Mathematics
RAKK

Topic/Skill	Definition/Tips	Example	
1. Scale	The ratio of the length in a model to the length of the real thing.	The ratio of a distance on the map to the actual distance in real life.	Real Horse 1500 2000 mm high
2. Scale (Map)			

Topic/Skill	Definition/Tips	Example
1. Congruent Shapes	Shapes are congruent if they are identical same shape and same size. Shapes can be rotated or reflected but still be congruent.	
2. Congruent Triangles	4 ways of proving that two triangles are congruent: 1. SSS (Side, Side, Side) 2. RHS (Right angle, Hypotenuse, Side) 3. SAS (Side, Angle, Side) 4. ASA (Angle, Side, Angle) or AAS ASS does not prove congruency.	$\begin{aligned} & B C=D F \\ & \angle A B C=\angle E D F \\ & \angle A C B=\angle E F D \end{aligned}$ \therefore The two triangles are congruent by AAS.
3. Similar Shapes	Shapes are similar if they are the same shape but different sizes. The proportion of the matching sides must be the same, meaning the ratios of corresponding sides are all equal.	
4. Scale Factor	The ratio of corresponding sides of two similar shapes. To find a scale factor, divide a length on one shape by the corresponding length on a similar shape.	Scale Factor $=15 \div 10=1.5$
5. Finding missing lengths in similar shapes	1. Find the scale factor. 2. Multiply or divide the corresponding side to find a missing length. If you are finding a missing length on the larger shape you will need to multiply by the scale factor. If you are finding a missing length on the smaller shape you will need to divide by the scale factor.	Scale Factor $=3 \div 2=1.5$ $x=4.5 \times 1.5=6.75 \mathrm{~cm}$
6. Similar Triangles	To show that two triangles are similar, show that: 1. The three sides are in the same proportion 2. Two sides are in the same proportion, and their included angle is the same 3. The three angles are equal	

Topic/Skill	Definition/Tips	Parallel lines never meet.
. Parallel	Perpendicular lines are at right angles. There is a 90° angle between them.	
2. Perpendicular		
3. Vertex	A corner or a point where two lines meet. Angle Bisector: Cuts the angle in half. 3. Place the sharp end of a pair of compasses on the vertex. 2. Draw an arc, marking a point on each line. 3. Without changing the compass put the compass on each point and mark a centre point where two arcs cross over. 4. Use a ruler to draw a line through the vertex and centre point.	
5.		
Perpendicular Bisector: Cuts a line in half and at right angles. Bisector	1. Put the sharp point of a pair of compasses on A. 2. Open the compass over half way on the line. 3. Draw an arc above and below the line. 4. Without changing the compass, repeat from point B. 5. Draw a straight line through the two intersecting arcs.	
The perpendicular distance from a point to a line is the shortest distance to that line. 1. Put the sharp point of a pair of compasses on the point. 2. Draw an arc that crosses the line twice. 3. Place the sharp point of the compass on one of these points, open over half way and draw an arc above and below the line. 4. Repeat from the other point on the line.		
Perpendicula		
from an		
External Point		

	5. Draw a straight line through the two intersecting arcs.
7. Perpendicular from a Point on a Line	1. Put the sharp point of a pair of compasses on point R. 2. Draw two arcs either side of the point of equal width (giving points S and T) 3. Place the compass on point S, open over halfway and draw an arc above the line. 4. Repeat from the other arc on the line (point T). 5. Draw a straight line from the intersecting arcs to the original point on the line.
8. Constructing Triangles (Side, Side,	1. Draw the base of the triangle using a ruler. 2. Open a pair of compasses to the width of one side of the triangle. 3. Place the point on one end of the line and draw an arc. 4. Repeat for the other side of the triangle at the other end of the line.
5. Using a ruler, draw lines connecting the	
ends of the base of the triangle to the point	
where the arcs intersect.	

11. Constructing an Equilateral Triangle (also makes a 60° angle)	1. Draw the base of the triangle using a ruler. 2. Open the pair of compasses to the exact length of the side of the triangle. 3. Place the sharp point on one end of the line and draw an arc. 4. Repeat this from the other end of the line. 5. Using a ruler, draw lines connecting the ends of the base of the triangle to the point where the arcs intersect.
12. Loci and Regions rule. For the locus of points closer to \mathbf{B} than \mathbf{A}, create a perpendicular bisector between A and B and shade the side closer to B.	
For the locus of points equidistant from \mathbf{A},	
use a compass to draw a circle, centre A.	

