

Topic: Bearings and Scale Diagrams

Topic/Skill	Definition/Tips	Example
1. Scale	The ratio of the length in a model to the length of the real thing.	Real Horse Drawn Horse 1500 mm high 2000 mm long
2. Scale (Map)	The ratio of a distance on the map to the actual distance in real life .	1 in. = 250 mi 1 cm = 160 km
3. Bearings	 Measure from North (draw a North line) Measure clockwise Your answer must have 3 digits (eg. 047°) Look out for where the bearing is measured from. 	The bearing of \underline{B} from \underline{A} The bearing of \underline{A} from \underline{B}
4. Compass Directions	You can use an acronym such as 'Never Eat Shredded Wheat' to remember the order of the compass directions in a clockwise direction. Bearings: $NE = 045^\circ$, $W = 270^\circ etc$.	

Topic: Congruence and Similarity

Topic/Skill	Definition/Tips	Example
1. Congruent	Shapes are congruent if they are identical -	
Shapes	same shape and same size.	
	Shapes can be rotated or reflected but still	
	Shapes can be rotated or reflected but still be congruent.	
2. Congruent	4 ways of proving that two triangles are	S D F
Triangles	congruent:	A 61 73 61
		73 8 6 7
	1. SSS (Side, Side, Side)	E E
	2. RHS (Right angle, Hypotenuse, Side)3. SAS (Side, Angle, Side)	BC = DF
	4. ASA (Angle, Side, Angle) or AAS	$\Delta C = DF$ $\angle ABC = \angle EDF$
		$\angle ACB = \angle EFD$
	ASS does not prove congruency.	∴ The two triangles are
2. 61		congruent by AAS.
3. Similar Shapes	Shapes are similar if they are the same shape but different sizes .	
Shapes	shape but unterent sizes.	
	The proportion of the matching sides must	
	be the same, meaning the ratios of	
	corresponding sides are all equal.	24
4. Scale Factor	The ratio of corresponding sides of two similar shapes.	
	similar shapes.	10 15
	To find a scale factor, divide a length on	
	one shape by the corresponding length on	
	a similar shape.	Scale Factor = $15 \div 10 = 1.5$
5. Finding	1. Find the scale factor.	2cm 3cm
missing	2. Multiply or divide the corresponding	
lengths in	side to find a missing length.	4.5cm
similar shapes	If you are finding a missing length on the	x
	larger shape you will need to multiply by	Y Y
	the scale factor.	
		, , , , , , , , , , , , , , , , , , ,
	If you are finding a missing length on the	Scale Factor = $3 \div 2 = 1.5$
	smaller shape you will need to divide by the scale factor.	$x = 4.5 \times 1.5 = 6.75 cm$
6. Similar	To show that two triangles are similar,	y
Triangles	show that:	85°
	1. The three sides are in the same	40°
	proportion 2. Two sides are in the same proportion,	Y Y
	and their included angle is the same	85°
	3. The three angles are equal	
		55°
		x z
	·	. –

Topic: Loci and Constructions

Topic/Skill	Definition/Tips	Example
1. Parallel	Parallel lines never meet.	
2	Demendicular lines are at right or ales	
2. Demondicular	Perpendicular lines are at right angles. There is a 90° angle between them.	
Perpendicular	There is a 90° aligie between them.	
3. Vertex	A corner or a point where two lines meet.	vertex
		Â
		e C B
4. Angle	Angle Bisector: Cuts the angle in half.	
Bisector		
	1. Place the sharp end of a pair of	
	compasses on the vertex.	
	2. Draw an arc, marking a point on each line.	
	3. Without changing the compass put the	
	compass on each point and mark a centre	Angle Bisector
	point where two arcs cross over.	
	4. Use a ruler to draw a line through the	
	vertex and centre point.	
5.	Perpendicular Bisector: Cuts a line in	
Perpendicular Bisector	half and at right angles.	The second secon
Disector	1. Put the sharp point of a pair of	/ \
	compasses on A.	Line Bisector
	2. Open the compass over half way on the	AB
	line.	
	3. Draw an arc above and below the line.	× /
	4. Without changing the compass, repeat	X
	from point B.	
	5. Draw a straight line through the two	
	intersecting arcs.	
6. Demonski svelar	The perpendicular distance from a point	
Perpendicular from an	to a line is the shortest distance to that line.	P
External Point		*
LAGINAI I UIII	1. Put the sharp point of a pair of	
	compasses on the point.	
	2. Draw an arc that crosses the line twice.	\bigvee
	3. Place the sharp point of the compass on	<u> </u>
	one of these points, open over half way and	
	draw an arc above and below the line.	
	4. Repeat from the other point on the line.	

	5. Draw a straight line through the two	
	intersecting arcs.	
7.	Given line PQ and point R on the line:	
Perpendicular		
from a Point	1. Put the sharp point of a pair of	
on a Line	compasses on point R.	
	2. Draw two arcs either side of the point of	
	equal width (giving points S and T)	P' S' R T' Q
	3. Place the compass on point S, open over	
	halfway and draw an arc above the line.	
	4. Repeat from the other arc on the line	
	(point T).	
	5. Draw a straight line from the intersecting	
	arcs to the original point on the line.	
8. Constructing	1. Draw the base of the triangle using a	
Triangles	ruler.	
(Side, Side,	2. Open a pair of compasses to the width of	
Side)	one side of the triangle.	
	3. Place the point on one end of the line and	
	draw an arc.	
	4. Repeat for the other side of the triangle	
	at the other end of the line.	
	5. Using a ruler, draw lines connecting the	
	ends of the base of the triangle to the point	
	where the arcs intersect.	
9. Constructing	1. Draw the base of the triangle using a	Α
Triangles	ruler.	\sim
(Side, Angle,	2. Measure the angle required using a	
Side)	protractor and mark this angle.	4cm
	3. Remove the protractor and draw a line of	
	the exact length required in line with the	B <u>∕50°</u> C
	angle mark drawn.	7cm
	4. Connect the end of this line to the other	
	end of the base of the triangle.	
10.	1. Draw the base of the triangle using a	X
Constructing	ruler.	\sim
Triangles	2. Measure one of the angles required using	
(Angle, Side,	a protractor and mark this angle.	
Angle)	3. Draw a straight line through this point	
-	from the same point on the base of the	y 42° 51° Z
	triangle.	8.3cm
	4. Repeat this for the other angle on the	
	other end of the base of the triangle.	

