable for this investigation.

Resolution \qquad
Reason \qquad
\qquad
(ii) The two students used exactly the same equipment to carry out their investigations.
Both students recorded their results correctly.
Give the reason why student 2 got different results from student 1.
\qquad
\qquad
(iii) The students decided that even though the results were different, there was no need to repeat the investigation.

How do the results show that the investigation is reproducible?
\qquad
\qquad
(iv) State the name of the process which causes the potential difference to be produced in this investigation.
\qquad
(e) A transformer has been developed that can be used with many different devices.

Suggest one advantage of having a transformer that can be used with many different devices.
\qquad
\qquad

Q3.
Transformers are used to change potential differences (p.d.) in the National Grid.
Figure 1 shows a step-up transformer that is used at a power station.
Figure 1

(a) (i) Use words from the box to label Figure 1.

Input p.d. Iron core Output p.d.
Primary coil
Secondary coil
(ii) One of the coils in Figure 1 has a p.d. of 25 kV across it and has 1000 turns.

The other coil has a p.d. of 400 kV across it.
Calculate the number of turns on this other coil.
\qquad
\qquad
\qquad
\qquad
Number of turns = \qquad
(iii) Explain why a step-up transformer is used at a power station.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Figure 2 shows a mobile phone charger.

Figure 2

The charger contains a step-down transformer. A switch mode transformer is used rather than a traditional transformer.

Describe the advantages of using a switch mode transformer in the charger rather than a traditional transformer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q4.
Figure 1 shows a traditional transformer.
Figure 1

(a) (i) Which metal should the core of the transformer be made from?

Tick (\checkmark) one box.
aluminium \square
copper

iron

(ii) What would the reading be on the voltmeter shown in Figure 1?

Draw a ring around the correct answer.

2 V
10 V
50 V

Give the reason for your answer.
\qquad
\qquad
(b) Figure 2 shows a tablet computer and its charger.

Figure 2

The charger contains a switch mode transformer.
(i) Use the correct answer from the box to complete the sentence.

200	1000	20000

Switch mode transformers operate at frequencies
from 50 kHz to \qquad kHz .
(ii) Give one advantage of a switch mode transformer over a traditional transformer.
(Total 5 marks)

Q5.
An electric toothbrush is charged by standing it on a separate charging base.
The diagram shows the inside of the electric toothbrush and the charging base.

(a) An alternating potential difference (p.d.) across the coil in the charging base creates an alternating current in the coil inside the toothbrush.

Explain how.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) When the toothbrush is being charged, the p.d. across the primary coil in the
charging base is 230 V .
The charging p.d. across the secondary coil in the toothbrush is 7.2 V .
The primary coil in the charging base has 575 turns of wire on its coil.
Calculate the number of turns on the secondary coil inside the toothbrush.
\qquad
\qquad
\qquad
\qquad
Number of turns on the secondary coil $=$ \qquad

Q6.
The diagram shows an a.c. generator.
The coil rotates about the axis shown and cuts through the magnetic field produced by the magnets.

(a) (i) A potential difference is induced between \mathbf{X} and \mathbf{Y}.

Use the correct answer from the box to complete the sentence.

electric	generator	motor	transformer
This effect is called the			

(ii) What do the letters a.c. stand for?
\qquad
(iii) Name an instrument that could be used to measure the potential difference between \mathbf{X} and \mathbf{Y}.
\qquad
(b) Graph 1 shows the output from the a.c. generator.

Graph 1

(i) One of the axes on Graph 1 has been labelled 'Potential difference'.

What should the other axis be labelled?
\qquad
(ii) The direction of the magnetic field is reversed.

On Graph 1, draw the output from the a.c. generator if everything else remains the same.
(c) The number of turns of wire on the coil is increased. This increases the maximum induced potential difference.

State two other ways in which the maximum induced potential difference could be increased.

1. \qquad
2. \qquad
\qquad

Q7.
The current in a circuit depends on the potential difference (p.d.) provided by the cells and the total resistance of the circuit.
(a) Using the correct circuit symbols, draw a diagram to show how you would connect 1.5 V cells together to give a p.d. of 6 V .
(b) Figure 1 shows a circuit containing an 18 V battery.

Two resistors, \mathbf{X} and \mathbf{Y}, are connected in series.

- $\quad X$ has a resistance of 3Ω.
- There is a current of 2 A in \mathbf{X}.