Topic/Skill	Definition/Tips	Example
1. Translation	Translate means to move a shape. The shape does not change size or orientation.	
2. Column Vector	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-)	$\binom{2}{3}$ means ' 2 right, 3 up' $\binom{-1}{-5}$ means ' 1 left, 5 down'
3. Rotation	The size does not change, but the shape is turned around a point. Use tracing paper.	Rotate Shape A 90° anti-clockwise about $(0,1)$
4. Reflection	The size does not change, but the shape is 'flipped' like in a mirror. Line $\boldsymbol{x}=$? is a vertical line. Line $\boldsymbol{y}=$? is a horizontal line. Line $\boldsymbol{y}=\boldsymbol{x}$ is a diagonal line.	Reflect shape C in the line $y=x$
5. Enlargement	The shape will get bigger or smaller. Multiply each side by the scale factor.	```Scale Factor = 3 means ' }3\mathrm{ times larger = multiply by 3' Scale Factor = 1/2 means 'half the size = divide by 2'```

6. Finding the Centre of Enlargement	Draw straight lines through corresponding corners of the two shapes. The centre of enlargement is the point where all the lines cross over. Be careful with negative enlargements as the corresponding corners will be the other way around.	
7. Describing Transformatio ns	Give the following information when describing each transformation: Look at the number of marks in the question for a hint of how many pieces of information are needed. If you are asked to describe a 'transformation', you need to say the name of the type of transformation as well as the other details.	- Translation, Vector - Rotation, Direction, Angle, Centre - Reflection, Equation of mirror line - Enlargement, Scale factor, Centre of enlargement
8. Negative Scale Factor Enlargements	Negative enlargements will look like they have been rotated. $S F=-2$ will be rotated, and also twice as big.	Enlarge ABC by scale factor -2 , centre $(1,1)$
9. Invariance	A point, line or shape is invariant if it does not change/move when a transformation is performed. An invariant point 'does not vary'.	If shape P is reflected in the $y-$ axis, then exactly one vertex is invariant.

Topic/Skill	Definition/Tips	Example
1. Trigonometry	The study of triangles.	
2. Hypotenuse	The longest side of a right-angled triangle. Is always opposite the right angle.	
3. Adjacent	Next to	
4. Trigonometric Formulae	Use SOHCAHTOA. $\begin{aligned} & \sin \theta=\frac{O}{H} \\ & \cos \theta=\frac{A}{H} \\ & \tan \theta=\frac{O}{A} \end{aligned}$ When finding a missing angle, use the 'inverse' trigonometric function by pressing the 'shift' button on the calculator.	Use 'Opposite' and 'Adjacent', so use 'tan' $\begin{gathered} \tan 35=\frac{x}{11} \\ x=11 \tan 35=7.70 \mathrm{~cm} \end{gathered}$ use 'cos' $\begin{gathered} \cos x=\frac{5}{7} \\ x=\cos ^{-1}\left(\frac{5}{7}\right)=44.4^{\circ} \end{gathered}$ Use 'Adjacent' and 'Hypotenuse', so
$\begin{aligned} & \text { 5. 3D } \\ & \text { Trigonometry } \end{aligned}$	Find missing lengths by identifying right angled triangles. You will often have to find a missing length you are not asked for before finding the missing length you are asked for.	

Topic/Skill	Definition/Tips	Example
1. Quadratic	A quadratic expression is of the form $a x^{2}+b x+c$ where a, b and c are numbers, $\boldsymbol{a} \neq \mathbf{0}$	Examples of quadratic expressions: $\begin{gathered} x^{2} \\ 8 x^{2}-3 x+7 \end{gathered}$ Examples of non-quadratic expressions: $\begin{gathered} 2 x^{3}-5 x^{2} \\ 9 x-1 \\ \hline \end{gathered}$
2. Factorising Quadratics	When a quadratic expression is in the form $x^{2}+b x+c$ find the two numbers that add to give \mathbf{b} and multiply to give \mathbf{c}.	$x^{2}+7 x+10=(x+5)(x+2)$ (because 5 and 2 add to give 7 and multiply to give 10) $x^{2}+2 x-8=(x+4)(x-2)$ (because +4 and -2 add to give +2 and multiply to give -8)
3. Difference of Two Squares	An expression of the form $\boldsymbol{a}^{2}-\boldsymbol{b}^{2}$ can be factorised to give $(\boldsymbol{a}+\boldsymbol{b})(\boldsymbol{a}-\boldsymbol{b})$	$\begin{aligned} x^{2}-25 & =(x+5)(x-5) \\ 16 x^{2}-81 & =(4 x+9)(4 x-9) \end{aligned}$
4. Solving Quadratics ($a x^{2}=b$)	Isolate the x^{2} term and square root both sides. Remember there will be a positive and a negative solution.	$\begin{gathered} 2 x^{2}=98 \\ x^{2}=49 \\ x= \pm 7 \end{gathered}$
5. Solving Quadratics $\left(a x^{2}+b x=\right.$ 0)	Factorise and then solve $=0$.	$\begin{gathered} x^{2}-3 x=0 \\ x(x-3)=0 \\ x=0 \text { or } x=3 \end{gathered}$
6. Solving Quadratics by Factorising ($a=1$)	Factorise the quadratic in the usual way. Solve $=0$ Make sure the equation $=0$ before factorising.	Solve $x^{2}+3 x-10=0$ Factorise: $\begin{gathered} (x+5)(x-2)=0 \\ x=-5 \text { or } x=2 \end{gathered}$
7. Quadratic Graph	A 'U-shaped' curve called a parabola. The equation is of the form $y=\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$, where a, b and c are numbers, $\boldsymbol{a} \neq \mathbf{0}$. If $\boldsymbol{a}<\mathbf{0}$, the parabola is upside down.	
8. Roots of a Quadratic	A root is a solution. The roots of a quadratic are the \boldsymbol{x} intercepts of the quadratic graph.	