11.	1. Draw the base of the triangle using a	
Constructing	ruler.	*
an Equilateral	2. Open the pair of compasses to the exact	
Triangle (also	length of the side of the triangle.	
makes a 60°	3. Place the sharp point on one end of the	
angle)	line and draw an arc.	
	4. Repeat this from the other end of the	
	line.	MathBits.com
	5. Using a ruler, draw lines connecting the	A B
	ends of the base of the triangle to the point	
	where the arcs intersect.	
12. Loci and	A locus is a path of points that follow a	
Regions	rule.	*
U		A
	For the locus of points closer to B than A ,	
	create a perpendicular bisector between A	
	and B and shade the side closer to B.	
		Points Closer to B than A.
	For the locus of points equidistant from A,	
	use a compass to draw a circle , centre A.	
	r ····································	2cm 2cm
		A
		Points less than Points more than
		2 cm from A 2 cm from A
		x
	For the locus of points equidistant to line	
	X and line Y, create an angle bisector.	
		Ŷ
	For the locus of points a set distance from	
	a line, create two semi-circles at either end	
	joined by two parallel lines .	• • • • • • • • • • • • • • • • • • • •
13. Equidistant	A point is equidistant from a set of objects	
15. Equidistant	if the distances between that point and	
	each of the objects is the same.	
	cuen of the objects is the sume.	
		$ \left[$

Topic: Shape Transformations

Topic/Skill	Definition/Tips	Example
1. Translation	Translate means to move a shape . The shape does not change size or orientation .	$\begin{array}{c} Q \\ Q \\ 3 \\ 3 \\ 7 \\ 7 \\ 7 \\ 7 \\ 9 \\ Q' \\ 3 \\ 4 \\ 6 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$
2. Column Vector	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-)	$\binom{2}{3}$ means '2 right, 3 up' $\binom{-1}{-5}$ means '1 left, 5 down'
3. Rotation	The size does not change, but the shape is turned around a point .	Rotate Shape A 90° anti-clockwise about (0,1)
	Use tracing paper.	X. Y.
4. Reflection	The size does not change, but the shape is 'flipped' like in a mirror. Line $x =$? is a vertical line. Line $y =$? is a horizontal line. Line $y = x$ is a diagonal line.	Reflect shape C in the line $y = x$
5. Enlargement	The shape will get bigger or smaller . Multiply each side by the scale factor .	Scale Factor = 3 means '3 times larger = multiply by 3' Scale Factor = ½ means 'half the size = divide by 2'

6. Finding the Centre of Enlargement	Draw straight lines through corresponding corners of the two shapes. The centre of enlargement is the point where all the lines cross over. Be careful with negative enlargements as the corresponding corners will be the other way around.	A to B is an enlargement SF 2 about the point (2,1)
7. Describing Transformatio ns	 Give the following information when describing each transformation: Look at the number of marks in the question for a hint of how many pieces of information are needed. If you are asked to describe a 'transformation', you need to say the name of the type of transformation as well as the other details. 	 Translation, Vector Rotation, Direction, Angle, Centre Reflection, Equation of mirror line Enlargement, Scale factor, Centre of enlargement
8. Negative Scale Factor Enlargements	Negative enlargements will look like they have been rotated. SF = -2 will be rotated, and also twice as big.	Enlarge ABC by scale factor -2, centre (1,1)
9. Invariance	A point, line or shape is invariant if it does not change/move when a transformation is performed. An invariant point 'does not vary'.	If shape P is reflected in the $y - axis$, then exactly one vertex is invariant.

Topic/Skill Definition/Tips Example The study of triangles. 1. Trigonometry The longest side of a right-angled 2. Hypotenuse hypotenuse triangle. Is always **opposite** the **right angle**. Р 3. Adjacent Next to Hypotenuse Opposite R Adjacent Use SOHCAHTOA. 4. Trigonometric Formulae $\sin\theta=\frac{\theta}{H}$ х 35° 11cm $\cos\theta = \frac{A}{H}$ Use 'Opposite' and 'Adjacent', so use 'tan' $\tan 35 = \frac{x}{11}$ $\tan\theta=\frac{\theta}{4}$ $x = 11 \tan 35 = 7.70 cm$ 7cmWhen finding a missing angle, use the x 'inverse' trigonometric function by 5cm pressing the 'shift' button on the calculator. Use 'Adjacent' and 'Hypotenuse', so use 'cos' $\cos x = \frac{5}{7}$ $x = \cos^{-1}\left(\frac{5}{7}\right) = 44.4^{\circ}$ Find missing lengths by identifying right 5. 3D Trigonometry angled triangles. You will often have to find a missing length you are not asked for before finding the missing length you are asked for.

Topic: Right Angled Trigonometry

Topic: Further Quadratics

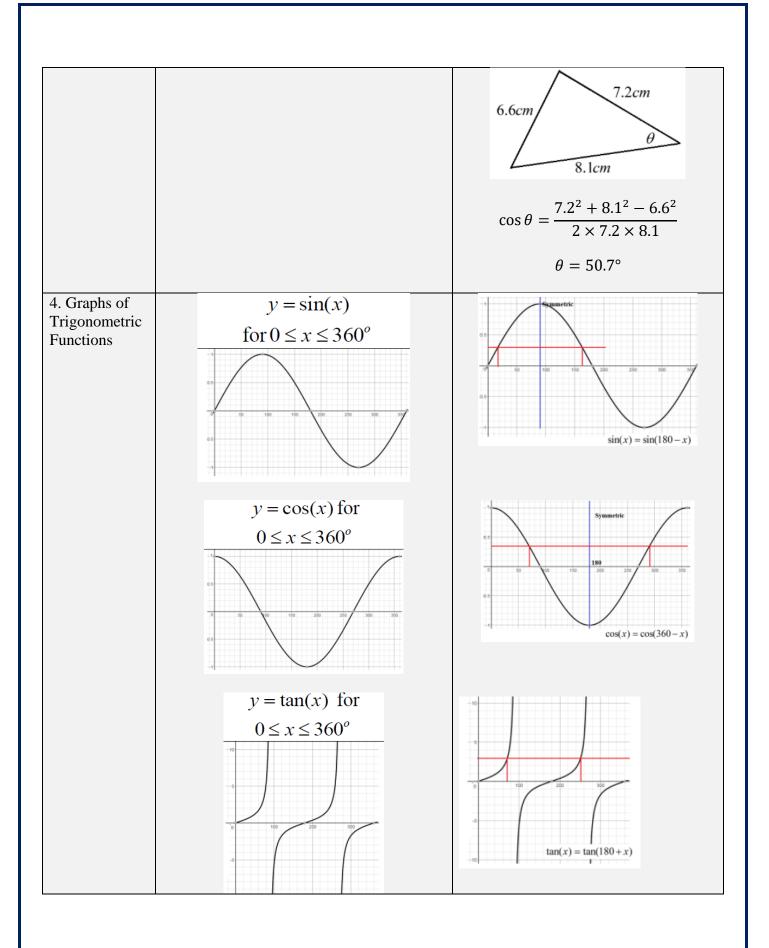
Topic/Skill	Definition/Tips	Example
1. Quadratic	A quadratic expression is of the form	Examples of quadratic expressions:
		x ²
	$ax^2 + bx + c$	$8x^2 - 3x + 7$
	where a, b and c are numbers, $a \neq 0$	Examples of non-quadratic expressions: $2x^3 - 5x^2$ 9x - 1
2. Factorising	When a quadratic expression is in the form	$x^{2} + 7x + 10 = (x + 5)(x + 2)$
Quadratics	$x^{2} + bx + c$ find the two numbers that add	(because 5 and 2 add to give 7 and
C	to give b and multiply to give c.	multiply to give 10)
	······································	
		$x^{2} + 2x - 8 = (x + 4)(x - 2)$
		(because +4 and -2 add to give +2 and
		multiply to give -8)
3. Difference	An expression of the form $a^2 - b^2$ can be	$x^2 - 25 = (x+5)(x-5)$
of Two	factorised to give $(a + b)(a - b)$	$16x^2 - 81 = (4x + 9)(4x - 9)$
Squares		
4. Solving	Isolate the x^2 term and square root both	$2x^2 = 98$
Quadratics	sides.	$x^2 = 49$
$(ax^2 = b)$	Remember there will be a positive and a	$x = \pm 7$
	negative solution.	2 2 2
5. Solving	Factorise and then solve = 0 .	$x^2 - 3x = 0$
Quadratics		x(x-3) = 0
$(ax^2 + bx =$		x = 0 or x = 3
$\frac{0}{6}$	Eastorize the guadratic in the yously way	Solve $x^2 + 3x - 10 = 0$
6. Solving Quadratics by	Factorise the quadratic in the usual way. Solve = 0	Solve $x^2 + 3x - 10 = 0$
Factorising		Factorise: $(x + 5)(x - 2) = 0$
(a = 1)	Make sure the equation $= 0$ before	x = -5 or x = 2
(u - 1)	factorising.	x = 501 x = 2
7. Quadratic	A ' U-shaped ' curve called a parabola .	y y y = x ² -4x-5
Graph	The equation is of the form	
1	$y = ax^2 + bx + c$, where a, b and c are	
	numbers, $a \neq 0$.	-1
	If $a < 0$, the parabola is upside down .	
		(2, -9)
8. Roots of a	A root is a solution .	1
Quadratic		
	The roots of a quadratic are the <i>x</i> -	
	intercepts of the quadratic graph.	
		-2 -1 1 2 3 4
		-2
		_4