Figure 1

(i) Calculate the p.d. across \mathbf{X}.
\qquad
\qquad
P.d. across $\mathbf{X}=$ \qquad V
(ii) Calculate the p.d. across \mathbf{Y}.
\qquad
\qquad
\qquad
P.d. across $\mathbf{Y}=$ \qquad V
(iii) Calculate the total resistance of \mathbf{X} and \mathbf{Y}.
\qquad
\qquad
\qquad
Total resistance of \mathbf{X} and $\mathbf{Y}=$ Ω
(c) Figure 2 shows a transformer.

Figure 2

(i) An 18 V battery could not be used as the input of a transformer.

Explain why.
\qquad
\qquad
\qquad
\qquad
(ii) The transformer is 100% efficient.

Calculate the output current for the transformer shown in Figure 2.
\qquad
\qquad
\qquad
Output current = \qquad A

Q8.
The figure below shows a coil and a magnet. An ammeter is connected to the coil.

The ammeter has a centre zero scale, so that values of current going in either direction through the coil can be measured.
(a) A teacher moves the magnet slowly towards the coil.

Explain why there is a reading on the ammeter.
\qquad
(b) The table below shows some other actions taken by the teacher.

Complete the table to show the effect of each action on the ammeter reading.

Action taken by teacher	What happens to the ammeter reading?
Holds the magnet stationary and moves the coil slowly towards the magnet	
Holds the magnet stationary within the coil	
Moves the magnet quickly towards the coil	
Reverses the magnet and moves it slowly towards the coil	

(c) The magnet moves so that there is a steady reading of 0.05 A on the ammeter for 6 seconds.

Calculate the charge that flows through the coil during the 6 seconds.
Give the unit.
\qquad
\qquad
\qquad
Charge = \qquad
(Total 13 marks)

Q9.
If a fault develops in an electrical circuit, the current may become too great. The circuit needs to be protected by being disconnected.

A fuse or a circuit breaker may be used to protect the circuit.
One type of circuit breaker is a Residual Current Circuit Breaker (RCCB).
(a) (i) Use the correct answer from the box to complete the sentence.

earth	live	neutral

A fuse is connected in the \qquad wire.
(ii) Use the correct answer from the box to complete the sentence.

are bigger	are cheaper	react faster

RCCBs are sometimes preferred to fuses because they \qquad .
(iii) RCCBs operate by detecting a difference in the current between two wires.

Use the correct answer from the box to complete the sentence.

| earth and live earth and neutral live and neutral |
| :---: | :--- |

The two wires are the \qquad wires.
(b) An RCCB contains an iron rocker and a coil.

A student investigated how the force of attraction, between a coil and an iron rocker, varies with the current in the coil.

She supported a coil vertically and connected it in an electrical circuit, part of which is shown in the figure below .

She put a small mass on the end of the rocker and increased the current in the coil until the rocker balanced. She repeated the procedure for different masses.

Some of her results are shown in the table below.

Mass in grams	Current needed for the rocker to balance in amps
5	0.5
10	1.0
15	1.5
20	2.0

(i) State two extra components that must have been included in the circuit in the figure above to allow the data in the above table to be collected.

Give reasons for your answers.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) A teacher said that the values of current were too high to be safe.

Suggest two changes that would allow lower values of current to be used in this investigation.

Change 1 \qquad
\qquad
Change 2 \qquad
\qquad

Q10.
In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

There are two types of traditional transformer; step-up and step-down.
Describe the similarities and differences between a step-up transformer and a step-down transformer.

You should include details of:

- construction, including materials used
- the effect the transformer has on the input potential difference (p.d.).

You should not draw a diagram.
\qquad
Extra space \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 6 marks)

Q11.

The diagram shows a transformer with a 50 Hz (a.c.) supply connected to 10 turns of insulated wire wrapped around one side of the iron core.
A voltmeter is connected to 5 turns wrapped around the other side of the iron core.

(a) What type of transformer is shown in the diagram?

Draw a ring around the correct answer.

(b) The table shows values for the potential difference (p.d.) of the supply and the voltmeter reading.

p.d. of the supply in volts	Voltmeter reading in volts
6.4	3.2
3.2	
	6.4

(i) Complete the table.
(ii) Transformers are used as part of the National Grid.

