

Topic: Basic Number and Decimals

Topic/Skill	Definition/Tips	Example
1. Integer	A whole number that can be positive, negative or zero.	-3, 0, 92
2. Decimal	A number with a decimal point in it. Can be positive or negative.	3.7, 0.94, -24.07
3. Negative Number	A number that is less than zero . Can be decimals.	-8, -2.5
4. Addition	To find the total , or sum , of two or more numbers. 'add', 'plus', 'sum'	3 + 2 + 7 = 12
5. Subtraction	To find the difference between two numbers. To find out how many are left when some are taken away. 'minus', 'take away', 'subtract'	10 - 3 = 7
6. Multiplication	Can be thought of as repeated addition . 'multiply', 'times', 'product'	$3 \times 6 = 6 + 6 + 6 = 18$
7. Division	Splitting into equal parts or groups. The process of calculating the number of times one number is contained within another one . 'divide', 'share'	$20 \div 4 = 5$ $\frac{20}{4} = 5$
8. Remainder	The amount ' left over ' after dividing one integer by another.	The remainder of $20 \div 6$ is 2, because 6 divides into 20 exactly 3 times, with 2 left over.
9. BIDMAS	An acronym for the order you should do calculations in.	$6 + 3 \times 5 = 21, not 45$
	BIDMAS stands for 'Brackets, Indices, Division, Multiplication, Addition and Subtraction'.	$5^2 = 25$, where the 2 is the index/power.
	Indices are also known as 'powers' or 'orders'.	
	With strings of division and multiplication, or strings of addition and subtraction, and no brackets, work from left to right.	$12 \div 4 \div 2 = 1.5, not 6$
10. Recurring Decimal	A decimal number that has digits that repeat forever.	$\frac{1}{3} = 0.333 \dots = 0.\dot{3}$
	The part that repeats is usually shown by placing a dot above the digit that repeats, or	$\frac{1}{7} = 0.142857142857 \dots = 0.\dot{1}4285\dot{7}$

dots over the first and last digit of the repeating pattern.	$\frac{77}{600} = 0.128333 \dots = 0.1283$
	800

Topic: Factors and Multiples

Topic/Skill	Definition/Tips	Example
1. Multiple	The result of multiplying a number by an integer.	The first five multiples of 7 are:
	The times tables of a number.	7, 14, 21, 28, 35
2. Factor	A number that divides exactly into another	The factors of 18 are:
	number without a remainder.	1, 2, 3, 6, 9, 18
	It is useful to write factors in pairs	The factor pairs of 18 are:
		1, 18
		2,9
		3,6
3. Lowest	The smallest number that is in the times	The LCM of 3, 4 and 5 is 60 because it
Common	tables of each of the numbers given.	is the smallest number in the 3, 4 and 5
Multiple		times tables.
(LCM)		
4. Highest	The biggest number that divides exactly	The HCF of 6 and 9 is 3 because it is
Common	into two or more numbers.	the biggest number that divides into 6
Factor (HCF)		and 9 exactly.
5. Prime	A number with exactly two factors .	The first ten prime numbers are:
Number		
	A number that can only be divided by itself and one.	2, 3, 5, 7, 11, 13, 17, 19, 23, 29
	The number 1 is not prime, as it only has one factor, not two.	
6. Prime	A factor which is a prime number.	The prime factors of 18 are:
Factor		
		2,3
7. Product of	Finding out which prime numbers	$36 = 2 \times 2 \times 3 \times 3$
Prime Factors	multiply together to make the original	
	number.	(2) 18 or $2^2 \times 3^2$
	Use a prime factor tree.	2 9
	Also known as 'prime factorisation'.	3 3

Topic: Accuracy

Topic/Skill	Definition/Tips	Example
1. Place Value	The value of where a digit is within a	In 726, the value of the 2 is 20, as it is
	number.	in the 'tens' column.
2. Place Value Columns	The names of the columns that determine the value of each digit .	Millions Hundred Thousands Fen Thousands Hundredts Thousands Fens Ones Thousandths Fens Thousandths Fen Thousandths Millionths Millionths
	The 'ones' column is also known as the 'units' column.	
3. Rounding	To make a number simpler but keep its value close to what it was.	74 rounded to the nearest ten is 70, because 74 is closer to 70 than 80.
	If the digit to the right of the rounding digit is less than 5, round down . If the digit to the right of the rounding digit is 5 or more, round up .	152,879 rounded to the nearest thousand is 153,000.
4. Decimal Place	The position of a digit to the right of a decimal point .	In the number 0.372, the 7 is in the second decimal place.
		0.372 rounded to two decimal places is 0.37, because the 2 tells us to round down.
		Careful with money - don't write £27.4, instead write £27.40
5. Significant Figure	The significant figures of a number are the digits which carry meaning (ie. are significant) to the size of the number.	In the number 0.00821, the first significant figure is the 8.
	The first significant figure of a number cannot be zero .	In the number 2.740, the 0 is not a significant figure.
	In a number with a decimal, trailing zeros are not significant.	0.00821 rounded to 2 significant figures is 0.0082.
		19357 rounded to 3 significant figures is 19400. We need to include the two zeros at the end to keep the digits in the same place value columns.
6. Truncation	A method of approximating a decimal number by dropping all decimal places	3.14159265 can be truncated to 3.1415 (note that if it had been
7. Error	past a certain point without rounding.A range of values that a number could	rounded, it would become 3.1416) 0.6 has been rounded to 1 decimal
Interval	have taken before being rounded or truncated.	place.
	An error interval is written using inequalities, with a lower bound and an upper bound .	$0.55 \le x < 0.65$
		The lower bound is 0.55
		The upper bound is 0.65