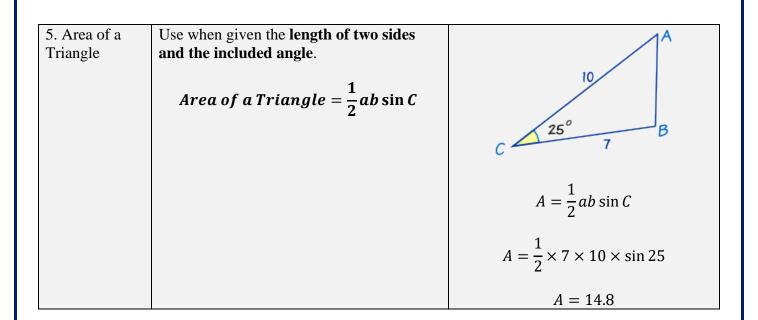
9. Turning	A turning point is the point where a	
Point of a	quadratic turns.	
Quadratic		
	On a positive parabola , the turning point is	
	called a minimum .	
	On a negative parabola , the turning point	
	is called a maximum .	
10. Factorising	When a quadratic is in the form	Factorise $6x^2 + 5x - 4$
Quadratics	$ax^2 + bx + c$	
when $a \neq 1$	1. Multiply a by $c = ac$	$1.6 \times -4 = -24$
	2. Find two numbers that add to give b and	2. Two numbers that add to give $+5$ and
	multiply to give ac.	multiply to give -24 are $+8$ and -3
	3. Re-write the quadratic, replacing bx with	$3.6x^2 + 8x - 3x - 4$
	the two numbers you found.	4. Factorise in pairs:
	4. Factorise in pairs – you should get the	2x(3x+4) - 1(3x+4)
	same bracket twice	5. Answer = $(3x + 4)(2x - 1)$
	5. Write your two brackets – one will be the	
	repeated bracket, the other will be made of	
	the factors outside each of the two brackets.	
11. Solving	Factorise the quadratic in the usual way.	Solve $2x^2 + 7x - 4 = 0$
Quadratics by	Solve = 0	
Factorising		Factorise: $(2x - 1)(x + 4) = 0$
$(a \neq 1)$	Make sure the equation $= 0$ before	1
	factorising.	Factorise: $(2x - 1)(x + 4) = 0$ $x = \frac{1}{2}$ or $x = -4$
12.	A quadratic in the form $x^2 + bx + c$ can be	Complete the square of
Completing	written in the form $(x + p)^2 + q$	$y = x^2 - 6x + 2$
the Square		Answer:
(when $a = 1$)	1. Write a set of brackets with x in and half	$(x-3)^2 - 3^2 + 2$
	the value of <i>b</i> .	
	2. Square the bracket.	$=(x-3)^2-7$
	1	
	3. Subtract $\left(\frac{b}{2}\right)^2$ and add <i>c</i> .	The minimum value of this expression
	4. Simplify the expression.	occurs when $(x - 3)^2 = 0$, which
		occurs when $x = 3$
	You can use the completing the square	When $x = 3$, $y = 0 - 7 = -7$
	form to help find the maximum or	-,,,
	minimum of quadratic graph.	Minimum point = $(3, -7)$
13.	A quadratic in the form $ax^2 + bx + c$ can	Complete the square of
Completing	be written in the form $\mathbf{p}(x+q)^2 + r$	$4x^2 + 8x - 3$
the Square	$\mathbf{p}(\mathbf{x} + \mathbf{y}) + \mathbf{p}$	Answer:
(when $a \neq 1$)	Use the same method as above, but	$4[x^2 + 2x] - 3$
	factorise out <i>a</i> at the start.	$= 4[(x + 1)^2 - 1^2] - 3$
	ractorise out a at the start.	$= 4(x+1)^2 - 4 - 3$
14. Solving	Complete the square in the usual way and	$= 4(x+1)^2 - 7$ Solve $x^2 + 8x + 1 = 0$
-		$SUIVE \lambda + 0\lambda + 1 = 0$
Quadratics by	use inverse operations to solve.	Answer
Completing		Answer: $(x + 4)^2 + 4^2 + 1 = 0$
the Square		$(x+4)^2 - 4^2 + 1 = 0$
		$(x+4)^2 - 15 = 0$

		$(x+4)^2 = 15$
		$(x+4) = \pm \sqrt{15}$
		$x = -4 \pm \sqrt{15}$
15. Solving	A quadratic in the form $ax^2 + bx + c = 0$	Solve $3x^2 + x - 5 = 0$
Quadratics	can be solved using the formula:	
using the	$-b \pm \sqrt{b^2 - 4ac}$	Answer:
Quadratic	$x = \frac{2a}{2a}$	a = 3, b = 1, c = -5
Formula	Use the formula if the quadratic does not	
	factorise easily.	$x = \frac{-1 \pm \sqrt{1^2 - 4 \times 3 \times -5}}{2 \times 3}$
		x =
		$1 \pm \sqrt{61}$
		$x = \frac{-1 \pm \sqrt{61}}{6}$
		0
		x = 1.14 or - 1.47 (2 d. p.)