How are the values of p.d. in the table different to the values produced by the National Grid?
\qquad
\qquad
(c) Transformers will work with an alternating current (a.c.) supply but will not work with a direct current (d.c.) supply.
(i) Describe the difference between a.c. and d.c.
\qquad
\qquad
\qquad
\qquad
(ii) Explain how a transformer works.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q12.
(a) The diagram shows the structure of a traditional transformer.

Use words from the box to label the diagram.

(b) Batteries inside laptop computers are charged using laptop chargers. The laptop charger contains a traditional transformer.

The laptop charger contains a step-down transformer.
What does a step-down transformer do?
\qquad
\qquad
(c) Laptop batteries and mobile phone batteries can only be recharged a limited number of times. When a battery cannot be recharged, it is better to recycle the battery than to throw it away.

Draw a ring around the correct answer to complete the sentence.

(Total 5 marks)

Q13.

Batteries inside laptop computers are charged using laptop chargers. The laptop charger contains a traditional transformer.

(a) The alternating current flowing through the primary coil of the transformer creates an alternating current in the secondary coil.

Explain how.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) (i) Use information from the diagram to calculate the potential difference the charger supplies to the laptop.
\qquad
\qquad
\qquad
\qquad
Potential difference $=$ V
(ii) Calculate the current in the primary coil of the transformer when the laptop is being charged.

Assume the transformer is 100% efficient.
\qquad
\qquad
\qquad
\qquad
Current = A
(c) Laptop batteries and mobile phone batteries can only be recharged a limited number of times. After this, the batteries cannot store enough charge to be useful. Scientists are developing new batteries that can be recharged many more times than existing batteries.

Suggest one other advantage of developing these new batteries.
\qquad
\qquad
\qquad

Q14.
(a) In the National Grid, very large step-up transformers link power stations to the transmission cables.

A transformer used for this purpose has 800 turns on its primary coil and 12800 turns on its secondary coil. The p.d. (potential difference) across its primary coil is 25 kV .

Use the equation in the box to calculate the p.d. across its secondary coil.
$\frac{\text { p.d. across primary }}{\text { p.d. across secondary }}=\frac{\text { number of turns on primary }}{\text { number of turns on secondary }}$

Show clearly how you work out your answer.
\qquad
\qquad
p.d. across secondary coil = \qquad volts
(b) The diagram shows the structure of a transformer.

(i) The primary and secondary coils of a transformer are made of insulated wire.

Why is this insulation necessary?
\qquad
\qquad
(ii) Why is the core made of iron?
\qquad
\qquad
(iii) Explain how the transformer works.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Before 1926, large towns had their own local power stations. After 1926, these power stations were connected to form the National Grid.

Give two advantages of having a National Grid system.

1. \qquad
\qquad
2. \qquad
\qquad

Q15.
The diagram shows a student's design for a simple wind speed gauge.

(a) Explain why the wind causes the a.c. voltmeter to give a reading. The explanation has been started for you.

The wind causes the plastic cups to turn. \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The gauge is not sensitive enough to measure light winds.

Suggest one way that the design can be modified to make the gauge more sensitive.
\qquad
\qquad

Q16.
The diagram shows the apparatus used by a student to investigate a transformer.

(a) The transformer made by the student would not have worked if the core had been made from aluminium and not iron.

Why?
\qquad
\qquad
(b) The student made changes to the number of turns used to make the secondary coil. He then measured the potential difference across the secondary coil after each change.
The graph shows the student's results.

(i) What range of values was used for the number of turns on the secondary coil?

From \qquad to \qquad
(ii) When he drew the line of best fit, the student ignored one of the data points.

Why?
\qquad
\qquad
(iii) What is the minimum number of turns needed on the secondary coil for the transformer to act as a step-up transformer?
\qquad
Give a reason for your answer.
\qquad
\qquad
(c) A radio can be used with a 9 V battery or it can be plugged into the 230 V mains electricity supply using an adapter. The mains adapter contains a transformer.

Why must the mains adapter contain a transformer?
\qquad
\qquad

Q17.
The diagram shows a transformer.

(a) (i) Is the transformer in the diagram being used as a step-up transformer or as a step-down transformer?

Put a tick (\checkmark) in the box next to your answer.
a step-up transformer \square
a step-down transformer \square

Give a reason for your answer.
\qquad
\qquad
(ii) Why is the core made of iron?
\qquad
\qquad
(b) The power supply to a laptop computer contains a transformer designed to change the 230 V mains input to a 15 V output. The transformer has 920 turns on its primary coil.