9. Turning Point of a Quadratic	A turning point is the point where a quadratic turns. On a positive parabola, the turning point is called a minimum. On a negative parabola, the turning point is called a maximum.	
10. Factorising Quadratics when $a \neq 1$	When a quadratic is in the form $a x^{2}+b x+c$ 1. Multiply a by $\mathrm{c}=\mathrm{ac}$ 2. Find two numbers that add to give b and multiply to give ac. 3. Re-write the quadratic, replacing $b x$ with the two numbers you found. 4. Factorise in pairs - you should get the same bracket twice 5. Write your two brackets - one will be the repeated bracket, the other will be made of the factors outside each of the two brackets.	$\text { Factorise } 6 x^{2}+5 x-4$ 1. $6 \times-4=-24$ 2. Two numbers that add to give +5 and multiply to give -24 are +8 and -3 3. $6 x^{2}+8 x-3 x-4$ 4. Factorise in pairs: $\begin{gathered} 2 x(3 x+4)-1(3 x+4) \\ \text { 5. Answer }=(3 x+4)(2 x-1) \end{gathered}$
11. Solving Quadratics by Factorising $(a \neq 1)$	Factorise the quadratic in the usual way. Solve $=0$ Make sure the equation $=0$ before factorising.	Solve $2 x^{2}+7 x-4=0$ Factorise: $\begin{aligned} & (2 x-1)(x+4)=0 \\ & x=\frac{1}{2} \text { or } x=-4 \end{aligned}$
12. Completing the Square (when $a=1$)	A quadratic in the form $x^{2}+b x+c$ can be written in the form $(\boldsymbol{x}+\boldsymbol{p})^{2}+\boldsymbol{q}$ 1. Write a set of brackets with x in and half the value of b. 2. Square the bracket. 3. Subtract $\left(\frac{b}{2}\right)^{2}$ and add c. 4. Simplify the expression. You can use the completing the square form to help find the maximum or minimum of quadratic graph.	Complete the square of $y=x^{2}-6 x+2$ Answer: $\begin{aligned} & (x-3)^{2}-3^{2}+2 \\ & =(x-3)^{2}-7 \end{aligned}$ The minimum value of this expression occurs when $(x-3)^{2}=0$, which occurs when $x=3$ When $x=3, y=0-7=-7$ $\text { Minimum point }=(3,-7)$
13. Completing the Square (when $a \neq 1$)	A quadratic in the form $a x^{2}+b x+c$ can be written in the form $\mathbf{p}(\boldsymbol{x}+\boldsymbol{q})^{2}+\boldsymbol{r}$ Use the same method as above, but factorise out a at the start.	Complete the square of $4 x^{2}+8 x-3$ Answer: $\begin{aligned} & 4\left[x^{2}+2 x\right]-3 \\ = & 4\left[(x+1)^{2}-1^{2}\right]-3 \\ = & 4(x+1)^{2}-4-3 \\ = & 4(x+1)^{2}-7 \end{aligned}$
14. Solving Quadratics by Completing the Square	Complete the square in the usual way and use inverse operations to solve.	Solve $x^{2}+8 x+1=0$ Answer: $\begin{gathered} (x+4)^{2}-4^{2}+1=0 \\ (x+4)^{2}-15=0 \end{gathered}$

		$\begin{gathered} (x+4)^{2}=15 \\ (x+4)= \pm \sqrt{15} \\ x=-4 \pm \sqrt{15} \end{gathered}$
15. Solving Quadratics using the Quadratic Formula	A quadratic in the form $a x^{2}+b x+c=0$ can be solved using the formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ Use the formula if the quadratic does not factorise easily.	Solve $3 x^{2}+x-5=0$ Answer: $\begin{aligned} & a=3, b=1, c=-5 \\ & x=\frac{-1 \pm \sqrt{1^{2}-4 \times 3 \times-5}}{2 \times 3} \\ & x=\frac{-1 \pm \sqrt{61}}{6} \\ & x=1.14 \text { or }-1.47 \text { (2 d.p.) } \end{aligned}$

Topic/Skill	Definition/Tips	Example
Circle Theorem 1 at the circumference.		
Circle		
Theorem 2		

Circle Theorem 6	Tangents from an external point at equal in length.
Circle Theorem 7	Alternate Segment Theorem