		Topic: Circle Theorems
Topic/Skill	Definition/Tips	Example
Circle Theorem 1	Angles in a semi-circle have a right angle at the circumference.	38
		$y = 90^{\circ}$ $x = 180 - 90 - 38 = 52^{\circ}$
Circle Theorem 2	Opposite angles in a cyclic quadrilateral add up to 180°. $a+c=180^{\circ}$ $b+d=180^{\circ}$	$x = 180 - 83 = 97^{\circ}$ y = 180 - 92 = 88^{\circ}
Circle Theorem 3	The angle at the centre is twice the angle at the circumference.	$x = 104 \div 2 = 52^{\circ}$
Circle Theorem 4	Angles in the same segment are equal.	$x = 42^{\circ}$ $y = 31^{\circ}$
Circle Theorem 5	A tangent is perpendicular to the radius at the point of contact.	y = 5cm (Pythagoras' Theorem)

Circle	Tangents from an external point at equal	
Theorem 6	in length.	4cm
		$x = 90^{\circ}$
Circle	Alternate Segment Theorem	
Theorem 7		x . y 52°
		$x = 52^{\circ}$ $y = 38^{\circ}$


Topic: Inequalities


Topic/Skill	Definition/Tips	Example
1. Inequality	An inequality says that two values are not	7 ≠ 3
	equal.	
		$x \neq 0$
	$a \neq b$ means that a is not equal to b.	
2. Inequality	x > 2 means x is greater than 2	State the integers that satisfy
symbols	x < 3 means x is less than 3	$-2 < x \le 4.$
	$x \ge 1$ means x is greater than or equal to	
		-1, 0, 1, 2, 3, 4
3. Inequalities	$x \le 6$ means x is less than or equal to 6 Inequalities can be shown on a number line.	
on a Number	inequanties can be shown on a number line.	←−−−−−+→
Line	Open circles are used for numbers that are	$-2 -1 0 1 2 3 x \ge 0$
Line	less than or greater than $(\langle or \rangle)$	
		-5 -4 -3 -2 -1 0 1 2 3 4 5 x < 2
	Closed circles are used for numbers that	
	are less than or equal or greater than or	+TTTTTTTTTTTTT
	equal $(\leq or \geq)$	$-5 -4 -3 -2 -1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ -5 \le x < 4$
4. Graphical	Inequalities can be represented on a	Shade the region that satisfies:
Inequalities	coordinate grid.	$y > 2x, x > 1$ and $y \le 3$
	If the inequality is strict $(x > 2)$ then use a	
	If the inequality is strict $(x > 2)$ then use a dotted line .	y = 2x
	If the inequality is not strict ($x \le 6$) then	
	use a solid line .	y = 3
		R
	Shade the region which satisfies all the	-2
	inequalities.	x = 1
		9 1 2 4
5. Quadratic	Sketch the quadratic graph of the	Solve the inequality $x^2 - x - 12 < 0$
Inequalities	inequality.	Charter the same dusting
	If the expression is $\sim \alpha n >$ then the ensure	Sketch the quadratic:
	If the expression is $> or \ge$ then the answer will be above the x-axis .	-3
	If the expression is $< or \le$ then the answer	
	will be below the x-axis .	
	Look carefully at the inequality symbol in	
	the question.	The required region is below the x-axis,
	Look confully if the mediate in the	so the final answer is:
	Look carefully if the quadratic is a positive	-3 < x < 4
	or negative parabola.	If the question had have 2. 0. (1
		If the question had been > 0 , the answer would have been:
		answer would have been: x < -3 or x > 4
6. Set Notation	A set is a collection of things, usually	x < -5 of x > 4 {3, 6, 9} is a set.
5. 501 Hotation	numbers, denoted with brackets { }	[0, 0, 7] 10 a set.
	numeers, denoted with orderets (

$\{x \mid x \ge 7\}$ means 'the set of all x's, such that x is greater than or equal to 7' The 'x' can be replaced by any letter.	$\begin{cases} x \mid x > 0 \\ \uparrow \uparrow$
Some people use ':' instead of ' '	${x: -2 \le x < 5}$