Use the equation in the box to calculate the number of turns on the secondary coil.

$$
\frac{\text { p.d. across primary }}{\text { p.d. across secondary }}=\frac{\text { number of turns on primary }}{\text { number of turns on secondary }}
$$

Show clearly how you work out your answer.
\qquad
\qquad
\qquad
Number of turns on the secondary coil $=$ \qquad
(Total 4 marks)

Q18.

The diagram shows part of the system used to supply a farm with electricity.

1200 volts from

(a) The core of the transformer is made of metal.

Complete the following sentence by drawing a ring around the correct word in the box.

The metal used for the core of the transformer is
copper.
iron.
steel.
(b) (i) What sort of transformer is shown in the diagram?
\qquad
(ii) Complete the following sentence by drawing a ring around the correct line in the box.

In this transformer, the number of turns on the secondary coil is

less than
the same as
greater than

(c) Transformers and other electrical equipment can be dangerous.

The following bar chart shows the numbers of children, aged 14 or under, killed or injured in electrical accidents in the UK in 2000, 2001 and 2002.

(i) In which of these years were most children killed or injured in electrical accidents?
\qquad
(ii) A newspaper claims that the number of children killed or injured by electrical accidents will increase in 2011.

Which of the following gives a reason why the information given in the graph does not support this claim.

Put a tick (\checkmark) in the box next to your answer.

The pattern shows an upward trend.

The pattern shows a downward trend.

There is no pattern.

Q19.
(a) The drawing shows the plug for operating a radio from the mains.

This plug contains a transformer. There are 4600 turns on its primary coil and 200 turns on its secondary coil. The plug is used on the mains supply and has a potential difference (p.d.) of 230 V across its primary coil.

Use the equation in the box to calculate the p.d. across the secondary coil of the transformer.

$$
\frac{\text { p.d. across primary }}{\text { p.d. across secondary }}=\frac{\text { number of turns on primary }}{\text { number of turns on secondary }}
$$

Show clearly how you work out your answer.
\qquad
\qquad
\qquad
\qquad
p.d. across secondary = V
(b) The coils of the transformer are made of insulated wire.

Why is the wire insulated?
\qquad
\qquad
(c) (i) What material is the core of a transformer made from?
\qquad
(ii) Why is the core made from this material?
\qquad
\qquad

Q20.
(a) In the National Grid, very large step-up transformers link power stations to the
transmission cables.
A transformer used for this purpose has 800 turns on its primary coil and 12800 turns on its secondary coil. The p.d. (potential difference) across its primary coil is 25 kV .

Use the equation in the box to calculate the p.d. across its secondary coil.

$$
\frac{\text { p.d. across primary }}{\text { p.d. across secondary }}=\frac{\text { number of turns on primary }}{\text { number of turns on secondary }}
$$

Show clearly how you work out your answer and give the unit.
\qquad
\qquad
p.d. across secondary coil =
(b) The primary and secondary coils of a transformer are made of insulated wire.

Why is this insulation necessary?
\qquad
\qquad
(c) Describe what happens when an alternating potential difference is applied across the primary coil of a transformer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q21.
(a) The diagram shows the basic structure of a step-up transformer.

(i) What is the core made of?
\qquad
(ii) Explain how an alternating input produces an alternating output.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Fly killers are used in kitchens and food stores because flying insects carry diseases which cause food poisoning.

The diagram shows the inside of one design. Insects are attracted to a fluorescent lamp. The metal grids have a high potential difference (p.d.) between them. The insects are killed as they fly between the grids.

A transformer is used in the fly killer. There is a p.d. of 230 V across the primary coil.

There are 300 turns of wire on the primary coil and 4000 turns on the secondary coil.

Use the equation in the box to calculate the p.d. across the secondary coil.

$$
\frac{\text { p.d. across primary }}{\text { p.d. across secondary }}=\frac{\text { number of turns on primary }}{\text { number of turns on secondary }}
$$

Show clearly how you work out your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
Potential difference $=$ V

Q22.
A teacher demonstrates a small transformer.

(a) (i) What is the core made of?

Draw a ring around the correct word in the box.

aluminium	copper	iron

(ii) The potential difference (p.d.) across the secondary coil is less than the p.d. across the primary coil.

What sort of transformer is it?
\qquad
(b) Where is a step-up transformer used as part of the National Grid?
(c) The teacher writes a note about the transformer but leaves five spaces.