Topic: Inequalities

Topic/Skill	Definition/Tips	Example
1. Inequality	An inequality says that two values are not equal. $a \neq b$ means that a is not equal to b .	$\begin{aligned} & 7 \neq 3 \\ & x \neq 0 \end{aligned}$
2. Inequality symbols	$x>2$ means x is greater than 2 $x<3$ means x is less than 3 $x \geq 1$ means \mathbf{x} is greater than or equal to 1 $x \leq 6$ means x is less than or equal to 6	State the integers that satisfy $\begin{aligned} & -2<x \leq 4 \\ & -1,0,1,2,3,4 \end{aligned}$
3. Inequalities on a Number Line	Inequalities can be shown on a number line. Open circles are used for numbers that are less than or greater than $(<o r>)$ Closed circles are used for numbers that are less than or equal or greater than or equal (\leq or \geq)	
4. Graphical Inequalities	Inequalities can be represented on a coordinate grid. If the inequality is strict $(x>2)$ then use a dotted line. If the inequality is not strict $(x \leq 6)$ then use a solid line. Shade the region which satisfies all the inequalities.	Shade the region that satisfies: $y>2 x, x>1 \text { and } y \leq 3$
5. Quadratic Inequalities	Sketch the quadratic graph of the inequality. If the expression is $>\boldsymbol{o r} \geq$ then the answer will be above the x -axis. If the expression is $<\boldsymbol{o r} \leq$ then the answer will be below the \mathbf{x}-axis. Look carefully at the inequality symbol in the question. Look carefully if the quadratic is a positive or negative parabola.	Solve the inequality $x^{2}-x-12<0$ Sketch the quadratic: The required region is below the x -axis, so the final answer is: $-3<x<4$ If the question had been >0, the answer would have been: $x<-3 \text { or } x>4$
6. Set Notation	A set is a collection of things, usually numbers, denoted with brackets $\{\quad\}$	$\{3,6,9\}$ is a set.

$\{x \mid x \geq 7\}$ means 'the set of all x 's, such that x is greater than or equal to 7 '

The ' x ' can be replaced by any letter.
Some people use ':' instead of '|'
$\{x:-2 \leq x<5\}$

5. Area of a Triangle	Use when given the length of two sides and the included angle. Area of \boldsymbol{a} Triangle $=\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{a b} \sin \boldsymbol{C}$
$A=\frac{1}{2} a b \sin C$	
$A=\frac{1}{2} \times 7 \times 10 \times \sin 25$	
$A=14.8$	

Topic/Skill	Definition/Tips	Example
1. Tree Diagrams	Tree diagrams show all the possible outcomes of an event and calculate their probabilities. All branches must add up to 1 when adding downwards. This is because the probability of something not happening is $\mathbf{1}$ minus the probability that it does happen. Multiply going across a tree diagram. Add going down a tree diagram.	
2. Independent Events	The outcome of a previous event does not influence/affect the outcome of a second event.	An example of independent events could be replacing a counter in a bag after picking it.
3. Dependent Events	The outcome of a previous event does influence/affect the outcome of a second event.	An example of dependent events could be not replacing a counter in a bag after picking it. 'Without replacement'
4. Probability Notation	$\mathbf{P}(\mathbf{A})$ refers to the probability that event \mathbf{A} will occur. $\mathbf{P}\left(\mathbf{A}^{\prime}\right)$ refers to the probability that event A will not occur. $\mathbf{P}(\mathbf{A} \cup \mathbf{B})$ refers to the probability that event A or B or both will occur. $\mathbf{P}(\mathbf{A} \cap \mathbf{B})$ refers to the probability that both events A and B will occur.	P (Red Queen) refers to the probability of picking a Red Queen from a pack of cards. P (Blue') refers to the probability that you do not pick Blue. P(Blonde U Right Handed) refers to the probability that you pick someone who is Blonde or Right Handed or both. P(Blonde \cap Right Handed) refers to the probability that you pick someone who is both Blonde and Right Handed.
5. Venn Diagrams	A Venn Diagram shows the relationship between a group of different things and how they overlap. You may be asked to shade Venn Diagrams as shown below and to the right. The Union The Intersection	 $(A \cap B)^{\prime}$ $(A \cup B)^{\prime}$