	Note that the lower bound inequality can be 'equal to', but the upper bound cannot be 'equal to'.	
8. Estimate	To find something close to the correct answer .	An estimate for the height of a man is 1.8 metres.
9. Approximation	 When using approximations to estimate the solution to a calculation, round each number in the calculation to 1 significant figure. ≈ means 'approximately equal to' 	$\frac{348 + 692}{0.526} \approx \frac{300 + 700}{0.5} = 2000$ 'Note that dividing by 0.5 is the same as multiplying by 2'
10. Rational Number	A number of the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$. A number that cannot be written in this form is called an 'irrational' number	$\frac{4}{9}$, 6, $-\frac{1}{3}$, $\sqrt{25}$ are examples of rational numbers. π , $\sqrt{2}$ are examples of an irrational numbers.
11. Surd	The irrational number that is a root of a positive integer , whose value cannot be determined exactly. Surds have infinite non-recurring decimals .	$\sqrt{2}$ is a surd because it is a root which cannot be determined exactly. $\sqrt{2} = 1.41421356$ which never repeats.
12. Rules of Surds	$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$ $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ $a\sqrt{c} \pm b\sqrt{c} = (a \pm b)\sqrt{c}$ $\sqrt{a} \times \sqrt{a} = a$	$\sqrt{48} = \sqrt{16} \times \sqrt{3} = 4\sqrt{3}$ $\sqrt{\frac{25}{36}} = \frac{\sqrt{25}}{\sqrt{36}} = \frac{5}{6}$ $2\sqrt{5} + 7\sqrt{5} = 9\sqrt{5}$ $\sqrt{7} \times \sqrt{7} = 7$
13. Rationalise a Denominator	The process of rewriting a fraction so that the denominator contains only rational numbers .	$\frac{\sqrt{7} \times \sqrt{7} = 7}{\frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{3} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{6}}{2}}$ $\frac{6}{3 + \sqrt{7}} = \frac{6(3 - \sqrt{7})}{(3 + \sqrt{7})(3 - \sqrt{7})}$ $= \frac{18 - 6\sqrt{7}}{9 - 7}$ $= \frac{18 - 6\sqrt{7}}{2} = 9 - 3\sqrt{7}$

Topic: Fractions

Topic/Skill	Definition/Tips	Example
1. Fraction	A mathematical expression representing the division of one integer by another.	$\frac{2}{7}$ is a 'proper' fraction.
	Fractions are written as two numbers separated by a horizontal line.	$\frac{9}{4}$ is an 'improper' or 'top-heavy' fraction.
2. Numerator	The top number of a fraction.	In the fraction $\frac{3}{5}$, 3 is the numerator.
3. Denominator	The bottom number of a fraction.	In the fraction $\frac{3}{5}$, 5 is the denominator.
4. Unit Fraction	A fraction where the numerator is one and the denominator is a positive integer.	$\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ <i>etc.</i> are examples of unit fractions.
5. Reciprocal	The reciprocal of a number is 1 divided by the number .	The reciprocal of 5 is $\frac{1}{5}$
	The reciprocal of x is $\frac{1}{x}$	The reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$, because
	When we multiply a number by its reciprocal we get 1. This is called the 'multiplicative inverse'.	$\frac{2}{3} \times \frac{3}{2} = 1$
6. Mixed Number	A number formed of both an integer part and a fraction part .	$3\frac{2}{5}$ is an example of a mixed number.
7. Simplifying Fractions	Divide the numerator and denominator by the highest common factor.	$\frac{20}{45} = \frac{4}{9}$
8. Equivalent Fractions	Fractions which represent the same value .	$\frac{2}{5} = \frac{4}{10} = \frac{20}{50} = \frac{60}{150} \text{ etc.}$
9. Comparing Fractions	To compare fractions, they each need to be rewritten so that they have a common	Put in to ascending order : $\frac{3}{4}$, $\frac{2}{3}$, $\frac{5}{6}$, $\frac{1}{2}$.
	denominator. Ascending means smallest to biggest.	Equivalent: $\frac{9}{12}, \frac{8}{12}, \frac{10}{12}, \frac{6}{12}$
	Descending means biggest to smallest .	Correct order: $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{5}{6}$
10. Fraction of an Amount	Divide by the bottom, times by the top	Find $\frac{2}{5}$ of £60 60 ÷ 5 = 12 12 × 2 = 24
11. Adding or Subtracting Fractions	Find the LCM of the denominators to find a common denominator. Use equivalent fractions to change each fraction to the common denominator .	$12 \times 2 = 24$ $\frac{2}{3} + \frac{4}{5}$ Multiples of 3: 3, 6, 9, 12, 15 Multiples of 5: 5, 10, 15 LCM of 3 and 5 = 15

	Then just add or subtract the numerators and keep the denominator the same .	$\frac{\frac{2}{3}}{\frac{4}{5}} = \frac{\frac{10}{15}}{\frac{12}{15}}$
12.	Multiply the numerators together and	$\frac{10}{15} + \frac{12}{15} = \frac{22}{15} = 1\frac{7}{15}$
Multiplying Fractions	multiply the denominators together.	$\overline{8} \times \overline{9} = \overline{72} = \overline{12}$
13. Dividing Fractions	'Keep it, Flip it, Change it – KFC' Keep the first fraction the same Flip the second fraction upside down Change the divide to a multiply	$\frac{3}{4} \div \frac{5}{6} = \frac{3}{4} \times \frac{6}{5} = \frac{18}{20} = \frac{9}{10}$
	Multiply by the reciprocal of the second fraction.	