Use the correct words from the box to complete the spaces.

coil	core	current	ends	field	wire

A transformer works because an alternating \qquad in the primary \qquad produces a changing magnetic
\qquad in the \qquad and then in the secondary coil.

This induces an alternating potential difference across the \qquad of the secondary coil.

Q23.
The diagram shows a USB power adapter which plugs into a 230 V a.c. mains socket.

The adapter contains a small step-down transformer.
(a) The core of the transformer is made of laminated soft iron.

Why is iron used?
\qquad
\qquad
(b) The coils of the transformers are made of insulated copper wire.

Why is the wire insulated?
\qquad
\qquad
(c) There are 500 turns on one coil of the transformer and 20000 turns on the other
coil.
Use the equation in the box to calculate the p.d. across the secondary coil.

$$
\frac{\text { p.d. across primary }}{\text { p.d. across secondary }}=\frac{\text { number of turns on primary }}{\text { number of turns on secondary }}
$$

Show clearly how you work out your answer and give the unit.
\qquad
\qquad
\qquad
p.d. across the secondary = \qquad
(Total 5 marks)

Q24.

(a) The basic structure of a transformer is a primary coil of insulated wire, an iron core and a secondary coil of insulated wire.

(i) Why is the core made of iron?
\qquad
\qquad
(ii) Explain how a transformer works.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) A small step-down transformer is used in the charger for an electric screwdriver.

The input to the transformer is 230 V a.c. mains supply and the output is 5.75 V a.c. There are 3200 turns on the primary coil.

Use the equation in the box to calculate the number of turns on the transformer's secondary coil.

$$
\frac{\text { p.d. acrossprimary }}{\text { p.d. across secondary }}=\frac{\text { number of turns on primary }}{\text { number of turns on secondary }}
$$

Show clearly how you work out your answer.
\qquad
\qquad
Number of turns = \qquad

Q25.

(a) The diagram shows a transformer.

(i) What is part \mathbf{A} ?
\qquad
(ii) What is part \mathbf{B} and what is it made of?
\qquad
\qquad
(iii) When there is an alternating current in the primary coil, what is produced in part B?
\qquad
\qquad
(b) Transformers are used in the National Grid. The diagram shows part of the National Grid.

Complete the two spaces in the sentence.
Transformer \mathbf{C} is a \qquad transformer and transformer \mathbf{D} is a \qquad transformer.
(c) This is an item from a newspaper.

Which two suggestions would reduce the possible risk to people's health? Put a tick (v^{\prime}) in the box next to your answers.

Do not build new houses near to existing power lines. \square

Move the power lines so that they take the shortest routes. \square

Move each power station to the centre of the nearest city. \square

Build new power lines away from where people live. \square

Use more transformers in the National Grid. \square

Q26.
(a) The diagram shows a transformer.

(i) Is the transformer in the diagram being used as a step-up transformer or as a step-down transformer?

Put a tick $\left(\checkmark^{\prime}\right)$ in the box next to your answer.
a step-up transformer \square
a step-down transformer

Explain your answer.
\qquad
\qquad
(ii) Why is insulated wire, and not uninsulated wire, used to make the coils?
\qquad
\qquad
(iii) Why is the core made of iron?
\qquad
\qquad
(b) A transformer has 500 turns on its primary coil and 7500 turns on its secondary coil. The potential difference across the primary coil is 150 volts.

Use the equation in the box to calculate the potential difference across the secondary coil.

$$
\frac{\text { p.d. acrossprimary }}{\text { p.d. acrosssecondary }}=\frac{\text { number of turns on primary }}{\text { number of turns on secondary }}
$$

Show clearly how you work out your answer.

Potential difference across the secondary coil = \qquad volts
(c) Step-down transformers are used between power lines and people's houses.

Explain why.
\qquad
\qquad
\qquad
(d) Before 1926, large towns had their own local power stations. After 1926, these power stations were connected to form the National Grid.

Explain the advantage of having a National Grid system.
\qquad
\qquad
\qquad
\qquad

Q27.

The diagram shows the design for a remotely controlled door bolt.
When the correct numbers are entered into the keypad the transformer switches on. Then the door can be opened.