		$A \cup B^{\prime}$
6. Venn Diagram Notation	\in means 'element of a set' (a value in the set) \{ \} means the collection of values in the set. ξ means the 'universal set' (all the values to consider in the question) A' means 'not in set A^{\prime} ' (called complement) A U B means 'A or B or both' (called Union) $A \cap B$ means ' A and B (called Intersection)	Set A is the even numbers less than 10 . $\mathrm{A}=\{2,4,6,8\}$ Set B is the prime numbers less than 10. $B=\{2,3,5,7\}$ $A \cup B=\{2,3,4,5,6,7,8\}$ $A \cap B=\{2\}$
7. AND rule for Probability	When two events, A and B, are independent: $P(A \text { and } B)=P(A) \times P(B)$	What is the probability of rolling a 4 and flipping a Tails? $\begin{gathered} P(4 \text { and Tails })=P(4) \times P(\text { Tails }) \\ =\frac{1}{6} \times \frac{1}{2}=\frac{1}{12} \end{gathered}$
8. OR rule for Probability	When two events, A and B, are mutually exclusive: $P(A \text { or } B)=P(A)+P(B)$	What is the probability of rolling a 2 or rolling a 5? $\begin{gathered} P(2 \text { or } 5)=P(2)+P(5) \\ =\frac{1}{6}+\frac{1}{6}=\frac{2}{6}=\frac{1}{3} \end{gathered}$
9. Conditional Probability	The probability of an event A happening, given that event B has already happened. With conditional probability, check if the numbers on the second branches of a tree diagram changes. For example, if you have 4 red beads in a bag of 9 beads and pick a red bead on the first pick, then there will be 3 red beads left out of 8 beads on the second pick.	

Topic/Skill	Definition/Tips	Example
1. Function Machine	Takes an input value, performs some operations and produces an output value.	INPUT OUTPUT
2. Function	A relationship between two sets of values.	$f(x)=3 x^{2}-5$ 'For any input value, square the term, then multiply by 3 , then subtract 5^{\prime}.
3. Function notation	$f(x)$ \boldsymbol{x} is the input value $\boldsymbol{f}(\boldsymbol{x})$ is the output value.	$f(x)=3 x+11$ Suppose the input value is $x=5$ The output value is $f(5)=3 \times 5+$ $11=26$
4. Inverse function	$f^{-1}(x)$ A function that performs the opposite process of the original function. 1. Write the function as $y=f(x)$ 2. Rearrange to make x the subject. 3. Replace the \boldsymbol{y} with \boldsymbol{x} and the \boldsymbol{x} with $f^{-1}(x)$	$f(x)=(1-2 x)^{5}$. Find the inverse. $\begin{aligned} & y=(1-2 x)^{5} \\ & \sqrt[5]{y}=1-2 x \\ & 1-\sqrt[5]{y}=2 x \\ & \frac{1-\sqrt[5]{y}}{2}=x \end{aligned}$ $f^{-1}(x)=\frac{1-\sqrt[5]{x}}{2}$
5. Composite function	A combination of two or more functions to create a new function. $\boldsymbol{f} \boldsymbol{g}(\boldsymbol{x})$ is the composite function that substitutes the function $\boldsymbol{g}(\boldsymbol{x})$ into the function $f(x)$. $\boldsymbol{f} \boldsymbol{g}(\boldsymbol{x})$ means 'do g first, then f ' $\boldsymbol{g} \boldsymbol{f}(\boldsymbol{x})$ means 'do f first, then g '	$f(x)=5 x-3, g(x)=\frac{1}{2} x+1$ What is $f g(4)$? $\begin{gathered} g(4)=\frac{1}{2} \times 4+1=3 \\ f(3)=5 \times 3-3=12=f g(4) \end{gathered}$ What is $f g(x)$? $f g(x)=5\left(\frac{1}{2} x+1\right)-3=\frac{5}{2} x+2$

Topic/Skill	Definition/Tips	Example
1. Coordinates	Written in pairs. The first term is the \mathbf{x} coordinate (movement across). The second term is the y-coordinate (movement up or down)	 A: $(4,7)$ B: $(-6,-3)$
2. Linear Graph	Straight line graph. The equation of a linear graph can contain an \mathbf{x}-term, a y-term and a number.	Example: Other examples: $\begin{aligned} & x=y \\ & y=4 \\ & x=-2 \\ & y=2 x-7 \\ & y+x=10 \\ & 2 y-4 x=12 \end{aligned}$
3. Quadratic Graph	A 'U-shaped' curve called a parabola. The equation is of the form $y=\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$, where a, b and c are numbers, $\boldsymbol{a} \neq \mathbf{0}$. If $\boldsymbol{a}<\mathbf{0}$, the parabola is upside down.	
4. Cubic Graph	The equation is of the form $\boldsymbol{y}=\boldsymbol{a} x^{3}+\boldsymbol{k}$, where \boldsymbol{k} is an number. If $\boldsymbol{a}>\mathbf{0}$, the curve is increasing. If $\boldsymbol{a}<\mathbf{0}$, the curve is decreasing.	
5. Reciprocal Graph	The equation is of the form $\boldsymbol{y}=\frac{A}{x}$, where \boldsymbol{A} is a number and $\boldsymbol{x} \neq \mathbf{0}$. The graph has asymptotes on the \mathbf{x}-axis and \mathbf{y}-axis.	
6. Asymptote	A straight line that a graph approaches but never touches.	