Topic: Basic Percentages

Topic/Skill	Definition/Tips	Example
1. Percentage	Number of parts per 100.	31% means $\frac{31}{100}$
2. Finding 10%	To find 10% , divide by 10	10% of $\pounds 36 = 36 \div 10 = \pounds 3.60$
3. Finding 1%	To find 1%, divide by 100	1% of $\pounds 8 = 8 \div 100 = \pounds 0.08$
4. Percentage Change	DifferenceOriginal	A games console is bought for £200 and sold for £250. % change = $\frac{50}{200} \times 100 = 25\%$
5. Fractions to Decimals	Divide the numerator by the denominator using the bus stop method.	$\frac{3}{8} = 3 \div 8 = 0.375$
6. Decimals to Fractions	Write as a fraction over 10, 100 or 1000 and simplify.	$0.36 = \frac{36}{100} = \frac{9}{25}$
7. Percentages to Decimals	Divide by 100	$8\% = 8 \div 100 = 0.08$
8. Decimals to Percentages	Multiply by 100	$0.4 = 0.4 \times 100\% = 40\%$
9. Fractions to Percentages	Percentage is just a fraction out of 100. Make the denominator 100 using equivalent fractions . When the denominator doesn't go in to 100, use a calculator and multiply the fraction by 100 .	$\frac{3}{25} = \frac{12}{100} = 12\%$ $\frac{9}{17} \times 100 = 52.9\%$
10. Percentages to Fractions	Percentage is just a fraction out of 100. Write the percentage over 100 and simplify.	$14\% = \frac{14}{100} = \frac{7}{50}$

Topic: Calculating with Percentages

Topic/Skill	Definition/Tips	Example
1. Increase or	Non-calculator: Find the percentage and	Increase 500 by 20% (Non Calc):
Decrease by a	add or subtract it from the original	10% of 500 = 50
Percentage	amount.	so 20% of 500 = 100
8-		500 + 100 = 600
	Calculator: Find the percentage multiplier	
	and multiply.	Decrease 800 by 17% (Calc):
		100%-17%=83%
		$83\% \div 100 = 0.83$
		$0.83 \ge 800 = 664$
2. Percentage	The number you multiply a quantity by to	The multiplier for increasing by 12% is
Multiplier	increase or decrease it by a percentage.	1.12
1		
		The multiplier for decreasing by 12% is
		0.88
		The multiplier for increasing by 100%
		is 2.
3. Reverse	Find the correct percentage given in the	A jumper was priced at £48.60 after a
Percentage	question, then work backwards to find	10% reduction. Find its original price.
_	100%	
		100% - 10% = 90%
	Look out for words like 'before' or	
	'original'	$90\% = \pounds 48.60$
		$1\% = \pounds 0.54$
		$100\% = \pounds 54$
4. Simple	Interest calculated as a percentage of the	£1000 invested for 3 years at 10%
Interest	original amount.	simple interest.
		10% of $\pounds 1000 = \pounds 100$
		Interest = $3 \times \pounds 100 = \pounds 300$

Topic: Algebra

Topic/Skill	Definition/Tips	Example
1. Expression	A mathematical statement written using symbols , numbers or letters ,	$3x + 2$ or $5y^2$
2. Equation	A statement showing that two expressions are equal	2y - 17 = 15
3. Identity	 An equation that is true for all values of the variables An identity uses the symbol: ≡ 	$2x \equiv x + x$
4. Formula	Shows the relationship between two or more variables	Area of a rectangle = length x width or A= LxW
5. Simplifying Expressions	Collect 'like terms'. Be careful with negatives. x^2 and x are not like terms.	2x + 3y + 4x - 5y + 3 = 6x - 2y + 3 3x + 4 - x ² + 2x - 1 = 5x - x ² + 3
6. <i>x</i> times <i>x</i>	The answer is x^2 not $2x$.	Squaring is multiplying by itself, not by 2.
7. $p \times p \times p$	The answer is p^3 not $3p$	If p=2, then $p^3=2x2x2=8$, not 2x3=6
8. <i>p</i> + <i>p</i> + <i>p</i>	The answer is 3p not p^3	If p=2, then $2+2+2=6$, not $2^3 = 8$
9. Expand	To expand a bracket, multiply each term in the bracket by the expression outside the bracket.	3(m+7) = 3x + 21
10. Factorise	The reverse of expanding . Factorising is writing an expression as a product of terms by ' taking out' a common factor .	6x - 15 = 3(2x - 5), where 3 is the common factor.