(a) What kind of transformer is shown in the diagram?
\qquad
(b) What does the abbreviation a.c. stand for?
\qquad
(c) Complete the sentences using the correct words from the box.

attracts downwards	magnet	reflects repels		
sideways	switch	transformer	upwards	

(i) When a current flows in the coil, the coil becomes a \qquad .
(ii) The coil \qquad the iron bolt which moves \qquad

Q28.
(a) This notice is on the back of a television set.

WARNING: HIGH VOLTAGE

Disconnect from power supply before opening

The transformer used in the television set has 75 turns on its primary coil. The potential difference (p.d.) across the primary coil is 230 volts and the p.d. across the secondary coil is 32200 volts.

Use the equation below to calculate the number of turns on the secondary coil.

$$
\frac{\text { p.d.across primary }}{\text { p.d.across secondary }}=\frac{\text { number of turns on primary }}{\text { number of turns on secondary }}
$$

Show clearly how you work out your answer.
\qquad
\qquad
\qquad
Number of turns on the secondary coil = \qquad
(b) The diagram shows the structure of a transformer.

Explain how the transformer works.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q29.

A transformer is used to reduce the 230 V a.c. mains to the 12 V supply required for the lighting system. The transformer has 1150 turns on its primary coil.

Calculate the number of turns on the secondary coil of the transformer. Show clearly how you work out your answer.
\qquad
\qquad
\qquad
number of turns on the secondary coil $=$ \qquad
(Total 2 marks)

Q30.
(a) The diagram represents a simple transformer used to light a 12 V lamp. When the power supply is switched on the lamp is very dim.

(i) Give one way to increase the voltage at the lamp without changing the power supply.
\qquad
\qquad
(ii) What is meant by the iron core being laminated?
\qquad
\qquad
(b) Electrical energy is distributed around the country by a network of high voltage cables.

(i) For the system to work the power is generated and distributed using alternating current rather than direct current. Why?
\qquad
\qquad
(ii) Transformers are an essential part of the distribution system. Explain why.
\qquad
\qquad
\qquad
(iii) The transmission cables are suspended high above the ground. Why?
\qquad
(c) The power station generates 100 MW of power at a voltage of 25 kV . Transformer A, which links the power station to the transmission cables, has 44000 turns in its 275 kV secondary coil.
(i) Write down the equation which links the number of turns in each transformer coil to the voltage across each transformer coil.
\qquad
\qquad
(ii) Calculate the number of turns in the primary coil of transformer A. Show clearly how you work out your answer.
\qquad
\qquad
\qquad
Number of turns = \qquad
(d) The diagram shows how the cost of transmitting the electricity along the cables depends upon the thickness of the cable.

(i) Why does the cost due to the heating losses go down as the cable is made thicker?
\qquad
(ii) By what process is most heat energy lost from the cables?
\qquad

Q31.
The diagram below shows a transformer.

(i) Name the material used to make the core of the transformer.
\qquad
(ii) The primary coil has 48000 turns and the secondary coil 4000 turns.

If the input voltage is 240 V a.c., calculate the output voltage.
\qquad
\qquad
Answer \qquad V
(iii) Explain how the use of such a transformer could be adapted to transform a low
voltage into a higher voltage.
\qquad
\qquad

Q32.

(a) An appliance in a house has a transformer. The transformer is used to reduce the voltage to the level needed by the appliance.

The diagram shows the transformer.

(i) Name the material used for the core of the transformer.
\qquad
(ii) The transformer has 10000 turns on the input side and 2000 turns on the output side. If the mains voltage of 240 volts is applied to the input, calculate the output voltage. You may find the following information helpful:

$$
\frac{\text { output voltage }}{\text { input voltage }}=\frac{\text { number of turns on output coil }}{\text { number of turns on input coil }}
$$

\qquad
\qquad
\qquad
\qquad
(b) Explain, in terms of magnetic fields, how a transformer works.
\qquad
\qquad
(c) A 12 V car battery is connected to the input leads of the transformer. It is hoped to reduce the voltage to 2.4 V in order to run a small motor. When the output voltage is measured it is found to be zero.

Explain why the output voltage is zero.
\qquad
\qquad
\qquad
\qquad

Q33.
(a) The drawing shows a small transformer used to recharge the battery in a 4.2 V mobile phone from a 230 V mains supply.

Explain how you know that this is a step-down transformer.
\qquad
\qquad
(b) A transformer consists of an insulated coil of wire, called the primary coil, on one side of a core. Another coil of insulated wire, called the secondary coil, is on the other side.

Give two features of the core.

1. \qquad
2.

(2)