7. Exponential Graph	The equation is of the form $\boldsymbol{y}=\boldsymbol{a}^{\boldsymbol{x}}$, where a is a number called the base. If $\boldsymbol{a}>\mathbf{1}$ the graph increases. If $\mathbf{0}<\boldsymbol{a}<\mathbf{1}$, the graph decreases. The graph has an asymptote which is the x-axis.	
8. $y=\sin x$	```Key Coordinates: \((0,0),(90,1),(180,0),(270,-1),(360,0\) \(y\) is never more than 1 or less than -1 . Pattern repeats every \(360^{\circ}\).```	
9. $y=\cos x$	Key Coordinates: $(0,1),(90,0),(180,-1),(270,0),(360,1$ y is never more than 1 or less than -1 . Pattern repeats every 360°.	
10. $y=\tan x$	$\begin{aligned} & \text { Key Coordinates: } \\ & \quad(\mathbf{0}, \mathbf{0}),(\mathbf{4 5}, \mathbf{1}),(\mathbf{1 3 5},-\mathbf{1}),(\mathbf{1 8 0}, \mathbf{0}) \text {, } \\ & \quad(\mathbf{2 2 5}, \mathbf{1}),(\mathbf{3 1 5},-\mathbf{1}),(\mathbf{3 6 0} \mathbf{0}) \\ & \text { Asymptotes at } \boldsymbol{x}=\mathbf{9 0} \text { and } \boldsymbol{x}=\mathbf{2 7 0} \\ & \text { Pattern repeats every } 360^{\circ} \text {. } \\ & \hline \end{aligned}$	
11. $f(x)+a$	Vertical translation up a units. $\binom{0}{a}$	
12. $f(x+a)$	Horizontal translation left a units. $\binom{-a}{0}$	
13. $-f(x)$	Reflection over the \mathbf{x}-axis.	
14. $f(-x)$	Reflection over the \mathbf{y}-axis.	

Topic/Skill	Definition/Tips	Example
1. Area Under a Curve	To find the area under a curve, split it up into simpler shapes - such as rectangles, triangles and trapeziums - that approximate the area.	
2. Tangent to a Curve	A straight line that touches a curve at exactly one point.	
3. Gradient of a Curve	The gradient of a curve at a point is the same as the gradient of the tangent at that point. 1. Draw a tangent carefully at the point. 2. Make a right-angled triangle. 3. Use the measurements on the axes to calculate the rise and run (change in y and change in x) 4. Calculate the gradient.	$\begin{gathered} \text { Gradient }=\frac{\text { Change in } y}{\text { Change in } x} \\ =\frac{16}{2}=8 \end{gathered}$

Topic/Skill	Definition/Tips	Example
1. Iteration	The act of repeating a process over and over again, often with the aim of approximating a desired result more closely. Recursive Notation: $x_{n+1}=\sqrt{3 x_{n}+6}$	$\begin{array}{r} x_{1}=4 \\ x_{2}=\sqrt{3 \times 4+6}=4.242640 \ldots \\ x_{3}=\sqrt{3 \times 4.242640 \ldots+6} \\ =4.357576 \ldots \end{array}$
2. Iterative Method	To create an iterative formula, rearrange an equation with more than one x term to make one of the x terms the subject. You will be given the first value to substitute in, often called $\boldsymbol{x}_{\boldsymbol{1}}$. Keep substituting in your previous answer until your answers are the same to a certain degree of accuracy. This is called converging to a limit. Use the 'ANS' button on your calculator to keep substituting in the previous answer.	Use an iterative formula to find the positive root of $x^{2}-3 x-6=0$ to 3 decimal places. $x_{1}=4$ Answer: $\begin{aligned} & x^{2}=3 x+6 \\ & x=\sqrt{3 x+6} \end{aligned}$ So $x_{n+1}=\sqrt{3 x_{n}+6}$ $\begin{array}{r} x_{1}=4 \\ x_{2}=\sqrt{3 \times 4+6}=4.242640 \ldots \\ x_{3}=\sqrt{3 \times 4.242640 \ldots+6} \\ \quad=4.357576 \ldots \end{array}$ Keep repeating... $\begin{gathered} x_{7}=4.372068 . .=4.372(3 d p) \\ x_{8}=4.372208 \ldots=4.372(3 d p) \end{gathered}$ So answer is $x=4.372(3 d p)$

Topic/Skill	Definition/Tips	Example
1. Equation of a Circle	The equation of a circle, centre (0,0), radius \mathbf{r}, is: $x^{2}+y^{2}=r^{2}$	$x^{2}+y^{2}=25$
2. Tangent	A straight line that touches a circle at exactly one point, never entering the circle's interior. A radius is perpendicular to a tangent at the point of contact.	
3. Gradient	Gradient is another word for slope. $G=\frac{\text { Rise }}{\text { Run }}=\frac{\text { Change in } y}{\text { Change in } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$	 We need to find the GRADIENT between A at $(3,-2)$ and B at $(-3,4)$ $\begin{aligned} & m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\ & m=\frac{4-2}{3-3} \\ & m=6 / 6=1 \end{aligned}$
4. Circle Theorem 5	A tangent is perpendicular to the radius at the point of contact.	