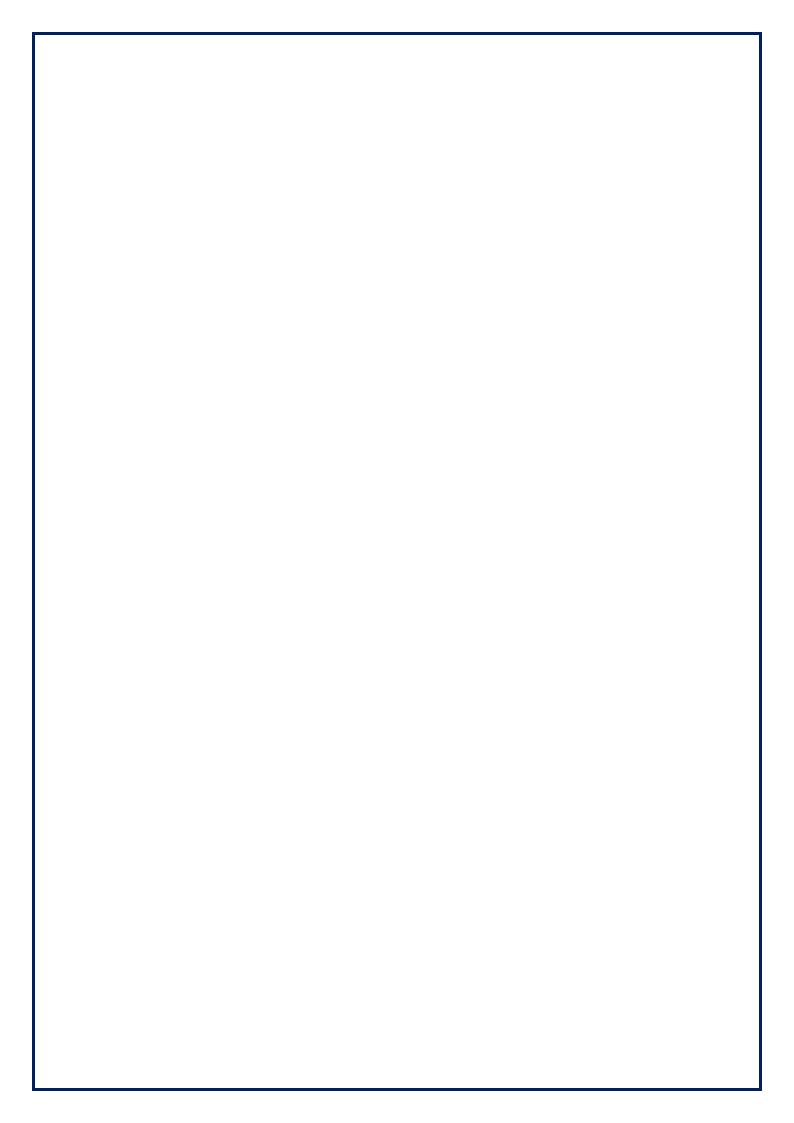
Topic: Equations and Formulae

Definition/Tips	Example
To find the answer /value of something	Solve $2x - 3 = 7$
Use inverse operations on both sides of the equation (balancing method) until you find the value for the letter.	Add 3 on both sides 2x = 10 Divide by 2 on both sides x = 5
Opposite	The inverse of addition is subtraction. The inverse of multiplication is division.
Use inverse operations on both sides of the formula (balancing method) until you find the expression for the letter.	Make x the subject of $y = \frac{2x-1}{z}$ Multiply both sides by z yz = 2x - 1 Add 1 to both sides yz + 1 = 2x Divide by 2 on both sides $\frac{yz + 1}{2} = x$ We now have x as the subject.
Substitute letters for words in the question.	Bob charges £3 per window and a £5 call out charge. C = 3N + 5Where N=number of windows and
Replace letters with numbers.Be careful of $5x^2$. You need to square first,	C=cost a = 3, b = 2 and c = 5. Find: $1. 2a = 2 \times 3 = 6$ $2. 3a - 2b = 3 \times 3 - 2 \times 2 = 5$
	To find the answer/value of something Use inverse operations on both sides of the equation (balancing method) until you find the value for the letter. Opposite Use inverse operations on both sides of the formula (balancing method) until you find the expression for the letter. Substitute letters for words in the question. Replace letters with numbers.

Topic: Solving Quadratics by Factorising

Topic/Skill	Definition/Tips	Example
1. Quadratic	A quadratic expression is of the form	Examples of quadratic expressions:
-		x^2
	$ax^2 + bx + c$	$8x^2 - 3x + 7$
	where a, b and c are numbers, $a \neq 0$	Examples of non-quadratic expressions: $2u^3 - 5u^2$
		$2x^3 - 5x^2$
2. Factorising	When a quadratic expression is in the form	9x - 1 $x^{2} + 7x + 10 = (x + 5)(x + 2)$
Quadratics	$x^{2} + bx + c$ find the two numbers that add	x + 7x + 10 = (x + 3)(x + 2) (because 5 and 2 add to give 7 and
Quadratics	to give b and multiply to give c.	multiply to give 10)
		$x^2 + 2x - 8 = (x + 4)(x - 2)$
		(because +4 and -2 add to give +2 and
		multiply to give -8)
3. Difference	An expression of the form $a^2 - b^2$ can be	$x^2 - 25 = (x + 5)(x - 5)$
of Two Squares	factorised to give $(a + b)(a - b)$	$16x^2 - 81 = (4x + 9)(4x - 9)$
4. Solving	Isolate the x^2 term and square root both	$2x^2 = 98$
Quadratics	sides.	$x^2 = 49$
$(ax^2 = b)$	Remember there will be a positive and a	$x = \pm 7$
	negative solution.	
5. Solving	Factorise and then solve = 0 .	$x^2 - 3x = 0$
Quadratics		x(x-3) = 0
$(ax^2 + bx = 0)$		x = 0 or x = 3
6. Solving	Factorise the quadratic in the usual way.	Solve $x^2 + 3x - 10 = 0$
Quadratics by	Solve = 0	50170 x 1 5x 10 = 0
Factorising		Factorise: $(x + 5)(x - 2) = 0$
(a = 1)	Make sure the equation $= 0$ before	x = -5 or x = 2
	factorising.	
7. Factorising	When a quadratic is in the form	Factorise $6x^2 + 5x - 4$
Quadratics when $a \neq 1$	$ax^2 + bx + c$	$1.6 \times -4 = -24$
when $u \neq 1$	 Multiply a by c = ac Find two numbers that add to give b and 	1. $6 \times -4 = -24$ 2. Two numbers that add to give +5 and
	multiply to give ac.	multiply to give -24 are $+8$ and -3
	3. Re-write the quadratic, replacing bx with	3. $6x^2 + 8x - 3x - 4$
	the two numbers you found.	4. Factorise in pairs:
	4. Factorise in pairs – you should get the	2x(3x+4) - 1(3x+4)
	same bracket twice	5. Answer = $(3x + 4)(2x - 1)$
	5. Write your two brackets – one will be the	
	repeated bracket, the other will be made of	
8 Solving	the factors outside each of the two brackets.	Solve $2x^2 + 7x - 4 = 0$
8. Solving Quadratics by	Factorise the quadratic in the usual way. Solve = 0	Solve $2x^2 + 7x - 4 = 0$
Factorising		Factorise: $(2x - 1)(x + 4) = 0$
$(a \neq 1)$	Make sure the equation $= 0$ before	Factorise: $(2x - 1)(x + 4) = 0$ $x = \frac{1}{2} \text{ or } x = -4$
	factorising.	$x = \frac{1}{2}$ or $x = -4$