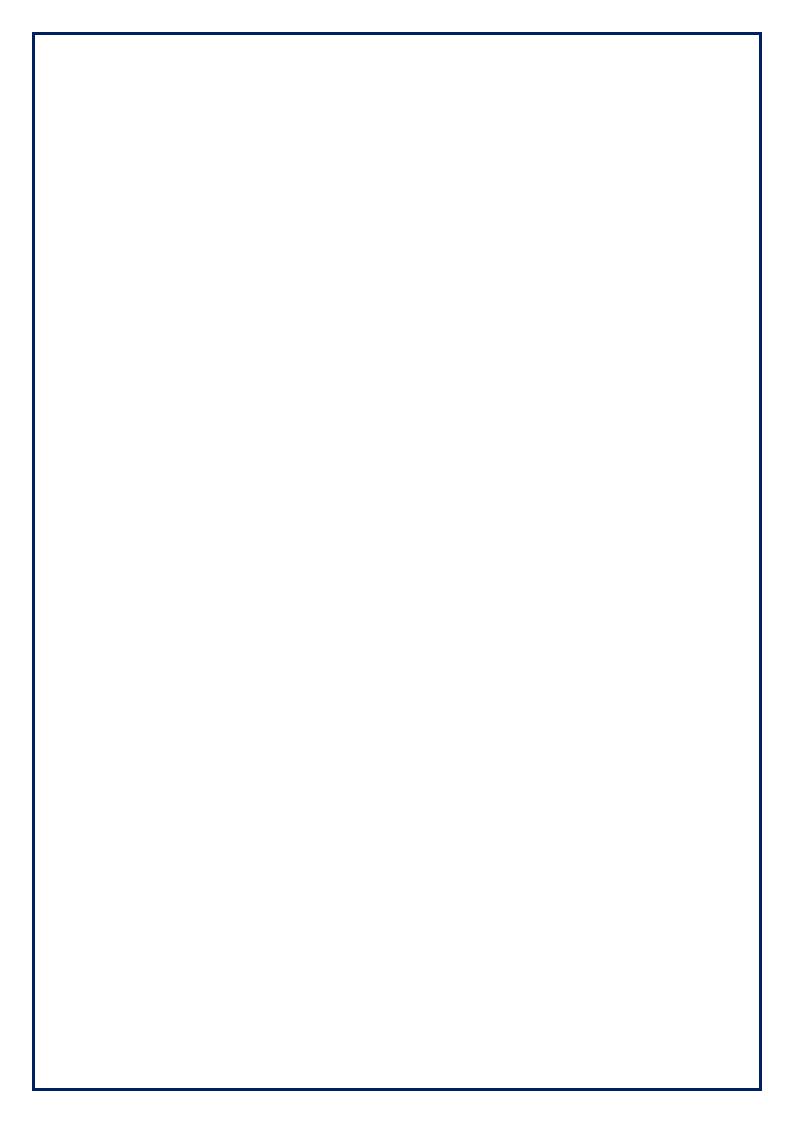
Topic: Trigonometry

Topic/Skill	Defini	tion/Tip	DS			Example	
1. Exact		0 °	<u>30°</u>	45 °	60 °	90°	
Values for	sin	0	1	$\sqrt{2}$	$\sqrt{3}$	1	45
Angles in			2				
Trigonometry	cos	1	$\sqrt{3}$	$\frac{2}{\sqrt{2}}$	$\begin{array}{c} 2\\ 1\\ \hline 2 \end{array}$	0	
				2	2		
	tan	0	2 1	1	$\sqrt{3}$		
			$\sqrt{3}$				
2. Sine Rule		ith non 1					last last
	Use when the question involves 2 sides						85 5.2 <i>cm</i>
	and 2 a	angles.					
	F		1				
	For mi	ssing sid	ae: a	h			2 46° x
			$\frac{u}{\sin 4}$	$=\frac{b}{\sin}$	D		<i>x</i> 5.2
			5111 A	5111	D		$\frac{1}{\sin 85} = \frac{1}{\sin 46}$
	For mi	ssing an	gle:				
			sin A	_ sin	B		$x = \frac{5.2 \times \sin 85}{\sin 46} = 3.75cm$
			a	- <u>b</u>			sin 46
	There i	is an am	hiouo	115 695	e (whe	re there	85
			mbiguous case (where there this answers)				1.9m
		por por a					0
					В		2.4m
					()]		
			10 <i>cm</i>		ì		$\frac{\sin\theta}{100} = \frac{\sin 85}{2000}$
				Ť	T		-1.9 - 2.4
			/	6cm¦	60	n	$1.9 \times \sin 85$
		$_{A}$	46°	i	$-\dot{c}$		$\sin \theta = \frac{1.9 \times \sin 85}{2.4} = 0.789$
				-			
	To find	d the two	o angle	es, use	sine to	find one,	$\theta = sin^{-1}(0.789) = 52.1^{\circ}$
	and the	en subtr	act yo	our ans		om 180	
		the othe					
3. Cosine Rule		ith non 1					85 9.6
	use wi	hen the o	questio	on invo	lves 3	sides	7.8
	anu 1	aligie.					
	For mi	ssing sid	de:				X
		$a^2 =$	$b^{2} + c$	$c^2 - 2i$	bccos	4	
							$x^2 = 9.6^2 + 7.8^2 - (2 \times 9.6 \times 7.8)$
	For mi	ssing an	gle:	2 2	2		$\begin{array}{c} \times \cos 85) \\ x = 11.8 \end{array}$
		COS	$A = \frac{k}{2}$	$\frac{b^2+c^2}{2b}$	$-a^2$		$\lambda = 11.0$
		003		2 <i>b</i>	С		

Topic: Probability (Trees and Venns)

Topic/Skill	Definition/Tips	Example
1. Tree	Tree diagrams show all the possible	Bag A Bag B
Diagrams	outcomes of an event and calculate their	$\frac{1}{-}$ red
	probabilities.	1 3
	L	1 red
	All branches must add up to 1 when	5 2 black
	adding downwards.	3 1
	This is because the probability of	1
	something not happening is 1 minus the	4 black
	probability that it does happen.	5 Charles 5
	probability that it does happen.	- black
	Multiply asing sources a track discusses	5
	Multiply going across a tree diagram.	
	Add going down a tree diagram.	
2. Independent	The outcome of a previous event does not	An example of independent events
Events	influence/affect the outcome of a second	could be <u>replacing</u> a counter in a bag
	event.	after picking it.
3. Dependent	The outcome of a previous event does	An example of dependent events could
Events	influence/affect the outcome of a second	be not replacing a counter in a bag after
	event.	picking it.
		' <u>Without replacement</u> '
4. Probability	P (A) refers to the probability that event A	P(Red Queen) refers to the probability
Notation	will occur.	of picking a Red Queen from a pack of
		cards.
	P(A') refers to the probability that event	P(Blue') refers to the probability that
	A will <u>not</u> occur.	you do not pick Blue.
	$P(A \cup B)$ refers to the probability that	P(Blonde \cup Right Handed) refers to the
	event A or B or both will occur.	probability that you pick someone who
		is Blonde or Right Handed or both.
	$P(A \cap B)$ refers to the probability that	P(Blonde \cap Right Handed) refers to the
	both events A and B will occur.	probability that you pick someone who
	both events if and b will becar.	is both Blonde and Right Handed.
5. Venn	A Venn Diagram shows the relationship	
Diagrams	between a group of different things and	
Diagrams	how they overlap.	
	now they overlap.	
	You may be asked to shade Vonn Diagrams	
	You may be asked to shade Venn Diagrams	$(A \cap B)' \qquad (A \cup B)'$
	as shown below and to the right.	
	$A \cup B$ $A \cap B$	
	The Union The Union	
	The Union The Intersection 'A or B or Both' 'A and B'	
r		

		$A \cap B$ $A \cap B$ $A \cup B'$ $A \cup B'$
6. Venn Diagram Notation	E means 'element of a set' (a value in the set) { } means the collection of values in the set. ξ means the 'universal set' (all the values to consider in the question)	Set A is the even numbers less than 10. $A = \{2, 4, 6, 8\}$ Set B is the prime numbers less than 10. $B = \{2, 3, 5, 7\}$
	 A' means 'not in set A' (called complement) A ∪ B means 'A or B or both' (called Union) A ∩ B means 'A and B (called Intersection) 	A \cup B = {2, 3, 4, 5, 6, 7, 8} A \cap B = {2}
7. AND rule for Probability	When two events, A and B, are independent :	What is the probability of rolling a 4 and flipping a Tails?
	$P(A \text{ and } B) = P(A) \times P(B)$	$P(4 \text{ and } Tails) = P(4) \times P(Tails)$ $= \frac{1}{6} \times \frac{1}{2} = \frac{1}{12}$
8. OR rule for Probability	When two events, A and B, are mutually exclusive:	What is the probability of rolling a 2 or rolling a 5?
	P(A or B) = P(A) + P(B)	$P(2 \text{ or } 5) = P(2) + P(5)$ $= \frac{1}{6} + \frac{1}{6} = \frac{2}{6} = \frac{1}{3}$
9. Conditional Probability	The probability of an event A happening, given that event B has already happened.	1 st Bead 2 nd Bead
	With conditional probability, check if the numbers on the second branches of a tree diagram changes. For example, if you have 4 red beads in a bag of 9 beads and pick a red bead on the first pick, then there will be 3 red beads left out of 8 beads on the second pick.	$\frac{4}{9}$ Red $\frac{3}{8}$ Red $\frac{4}{9}$ Red $\frac{5}{8}$ Green $\frac{5}{9}$ Green $\frac{4}{8}$ Red
	second pick.	4/8 Green