5. Quartiles from Cumulative Frequency Diagram	Lower Quartile (Q1): 25\% of the data is less than the lower quartile. Median (Q2): $\mathbf{5 0 \%}$ of the data is less than the median. Upper Quartile (Q3): 75\% of the data is less than the upper quartile. Interquartile Range (IQR): represents the middle 50% of the data.	$I Q R=37-18=19$
6. Hypothesis	A statement that might be true, which can be tested.	Hypothesis: 'Large dogs are better at catching tennis balls than small dogs'. We can test this hypothesis by having hundreds of different sized dogs try to catch tennis balls.

Topic/Skill	Definition/Tips	Example
1. Expression	A mathematical statement written using symbols, numbers or letters,	$3 \mathrm{x}+2$ or $5 \mathrm{y}^{2}$
2. Equation	A statement showing that two expressions are equal	$2 \mathrm{y}-17=15$
3. Identity	An equation that is true for all values of the variables An identity uses the symbol: \equiv	$2 x \equiv x+x$
4. Formula	Shows the relationship between two or more variables	Area of a rectangle $=$ length x width or $\mathrm{A}=\mathrm{LxW}$
5. Coefficient	A number used to multiply a variable. It is the number that comes before/in front of a letter.	$6 z$ 6 is the coefficient z is the variable
6. Odds and Evens	An even number is a multiple of 2 An odd number is an integer which is not a multiple of 2 .	If n is an integer (whole number): An even number can be represented by $\mathbf{2 n}$ or $\mathbf{2 m}$ etc. An odd number can be represented by $\mathbf{2 n - 1}$ or $\mathbf{2 n + 1}$ or $\mathbf{2 m + 1}$ etc.
7. Consecutive Integers	Whole numbers that follow each other in order.	If n is an integer: $\mathbf{n}, \mathbf{n + 1}, \mathbf{n + 2}$ etc. are consecutive integers.
8. Square Terms	A term that is produced by multiply another term by itself.	If n is an integer: n^{2}, m^{2} etc. are square integers
9. Sum	The sum of two or more numbers is the value you get when you add them together.	The sum of 4 and 6 is 10
10. Product	The product of two or more numbers is the value you get when you multiply them together.	The product of 4 and 6 is 24
11. Multiple	To show that an expression is a multiple of a number, you need to show that you can factor out the number.	$4 n^{2}+8 n-12$ is a multiple of 4 because it can be written as: $4\left(n^{2}+2 n-3\right)$

Topic/Skill	Definition/Tips	Example
1. Translation	Translate means to move a shape. The shape does not change size or orientation.	
2. Vector Notation	A vector can be written in 3 ways: $\begin{array}{llll} a & \text { or } & \overrightarrow{A B} & \text { or } \end{array}\binom{\mathbf{1}}{\mathbf{3}}$	
3. Column Vector	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-)	$\binom{2}{3}$ means ' 2 right, 3 up' $\binom{-1}{-5}$ means ' 1 left, 5 down'
4. Vector	A vector is a quantity represented by an arrow with both direction and magnitude. $\overrightarrow{A B}=-\overrightarrow{B A}$	$\overrightarrow{A B}=\binom{3}{2}$
5. Magnitude	Magnitude is defined as the length of a vector.	
6. Equal Vectors	If two vectors have the same magnitude and direction, they are equal.	
7. Parallel Vectors	Parallel vectors are multiples of each other.	$2 \mathbf{a}+\mathbf{b}$ and $4 \mathbf{a}+2 \mathbf{b}$ are parallel as they are multiple of each other.

8. Collinear Vectors	Collinear vectors are vectors that are on the same line. To show that two vectors are collinear, show that one vector is a multiple of the other (parallel) AND that both vectors share a point.	
9. Resultant Vector	The resultant vector is the vector that results from adding two or more vectors together. The resultant can also be shown by lining up the head of one vector with the tail of the other.	if $\underline{a}=\binom{4}{4}$ and $\underline{b}=\binom{2}{-2}$ then $\underline{a}+\underline{b}=\binom{4}{4}+\binom{2}{-2}=\binom{6}{2}$
10. Scalar of a Vector	A scalar is the number we multiply a vector by.	Example: $\begin{aligned} & 3 a+2 b= \\ & =3\binom{2}{1}+2\binom{4}{-1} \\ & =\binom{6}{3}+\binom{8}{-2} \\ & =\binom{14}{1} \end{aligned}$
11. Vector Geometry	$\begin{array}{\|ll\|} \hline \overrightarrow{O A}=a & \overrightarrow{A O}=-a \\ \hline \overrightarrow{O B}=b & \overrightarrow{B O}=-b \\ \hline \overrightarrow{A B}=\overrightarrow{A O}+\overrightarrow{O B}=-a+b=b-a \\ \overrightarrow{B A}=\overrightarrow{B O}+\overrightarrow{O A}=-b+a=a-b \\ \hline \end{array}$	Example 1: X is the midpoint of $A B$. Find $\overrightarrow{O X}$ Answer: Draw X on the original diagram Now build up a journey. You could use $\overrightarrow{O X}=\overrightarrow{O A}+\frac{1}{2} \overrightarrow{A B}$. This will give: $\overrightarrow{O X}=a+\frac{1}{2}(b-a)$. This will simplify to $\frac{1}{2} a+\frac{1}{2} b$ or $\frac{1}{2}(a+b)$