Topic: Perimeter and Area


Topic/Skill	Definition/Tips	Example
1. Perimeter	The total distance around the outside of a	8 cm
	shape.	
		5 cm
	Units include: <i>mm</i> , <i>cm</i> , <i>m</i> etc.	
2. Area	The amount of space inside a shape.	P = 8 + 5 + 8 + 5 = 26cm
2. Mica	The amount of space make a shape.	
	Units include: mm^2 , cm^2 , m^2	
3. Area of a	Length x Width	9 cm
Rectangle		4 cm
		$A = 36cm^2$
4. Area of a	Base x Perpendicular Height	
Parallelogram	Not the slant height.	4cm 3cm
		$A = 21cm^2$
5. Area of a	Base x Height ÷ 2	9
Triangle		4 5
		$A = 24cm^2$
6. Area of a Kite	Split in to two triangles and use the method above.	t
Kite		2.2m
		← 8m → 4 0 0 2 ²
7. Area of a	$(\boldsymbol{a}+\boldsymbol{b})$	$A = 8.8m^2$ 6 cm
Trapezium	$\frac{(a+b)}{2} \times h$	
		5 cm
	"Half the sum of the parallel side, times the	$\stackrel{\underline{\ }}{\longleftarrow} A = 55 cm^2$
	height between them. That is how you calculate the area of a trapezium"	$A = 55 cm^2$
8. Compound	A shape made up of a combination of	
Shape	other known shapes put together.	
		- +
		+

Topic: Ratio

Topic/Skill	Definition/Tips	Example
1. Ratio	Ratio compares the size of one part to another part .	3:1
	Written using the ':' symbol.	
2. Proportion	Proportion compares the size of one part to the size of the whole .	In a class with 13 boys and 9 girls, the $13 + 13 + 14$
		proportion of boys is $\frac{13}{22}$ and the proportion of girls is $\frac{9}{22}$
2.6. 1.6.	Usually written as a fraction.	22
3. Simplifying Ratios	Divide all parts of the ratio by a common factor .	5 : 10 = 1 : 2 (divide both by 5) 14 : 21 = 2 : 3 (divide both by 7)
4. Ratios in the	Divide both parts of the ratio by one of the	$5:7 = 1:\frac{7}{5}$ in the form 1: n
form $1 : n$ or $n : 1$	numbers to make one part equal 1 .	$5:7 = \frac{5}{7}:1$ in the form n : 1
5. Sharing in a Ratio	 Add the total parts of the ratio. Divide the amount to be shared by this 	Share £60 in the ratio 3 : 2 : 1.
Ratio	value to find the value of one part.	3 + 2 + 1 = 6
	3. Multiply this value by each part of the	$60 \div 6 = 10$
	ratio.	3 x 10 = 30, 2 x 10 = 20, 1 x 10 = 10 £30 : £20 : £10
	Use only if you know the total .	
6. Proportional	Comparing two things using multiplicative	X 2
Reasoning	reasoning and applying this to a new	30 minutes 60 pages
	situation.	? minutes 150 pages
	Identify one multiplicative link and use this	
	to find missing quantities.	x 2
7. Unitary	Finding the value of a single unit and then	3 cakes require 450g of sugar to make.
Method	finding the necessary value by multiplying	Find how much sugar is needed to
	the single unit value.	make 5 cakes.
		3 cakes = 450 g
		So 1 cake = $150g$ (÷ by 3)
		So 5 cakes = $750 \text{ g} (x \text{ by } 5)$
8. Ratio	Find what one part of the ratio is worth	Money was shared in the ratio 3:2:5
already shared	using the unitary method .	between Ann, Bob and Cat. Given that
		Bob had $\pounds 16$, found out the total
		amount of money shared.
		$\pounds 16 = 2$ parts
		So $\pounds 8 = 1$ part
<u> </u>		$3 + 2 + 5 = 10$ parts, so $8 \ge 10 = \text{\pounds}80$
9. Best Buys	Find the unit cost by dividing the price by	8 cakes for £1.28 \rightarrow 16p each (÷by 8)
	the quantity . The lowest number is the best value.	13 cakes for £2.05 \rightarrow 15.8p each (÷by 13)
		Pack of 13 cakes is best value.