Topic: Functions

Topic/Skill	Definition/Tips	Example
1. Function Machine	Takes an input value, performs some operations and produces an output value.	INPUT X 3 + 4 OUTPUT
2. Function	A relationship between two sets of values.	$f(x) = 3x^2 - 5$ 'For any input value, square the term, then multiply by 3, then subtract 5'.
3. Function notation	f(x) x is the input value f(x) is the output value.	f(x) = 3x + 11 Suppose the input value is $x = 5$ The output value is $f(5) = 3 \times 5 + 11 = 26$
4. Inverse function	 f⁻¹(x) A function that performs the opposite process of the original function. 1. Write the function as y = f(x) 2. Rearrange to make x the subject. 3. Replace the y with x and the x with f⁻¹(x) 	$f(x) = (1 - 2x)^{5}.$ Find the inverse. $y = (1 - 2x)^{5}$ $\sqrt[5]{y} = 1 - 2x$ $1 - \sqrt[5]{y} = 2x$ $\frac{1 - \sqrt[5]{y}}{2} = x$ $f^{-1}(x) = \frac{1 - \sqrt[5]{x}}{2}$
5. Composite function	A combination of two or more functions to create a new function. fg(x) is the composite function that substitutes the function $g(x)$ into the function $f(x)$. fg(x) means 'do g first, then f' gf(x) means 'do f first, then g'	$f(x) = 5x - 3, g(x) = \frac{1}{2}x + 1$ What is $fg(4)$? $g(4) = \frac{1}{2} \times 4 + 1 = 3$ $f(3) = 5 \times 3 - 3 = 12 = fg(4)$ What is $fg(x)$? $fg(x) = 5\left(\frac{1}{2}x + 1\right) - 3 = \frac{5}{2}x + 2$

Topic: Graphs and Graph Transformations

Topic/Skill	Definition/Tips	Example
1. Coordinates	Written in pairs . The first term is the x - coordinate (movement across). The second term is the y-coordinate (movement up or down)	$\begin{array}{c} 10^{10} \\ 6 \\ 6 \\ 4 \\ 2 \\ \hline \\ 10 \\ -8 \\ -6 \\ -8 \\ -8 \\ -10 \\ \end{array}$
2. Linear	Straight line graph.	Example:
Graph	The equation of a linear graph can contain an x-term , a y-term and a number .	Other examples: x = y y = 4 x = -2 y = 2x - 7 y + x = 10 2y - 4x = 12
3. Quadratic Graph	A 'U-shaped' curve called a parabola. The equation is of the form $y = ax^2 + bx + c$, where <i>a</i> , <i>b</i> and <i>c</i> are numbers, $a \neq 0$. If $a < 0$, the parabola is upside down.	$y = x^{2-4x-5}$
4. Cubic Graph	The equation is of the form $y = ax^3 + k$, where k is an number. If $a > 0$, the curve is increasing. If $a < 0$, the curve is decreasing.	
5. Reciprocal Graph	The equation is of the form $y = \frac{A}{x}$, where <i>A</i> is a number and $x \neq 0$. The graph has asymptotes on the x-axis and y-axis.	y = 1/x
6. Asymptote	A straight line that a graph approaches but never touches .	horizontal asymptote vertical asymptote x

7. Exponential	The equation is of the form $y = a^x$, where	
Graph	α is a number called the base .	
	If $a > 1$ the graph increases.	2
	If $0 < a < 1$, the graph decreases.	
	The graph has an asymptote which is the x-axis .	-2 0 2 -2 0 2
8. $y = \sin x$	Key Coordinates:	y_{10} graph of y = sin θ
$0. y - \sin x$	(0,0), (90,1), (180,0), (270,-1), (360,0)	
	(0,0), (0,1), (100,0), (270, 1), (300,0)	
	y is never more than 1 or less than -1.	90° 180° 270° 360° 450° 540° 630° 720°
	Pattern repeats every 360°.	1.0
9. $y = \cos x$	Key Coordinates:	$\int_{-10}^{10} \text{graph of } y = \text{cosine } \theta$
-)	(0,1), (90,0), (180,-1), (270,0), (360,1)	
	<i>y</i> is never more than 1 or less than -1.	90° 180° 270° 360° 450° 540° 630° 720°
	Pattern repeats every 360°.	+ 1.0
10. $y = \tan x$	Key Coordinates:	y graph of $y = \tan \theta$
	(0,0), (45,1), (135,-1), (180,0),	▲
	(225, 1), (315, -1), (360, 0)	2_/ / / /
		0 90° 160° 270° 360° 450° 540° 630° 720°
	Asymptotes at $x = 90$ and $x = 270$	-2 -
	Pattern repeats every 360°.	
11. $f(x) + a$	Vertical translation up a units. $\begin{pmatrix} 0 \\ a \end{pmatrix}$	$\begin{array}{c} f(x) \cdot y f(x) + 3 \\ 1 \\ 5 \\ 5 \\ 5 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6$
		4
12 f(x + a)	(-a)	f(x+2) = f(x) + (-2)
12. $f(x + a)$	Horizontal translation <u>left</u> a units. $\begin{pmatrix} -a \\ 0 \end{pmatrix}$	
		25
		<
13. $-f(x)$	Reflection over the x-axis .	f(x)
		2
		-3 -2 -1 1 2 3 4 5 × x
		-2
		-f(x) 5 MathBits.com
14. $f(-x)$	Reflection over the y-axis .	

Topic: Area Under Graph and Gradient of Curve

Topic/Skill	Definition/Tips	Example
1. Area Under a Curve	To find the area under a curve, split it up into simpler shapes – such as rectangles, triangles and trapeziums – that approximate the area.	(1) (1) (1) (2) (1) (2) (1) (2)
2. Tangent to a Curve	A straight line that touches a curve at exactly one point .	y Tangent line
3. Gradient of a Curve	 The gradient of a curve at a point is the same as the gradient of the tangent at that point. 1. Draw a tangent carefully at the point. 2. Make a right-angled triangle. 3. Use the measurements on the axes to calculate the rise and run (change in y and change in x) 4. Calculate the gradient. 	$Gradient = \frac{Change in y}{Change in x}$ $= \frac{16}{2} = 8$

4. Rate of	The rate of change at a particular instant in	70
Change	time is represented by the gradient of the tangent to the curve at that point.	Positive rate of change 0 0 0 0 0 2 4 6 8 Time (s) Negative rate of change 0 0 0 2 4 6 8 Time (s)
5. Distance- Time Graphs	You can find the speed from the gradient of the line (Distance ÷ Time) The steeper the line, the quicker the speed. A horizontal line means the object is not moving (stationary).	Distance (Km)
6. Velocity- Time Graphs	You can find the acceleration from the gradient of the line (Change in Velocity ÷ Time) The steeper the line, the quicker the acceleration. A horizontal line represents no acceleration, meaning a constant velocity .	Velocity (m/s)
	The area under the graph is the distance .	