Topic/Skill	Definition/Tips	Example
1. Algebraic Fraction	A fraction whose numerator and denominator are algebraic expressions.	$\frac{6 x}{3 x-1}$
2. Adding/ Subtracting Algebraic Fractions	For $\frac{a}{b} \pm \frac{c}{d}$, the common denominator is bd $\frac{a}{b} \pm \frac{c}{d}=\frac{a d}{b d} \pm \frac{b c}{b d}=\frac{a d \pm b c}{b d}$	$\begin{gathered} \frac{1}{x}+\frac{x}{2 y} \\ =\frac{1(2 y)}{2 x y}+\frac{x(x)}{2 x y} \\ =\frac{2 y+x^{2}}{2 x y} \end{gathered}$
3. Multiplying Algebraic Fractions	Multiply the numerators together and the denominators together. $\frac{a}{b} \times \frac{c}{d}=\frac{a c}{b d}$	$\begin{aligned} & \frac{x}{3} \times \frac{x+2}{x-2} \\ = & \frac{x(x+2)}{3(x-2)} \\ = & \frac{x^{2}+2 x}{3 x-6} \end{aligned}$
4. Dividing Algebraic Fractions	Multiply the first fraction by the reciprocal of the second fraction. $\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \times \frac{d}{c}=\frac{a d}{b c}$	$\begin{aligned} & \frac{x}{3} \div \frac{2 x}{7} \\ = & \frac{x}{3} \times \frac{7}{2 x} \\ = & \frac{7 x}{6 x}=\frac{7}{6} \end{aligned}$
5. Simplifying Algebraic Fractions	Factorise the numerator and denominator and cancel common factors.	$\frac{x^{2}+x-6}{2 x-4}=\frac{(x+3)(x-2)}{2(x-2)}=\frac{x+3}{2}$

Topic/Skill	Definition/Tips	Example
1. Exponential Growth	When we multiply a number repeatedly by the same number $(\neq 1)$, resulting in the number increasing by the same proportion each time. The original amount can grow very quickly in exponential growth.	$1,2,4,8,16,32,64,128 \ldots$ is an example of exponential growth, because the numbers are being multiplied by 2 each time.
2. Exponential Decay	When we multiply a number repeatedly by the same number $(0<x<1)$, resulting in the number decreasing by the same proportion each time. The original amount can decrease very quickly in exponential decay.	$1000,200,40,8 \ldots$ is an example of exponential decay, because the numbers are being multiplied by $\frac{1}{5}$ each time.
3. Compound Interest	Interest paid on the original amount and the accumulated interest.	A bank pays 5\% compound interest a year. Bob invests $£ 3000$. How much will he have after 7 years. $3000 \times 1.05^{7}=£ 4221.30$
4. Exponential Graph	The equation is of the form $\boldsymbol{y}=\boldsymbol{a}^{\boldsymbol{x}}$, where \boldsymbol{a} is a number called the base. If $\boldsymbol{a}>\mathbf{1}$ the graph increases. If $\mathbf{0}<\boldsymbol{a}<\mathbf{1}$, the graph decreases. The graph has an asymptote which is the \mathbf{x}-axis. The \mathbf{y}-intercept of the graph $y=a^{x}$ is $(0,1) \mathrm{s}$	

Topic/Skill	Definition/Tips	Example
1. Real Life Graphs	Graphs that are supposed to model some real-life situation. The actual meaning of the values depends on the labels and units on each axis. The gradient might have a contextual meaning. The \mathbf{y}-intercept might have a contextual meaning. The area under the graph might have a contextual meaning.	 A graph showing the cost of hiring a ladder for various numbers of days. The gradient shows the cost per day. It costs $£ 3 /$ day to hire the ladder. The y-intercept shows the additional cost/deposit/fixed charge (something not linked to how long the ladder is hired for). The additional cost is $£ 7$.
2. Conversion Graph	A line graph to convert one unit to another. Can be used to convert units (eg. miles and kilometres) or currencies (\$ and £) Find the value you know on one axis, read up/across to the conversion line and read the equivalent value from the other axis.	Conversion graph miles \longleftrightarrow kilometres $8 \mathrm{~km}=5$ miles
3. Depth of Water in Containers	Graphs can be used to show how the depth of water changes as different shaped containers are filled with water at a constant rate.	