Topic: Indices

Definition/Tips	Example
The number you get when you multiply a	1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121,
number by itself.	144, 169, 196, 225
	$9^2 = 9 \times 9 = 81$
The number you multiply by itself to get	$\sqrt{36} = 6$
another number.	
	because $6 \times 6 = 36$
The reverse process of squaring a number.	
	Solve $x^2 = 25$
solutions, one positive and one negative.	
	x = 5 or x = -5
	This can also be written as $x = \pm 5$
	1, 8, 27, 64, 125
	$2^{3} = 2 \times 2 \times 2 = 8$ $\sqrt[3]{125} = 5$
	v125 = 5
itsen again to get another number.	
The reverse process of cubing a number	because $5 \times 5 \times 5 = 125$
* *	The powers of 3 are:
-	
	$3^1 = 3$
	$3^2 = 9$
	$3^3 = 27$
	$3^4 = 81$ etc.
When multiplying with the same base	$7^5 \times 7^3 = 7^8$
(number or letter), add the powers.	$a^{12} \times a = a^{13}$
	$4x^5 \times 2x^8 = 8x^{13}$
8	$15^7 \div 15^4 = 15^3$
or letter), subtract the powers.	$x^9 \div x^2 = x^7$
m , n $m-n$	$20a^{11} \div 5a^3 = 4a^8$
	(2)5 10
0 1 1	$(y^2)^5 = y^{10}$
multiply the powers together.	$(6^3)^4 = 6^{12}$ $(5x^6)^3 = 125x^{18}$
$(a^m)^n - a^{mn}$	$(5x^{\circ})^{\circ} = 125x^{2\circ}$
$n = n^1$	$99999^0 = 1$
	,,,,, – 1
	. 1 1
	$3^{-2} = \frac{1}{3^2} = \frac{1}{9}$
$a^{-m} = \frac{1}{a^m}$	5 5
The denominator of a fractional power acts	$27^{\frac{2}{3}} = (\sqrt[3]{27})^2 = 3^2 = 9$
as a 'root'.	$273 = (\sqrt{27})^2 = 3^2 = 9$
	3 _ 3
The numerator of a fractional power acts as	$\left(\frac{25}{16}\right)^{\frac{3}{2}} = \left(\frac{\sqrt{25}}{\sqrt{16}}\right)^{3} = \left(\frac{5}{4}\right)^{3} = \frac{125}{64}$
a normal power.	$\left(\overline{16}\right) = \left(\overline{\sqrt{16}}\right) = \left(\overline{4}\right) = \overline{64}$
$a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^m$	
-	The number you get when you multiply a number by itself . The number you multiply by itself to get another number. The reverse process of squaring a number. Equations involving squares have two solutions , one positive and one negative . The number you get when you multiply a number by itself and itself again . The number you multiply by itself and itself again to get another number. The reverse process of cubing a number. The reverse process of cubing a number. The powers of a number are that number raised to various powers . When multiplying with the same base (number or letter), add the powers . $a^m \times a^n = a^{m+n}$ When dividing with the same base (number or letter), subtract the powers . $a^m \div a^n = a^{m-n}$ When raising a power to another power, multiply the powers together. $(a^m)^n = a^{mn}$ $p = p^1$ $p^0 = 1$ A negative power performs the reciprocal. $a^{-m} = \frac{1}{a^m}$ The denominator of a fractional power acts as a 'root'. The numerator of a fractional power acts as

		Topic: Proportion
Topic/Skill	Definition/Tips	Example
1. Direct Proportion	 If two quantities are in direct proportion, as one increases, the other increases by the same percentage. If y is directly proportional to x, this can be written as y ~ x An equation of the form y = kx represents direct proportion, where k is the constant of 	y $y = kx$
 2. Inverse Proportion 3. Using proportionality formulae 	proportionality . If two quantities are inversely proportional, as one increases , the other decreases by the same percentage . If y is inversely proportional to x, this can be written as $y \propto \frac{1}{x}$ An equation of the form $y = \frac{k}{x}$ represents inverse proportion. Direct: $y = kx$ or $y \propto x$ Inverse: $y = \frac{k}{x}$ or $y \propto \frac{1}{x}$	$y = \frac{k}{x}$ $y = \frac{k}{x}$ x $y = \frac{k}{x}$ x x $y = \frac{k}{x}$ x x x $y = \frac{k}{x}$ x
4. Direct	 Solve to find k using the pair of values in the question. Rewrite the equation using the k you have just found. Substitute the other given value from the question in to the equation to find the missing value. Graphs showing direct proportion can be 	$12 = k \times 4$ so k = 3 2. p = 3q 3. p = 3 x 20 = 60, so p = 60 Direct Proportion Graphs
Proportion with powers	written in the form $y = kx^n$ Direct proportion graphs will always start at the origin.	$y = 3x^{2}$ $y = 2x$ $y = 0.5x^{5}$
5. Inverse Proportion with powers	Graphs showing inverse proportion can be written in the form $y = \frac{k}{x^n}$ Inverse proportion graphs will never start at the origin.	Inverse Proportion Graphs

Topic: Angles

Topic/Skill	Definition/Tips	Example
1. Types of Angles	 Acute angles are less than 90°. Right angles are exactly 90°. Obtuse angles are greater than 90° but less than 180°. Reflex angles are greater than 180° but less than 360°. 	Acute Right Obtuse Reflex
2. Angle Notation	Can use one lower-case letters, eg. θ or x Can use three upper-case letters, eg. <i>BAC</i>	
3. Angles at a Point	Angles around a point add up to 360°.	$\begin{array}{c c} d \\ c \\ b \\ a+b+c+d = 360^{\circ} \end{array}$
4. Angles on a Straight Line	Angles around a point on a straight line add up to 180°.	$x y$ $x + y = 180^{\circ}$
5. Opposite Angles	Vertically opposite angles are equal.	$\frac{x/y}{y/x}$
6. Alternate Angles	Alternate angles are equal. They look like Z angles, but never say this in the exam.	x y
7. Corresponding Angles	Corresponding angles are equal . They look like F angles, but never say this in the exam.	$y \xrightarrow{x}$
8. Co-Interior Angles	Co-Interior angles add up to 180° . They look like C angles, but never say this in the exam.	$\begin{array}{c} y \\ x \\ y \\ \end{array}$