Topic: Iteration

Topic/Skill	Definition/Tips	Example
1. Iteration	The act of repeating a process over and over again, often with the aim of approximating a desired result more closely. Recursive Notation: $x_{n+1} = \sqrt{3x_n + 6}$	$x_{1} = 4$ $x_{2} = \sqrt{3 \times 4 + 6} = 4.242640 \dots$ $x_{3} = \sqrt{3 \times 4.242640} \dots + 6$ $= 4.357576 \dots$
2. Iterative Method	To create an iterative formula, rearrange an equation with more than one x term to make one of the x terms the subject . You will be given the first value to substitute in, often called x_1 . Keep substituting in your previous answer until your answers are the same to a certain degree of accuracy. This is called converging to a limit. Use the 'ANS' button on your calculator to keep substituting in the previous answer.	Use an iterative formula to find the positive root of $x^2 - 3x - 6 = 0$ to 3 decimal places. $x_1 = 4$ Answer: $x^2 = 3x + 6$ $x = \sqrt{3x + 6}$ So $x_{n+1} = \sqrt{3x_n + 6}$ $x_1 = 4$ $x_2 = \sqrt{3 \times 4 + 6} = 4.242640 \dots$ $x_3 = \sqrt{3 \times 4.242640} \dots + 6$ $= 4.357576 \dots$ Keep repeating $x_7 = 4.372068 \dots = 4.372 (3dp)$ $x_8 = 4.372208 \dots = 4.372 (3dp)$ So answer is $x = 4.372 (3dp)$

Topic: Equation of a Circle and Tangent

Topic/Skill	Definition/Tips	Example
1. Equation of a Circle	The equation of a circle , centre (0,0), radius r, is: $x^2 + y^2 = r^2$	<i>y</i> 5 <i>x</i> <i>x</i>
		$x^2 + y^2 = 25$
2. Tangent	A straight line that touches a circle at exactly one point, never entering the circle's interior.A radius is perpendicular to a tangent at the point of contact.	A BOO
3. Gradient	Gradient is another word for slope . $G = \frac{Rise}{Run} = \frac{Change in y}{Change in x} = \frac{y_2 - y_1}{x_2 - x_1}$	(x_{2},y_{2}) $B(-3,4)$ $F(-3,4)$
4. Circle Theorem 5	A tangent is perpendicular to the radius at the point of contact.	y = 5cm (Pythagoras' Theorem)

Topic: Histograms and Cumulative Frequency Topic/Skill Example **Definition/Tips** A visual way to display frequency data 1. Histograms Frequency using bars. Density (FD)Bars can be **unequal in width**. $8 \div 5 = 1.6$ Histograms show **frequency density** on the $6 \div 20 = 0.3$ y-axis, not frequency. $15 \div 15 = 1$ $5 \div 25 = 0.2$ $Frequency \ Density = \frac{Frequency}{Class \ Width}$ Height(cm) Frequency $0 < h \le 10$ 8 $10 < h \le 30$ 6 15 $30 < h \le 45$ 5 $45 < h \le 70$ 2. Interpreting The **area** of the bar is proportional to the A histogram shows information about frequency of that class interval. the heights of a number of plants. 4 Histograms plants were less than 5cm tall. Find the Frequency = Freq Density number of plants more than 5cm tall. × Class Width Height (cm) Above 5cm: $1.2 \ge 10 + 2.4 \ge 15 = 12 + 36 = 48$ Cumulative Frequency is a running total. 3. Cumulative Cumulative Frequency Frequency 15 Frequency Age 15 + 35 = 5015 $0 < a \le 10$ 50 + 10 = 6035 $10 < a \le 40$ $40 < a \le 50$ 10 4. Cumulative A cumulative frequency diagram is a **curve** 40-Frequency that goes up. It looks a little like a 30 Diagram stretched-out S shape. CF 20. Plot the cumulative frequencies at the end-10 **point** of each interval. 0 30 10 20 40 50 Height

5. Quartiles from Cumulative Frequency Diagram	 Lower Quartile (Q1): 25% of the data is less than the lower quartile. Median (Q2): 50% of the data is less than the median. Upper Quartile (Q3): 75% of the data is less than the upper quartile. Interquartile Range (IQR): represents the middle 50% of the data. 	IQR = 37 - 18 = 19
6. Hypothesis	A statement that might be true, which can be tested.	Hypothesis: 'Large dogs are better at catching tennis balls than small dogs'. We can test this hypothesis by having hundreds of different sized dogs try to catch tennis balls.

Topic: Proofs

Topic/Skill	Definition/Tips	Example
1. Expression	A mathematical statement written using symbols , numbers or letters ,	$3x + 2$ or $5y^2$
2. Equation	A statement showing that two expressions are equal	2y - 17 = 15
3. Identity	An equation that is true for all values of the variables	$2x \equiv x + x$
	An identity uses the symbol: \equiv	
4. Formula	Shows the relationship between two or more variables	Area of a rectangle = length x width or $A = LxW$
5. Coefficient	A number used to multiply a variable.	6z
	It is the number that comes before/in front of a letter.	6 is the coefficient z is the variable
6. Odds and Evens	An even number is a multiple of 2 An odd number is an integer which is not a multiple of 2.	If n is an integer (whole number): An even number can be represented by 2n or 2m etc.
		An odd number can be represented by 2n-1 or 2n+1 or 2m+1 etc.
7. Consecutive Integers	Whole numbers that follow each other in order.	If n is an integer: n, n+1, n+2 etc. are consecutive integers.
8. Square Terms	A term that is produced by multiply another term by itself.	If n is an integer: n^2 , m^2 etc. are square integers
9. Sum	The sum of two or more numbers is the value you get when you add them together.	The sum of 4 and 6 is 10
10. Product	The product of two or more numbers is the value you get when you multiply them together.	The product of 4 and 6 is 24
11. Multiple	To show that an expression is a multiple of a number, you need to show that you can factor out the number .	$4n^2 + 8n - 12$ is a multiple of 4 because it can be written as:
		$4(n^2 + 2n - 3)$

Topic: Vectors

Topic/Skill	Definition/Tips	Example
1. Translation	Translate means to move a shape . The shape does not change size or orientation .	Q 3 3 4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
2. Vector Notation	A vector can be written in 3 ways: a or \overrightarrow{AB} or $\begin{pmatrix} 1\\ 3 \end{pmatrix}$	
3. Column Vector	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-)	$\binom{2}{3}$ means '2 right, 3 up' $\binom{-1}{-5}$ means '1 left, 5 down'
4. Vector	A vector is a quantity represented by an arrow with both direction and magnitude . $\overrightarrow{AB} = -\overrightarrow{BA}$	$\overrightarrow{AB} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$
5. Magnitude	Magnitude is defined as the length of a vector.	Magnitude (length) can be calculated using Pythagoras Theorem: 3 ² + 4 ² = 25 5 ² 5
6. Equal Vectors	If two vectors have the same magnitude and direction , they are equal .	
7. Parallel Vectors	Parallel vectors are multiples of each other.	$2\mathbf{a}+\mathbf{b}$ and $4\mathbf{a}+2\mathbf{b}$ are parallel as they are multiple of each other.

0 0 11		
8. Collinear Vectors	Collinear vectors are vectors that are on the same line. To show that two vectors are collinear, show that one vector is a multiple of the other (parallel) AND that both vectors share a point.	A
9. Resultant Vector	The resultant vector is the vector that results from adding two or more vectors together. The resultant can also be shown by lining up the head of one vector with the tail of the other.	if $\underline{\mathbf{a}} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$ and $\underline{\mathbf{b}} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$ then $\underline{\mathbf{a}} + \underline{\mathbf{b}} = \begin{pmatrix} 4 \\ 4 \end{pmatrix} + \begin{pmatrix} 2 \\ -2 \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$
10. Scalar of a Vector	A scalar is the number we multiply a vector by.	Example: $3a + 2b =$ $= 3\binom{2}{1} + 2\binom{4}{-1}$ $= \binom{6}{3} + \binom{8}{-2}$ $= \binom{14}{1}$
11. Vector Geometry	$\overrightarrow{OA} = a \overrightarrow{AO} = -a$ $\overrightarrow{OB} = b \overrightarrow{BO} = -a + b = b - a$ $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = -a + b = b - a$ $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OA} = -b + a = a - b$	Example 1: X is the midpoint of AB . Find \overrightarrow{OX} Answer: Draw X on the original diagram \overrightarrow{OX} Now build up a journey. You could use $\overrightarrow{OX} = \overrightarrow{OA} + \frac{1}{2}\overrightarrow{AB}$. This will give: $\overrightarrow{OX} = a + \frac{1}{2}(b-a)$. This will simplify to $\frac{1}{2}a + \frac{1}{2}b$ or $\frac{1}{2}(a+b)$

Topic: Algebraic Fractions

Topic/Skill	Definition/Tips	Example
1. Algebraic Fraction	A fraction whose numerator and denominator are algebraic expressions .	$\frac{6x}{3x-1}$
2. Adding/ Subtracting Algebraic Fractions	For $\frac{a}{b} \pm \frac{c}{d}$, the common denominator is <i>bd</i> $\frac{a}{b} \pm \frac{c}{d} = \frac{ad}{bd} \pm \frac{bc}{bd} = \frac{ad \pm bc}{bd}$	$\frac{\frac{1}{x} + \frac{x}{2y}}{\frac{1}{2xy} + \frac{x(x)}{2xy}}$ $= \frac{\frac{1(2y)}{2xy} + \frac{x(x)}{2xy}}{\frac{2y + x^2}{2xy}}$ $\frac{\frac{x}{3} \times \frac{x + 2}{x - 2}}{\frac{x + 2}{x - 2}}$
3. Multiplying Algebraic Fractions	Multiply the numerators together and the denominators together. $\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$	$\frac{\frac{x}{3} \times \frac{x+2}{x-2}}{=\frac{x(x+2)}{3(x-2)}} = \frac{\frac{x^2+2x}{3x-6}}{=\frac{x^2+2x}{3x-6}}$
4. Dividing Algebraic Fractions	Multiply the first fraction by the reciprocal of the second fraction. $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$	$\frac{\frac{x}{3} \div \frac{2x}{7}}{= \frac{x}{3} \times \frac{7}{2x}}$ $= \frac{\frac{7}{3} \times \frac{7}{2x}}{= \frac{7x}{6x} = \frac{7}{6}}$ $\frac{\frac{x^2 + x - 6}{2x - 4} = \frac{(x + 3)(x - 2)}{2(x - 2)} = \frac{x + 3}{2}$
5. Simplifying Algebraic Fractions	Factorise the numerator and denominator and cancel common factors .	$\frac{x^2 + x - 6}{2x - 4} = \frac{(x + 3)(x - 2)}{2(x - 2)} = \frac{x + 3}{2}$

Topic: Growth and Decay

Topic/Skill	Definition/Tips	Example
1. Exponential Growth	When we multiply a number repeatedly by the same number (\neq 1), resulting in the number increasing by the same proportion each time.	1, 2, 4, 8, 16, 32, 64, 128 is an example of exponential growth, because the numbers are being multiplied by 2 each time.
	The original amount can grow very quickly in exponential growth.	
2. Exponential Decay	When we multiply a number repeatedly by the same number ($0 < x < 1$), resulting in the number decreasing by the same proportion each time. The original amount can decrease very quickly in exponential decay.	1000, 200, 40, 8 is an example of exponential decay, because the numbers are being multiplied by $\frac{1}{5}$ each time.
3. Compound Interest	Interest paid on the original amount and the accumulated interest .	A bank pays 5% compound interest a year. Bob invests £3000. How much will he have after 7 years. $3000 \times 1.05^7 = £4221.30$
4. Exponential Graph	The equation is of the form $y = a^x$, where <i>a</i> is a number called the base . If $a > 1$ the graph increases . If $0 < a < 1$, the graph decreases . The graph has an asymptote which is the x-axis .	
	The y-intercept of the graph $y = a^x$ is (0, 1)s	

Topic: Real Life Graphs

Topic/Skill	Definition/Tips	Example
Topic/Skill 1. Real Life Graphs	Definition/Tips Graphs that are supposed to model some real-life situation. The actual meaning of the values depends on the labels and units on each axis. The gradient might have a contextual meaning. The y-intercept might have a contextual meaning. The area under the graph might have a contextual meaning. The area under the graph might have a contextual meaning.	Example (4) (4) (4) (5) (4) (4) (5) (4) (5) (4) (5) (4) (5) (5) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7
2. Conversion Graph	 A line graph to convert one unit to another. Can be used to convert units (eg. miles and kilometres) or currencies (\$ and £) Find the value you know on one axis, read up/across to the conversion line and read the equivalent value from the other axis. 	not linked to how long the ladder is hired for). The additional cost is £7. Conversion graph miles \iff kilometres km 20 16 12 8 4 0 5 10 miles15
3. Depth of Water in Containers	Graphs can be used to show how the depth of water changes as different shaped containers are filled with water at a constant rate.	8 km = 5 miles