9. Angles in a Triangle	Angles in a triangle add up to 180°.	B 45 ° 55°
10. Types of Triangles	 Right Angle Triangles have a 90° angle in. Isosceles Triangles have 2 equal sides and 2 equal base angles. Equilateral Triangles have 3 equal sides and 3 equal angles (60°). Scalene Triangles have different sides and different angles. Base angles in an isosceles triangle are equal. 	Right Angled Isosceles
11. Angles in a Quadrilateral	Angles in a quadrilateral add up to 360°.	65° 93°
12. Polygon	A 2D shape with only straight edges.	Rectangle, Hexagon, Decagon, Kite etc.
13. Regular	A shape is regular if all the sides and all the angles are equal .	
14. Names of Polygons	3-sided = Triangle 4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon 7-sided = Heptagon/Septagon 8-sided = Octagon 9-sided = Nonagon 10-sided = Decagon	Triangle Quadrilateral Pentagon Hexagon Heptagon Octagon Nonagon Decagon
15. Sum of Interior Angles	$(n-2) \times 180$ where n is the number of sides.	Sum of Interior Angles in a Decagon = $(10 - 2) \times 180 = 1440^{\circ}$
16. Size of Interior Angle in a Regular	$\frac{(n-2)\times 180}{n}$	Size of Interior Angle in a Regular Pentagon = $\frac{(5-2) \times 180}{5} = 108^{\circ}$

	180 – Size of Exterior Angle	
17. Size of	360	Size of Exterior Angle in a Regular
Exterior Angle	\overline{n}	Octagon =
in a Regular		360 - 45°
Polygon	You can also use the formula:	$\frac{360}{8} = 45^{\circ}$
	180 – Size of Interior Angle	-

Topic: Properties of Polygons

Topic/Skill	Definition/Tips	Example
1. Square	Four equal sides	
1. Square	Four right angles	
	Opposite sides parallel	
	• Diagonals bisect each other at right	
	angles	
	Four lines of symmetry Detational symmetry	
2. Rectangle	 Rotational symmetry of order four Two pairs of equal sides 	
2. Rectaligie	• Four right angles	
	• Opposite sides parallel	
	• Diagonals bisect each other, not at right	T T
	angles	
	• Two lines of symmetry	
	• Rotational symmetry of order two	
3. Rhombus	• Four equal sides	<u> </u>
	• Diagonally opposite angles are equal	\times
	• Opposite sides parallel	
	• Diagonals bisect each other at right	
	angles	\sim
	• Two lines of symmetry	\sim
	• Rotational symmetry of order two	
4.	• Two pairs of equal sides	
Parallelogram	• Diagonally opposite angles are equal	
	Opposite sides parallel	F F
	• Diagonals bisect each other, not at right	
	angles	
	• No lines of symmetry	
	Rotational symmetry of order two	
5. Kite	• Two pairs of adjacent sides of equal	***
	length	$\langle \rangle$
	• One pair of diagonally opposite angles	
	are equal (where different length sides meet)	$\langle \rangle$
	Diagonals intersect at right angles, but	\sim
	do not bisect	
	• One line of symmetry	
	No rotational symmetry	
6. Trapezium	One pair of parallel sides	
1	 No lines of symmetry 	
	 No rotational symmetry 	
	10 I Outoful Symmotry	
	Special Case: Isosceles Trapeziums have	
	one line of symmetry.	
	one mie or symmetry.	

Topic: Pythagoras' Theorem

Topic/Skill	Definition/Tips	Example
1. Pythagoras' Theorem	For any right angled triangle : $a^2 + b^2 = c^2$ a b Used to find missing lengths . a and b are the shorter sides, c is the	Finding a Shorter Side y Finding a Shorter Side y 10 SUBTRACT: 8 $a = y, b = 8, c = 10$ $a^{2} = c^{2} - b^{2}$ $y^{2} = 100 - 64$ $y^{2} = 36$ $y = 6$
2. 3D Pythagoras' Theorem	 hypotenuse (longest side). Find missing lengths by identifying right angled triangles. You will often have to find a missing length you are not asked for before finding the missing length you are asked for. 	Can a pencil that is 20cm long fit in a pencil tin with dimensions 12cm, 13cm and 9cm? The pencil tin is in the shape of a cuboid. Hypotenuse of the base = $\sqrt{12^2 + 13^2} = 17.7$ Diagonal of cuboid = $\sqrt{17.7^2 + 9^2} =$ 19.8 <i>cm</i> No, the pencil cannot fit.

Topic: Standard Form

Topic/Skill	Definition/Tips	Example
1. Standard	$A \times 10^{b}$	$8400 = 8.4 \text{ x } 10^3$
Form		
	where $1 \le A < 10$, $b = integer$	$0.00036 = 3.6 \ge 10^{-4}$
2. Multiplying	Multiply: Multiply the numbers and add	$(1.2 \times 10^3) \times (4 \times 10^6) = 8.8 \times 10^9$
or Dividing	the powers.	
with Standard	Divide: Divide the numbers and subtract	$(4.5 \times 10^5) \div (3 \times 10^2) = 1.5 \times 10^3$
Form	the powers.	
3. Adding or	Convert in to ordinary numbers, calculate	$2.7 \times 10^4 + 4.6 \times 10^3$
Subtracting	and then convert back in to standard form	= 27000 + 4600 = 31600
with Standard		$= 3.16 \times 10^4$
Form		

Topic: Circumference and Area

Topic/Skill	Definition/Tips	Example
1. Circle	A circle is the locus of all points equidistant from a central point.	•
2. Parts of a Circle	 Radius – the distance from the centre of a circle to the edge Diameter – the total distance across the width of a circle through the centre. Circumference – the total distance around the outside of a circle Chord – a straight line whose end points lie on a circle Tangent – a straight line which touches a circle at exactly one point Arc – a part of the circumference of a circle Sector – the region of a circle enclosed by two radii and their intercepted arc Segment – the region bounded by a chord and the arc created by the chord 	Parts of a Circle Radius Diameter Circumference Chord Arc Tangent Chord Segment Sector
3. Area of a Circle4. Circumference of a Circle	$A = \pi r^2$ which means 'pi x radius squared'. $C = \pi d$ which means 'pi x diameter'	If the radius was 5cm, then: $A = \pi \times 5^2 = 78.5 cm^2$ If the radius was 5cm, then: $C = \pi \times 10 = 31.4 cm$
5. π ('pi')	Pi is the circumference of a circle divided by the diameter. $\pi \approx 3.14$	$\begin{bmatrix} S-VAR \\ P \\ 2 \\ Ran# \\ \hline EXP \\ \hline Ans \\ \hline \\ $
6. Arc Length of a Sector	The arc length is part of the circumference. Take the angle given as a fraction over 360° and multiply by the circumference .	Arc Length = $\frac{115}{360} \times \pi \times 8 = 8.03cm$
7. Area of a Sector	The area of a sector is part of the total area. Take the angle given as a fraction over 360 ° and multiply by the area .	Area = $\frac{115}{360} \times \pi \times 4^2 = 16.1 cm^2$

8. Surface	Curved Surface Area = πdh or $2\pi rh$	
Area of a		
Cylinder	Total SA = $2\pi r^2 + \pi dh$ or $2\pi r^2 + 2\pi rh$	5
		2
		$Total SA = 2\pi(2)^2 + \pi(4)(5) = 28\pi$
9. Surface	Curved Surface Area = $\pi r l$	//
Area of a Cone	where $l = slant \ height$	5m
	Total SA = $\pi r l + \pi r^2$	
	You may need to use Pythagoras' Theorem	3m
	to find the slant height	Total $SA = \pi(3)(5) + \pi(3)^2 = 24\pi$
10. Surface	$SA = 4\pi r^2$	Find the surface area of a sphere with
Area of a		radius 3cm.
Sphere	Look out for hemispheres – halve the SA of	
	a sphere and add on a circle (πr^2)	$SA = 4\pi(3)^2 = 36\pi cm^2$

Topic: Shape Transformations

Translate means to move a shape. The shape does not change size or orientation. In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-) The size does not change, but the shape is turned around a point. Use tracing paper.	Example $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$ $\begin{array}{c} 2\\ 3 \end{array}$ means '2 right, 3 up' $\begin{pmatrix} -1\\ -5 \end{pmatrix}$ means '1 left, 5 down' Rotate Shape A 90° anti-clockwise about (0,1)
<pre>left (-) or right (+) and the bottom number moves up (+) or down (-) The size does not change, but the shape is turned around a point.</pre>	$\begin{pmatrix} -1 \\ -5 \end{pmatrix}$ means '1 left, 5 down' Rotate Shape A 90° anti-clockwise
turned around a point.	
Use tracing paper.	
	K, Å,
The size does not change, but the shape is 'flipped' like in a mirror. Line $x =$? is a vertical line. Line $y =$? is a horizontal line. Line $y = x$ is a diagonal line.	Reflect shape C in the line $y = x$
The shape will get bigger or smaller . Multiply each side by the scale factor .	Scale Factor = 3 means '3 times larger = multiply by 3' Scale Factor = ½ means 'half the size =
' I I J	flipped' like in a mirror. Line $x =$? is a vertical line. Line $y =$? is a horizontal line. Line $y = x$ is a diagonal line. The shape will get bigger or smaller.

6. Finding the Centre of Enlargement	Draw straight lines through corresponding corners of the two shapes. The centre of enlargement is the point where all the lines cross over. Be careful with negative enlargements as the corresponding corners will be the other way around.	A to B is an enlargement SF 2 about the point (2,1)
7. Describing Transformatio ns	 Give the following information when describing each transformation: Look at the number of marks in the question for a hint of how many pieces of information are needed. If you are asked to describe a 'transformation', you need to say the name of the type of transformation as well as the other details. 	 Translation, Vector Rotation, Direction, Angle, Centre Reflection, Equation of mirror line Enlargement, Scale factor, Centre of enlargement
8. Negative Scale Factor Enlargements	Negative enlargements will look like they have been rotated. SF = -2 will be rotated, and also twice as big.	Enlarge ABC by scale factor -2, centre (1,1)
9. Invariance	A point, line or shape is invariant if it does not change/move when a transformation is performed. An invariant point 'does not vary'.	If shape P is reflected in the $y - axis$, then exactly one vertex is invariant.

Topic/Skill Definition/Tips Example The study of triangles. 1. Trigonometry The longest side of a right-angled 2. Hypotenuse hypotenuse triangle. Is always **opposite** the **right angle**. Р 3. Adjacent Next to Hypotenuse Opposite R Adjacent Use SOHCAHTOA. 4. Trigonometric Formulae $\sin\theta=\frac{\theta}{H}$ х 35° 11cm $\cos\theta = \frac{A}{H}$ Use 'Opposite' and 'Adjacent', so use 'tan' $\tan 35 = \frac{x}{11}$ $\tan\theta=\frac{\theta}{4}$ $x = 11 \tan 35 = 7.70 cm$ 7cmWhen finding a missing angle, use the x 'inverse' trigonometric function by 5cm pressing the 'shift' button on the calculator. Use 'Adjacent' and 'Hypotenuse', so use 'cos' $\cos x = \frac{5}{7}$ $x = \cos^{-1}\left(\frac{5}{7}\right) = 44.4^{\circ}$ Find missing lengths by identifying right 5. 3D Trigonometry angled triangles. You will often have to find a missing length you are not asked for before finding the missing length you are asked for.

Topic: Right Angled Trigonometry

Topic: Volume

Topic/Skill	Definition/Tips	Example
1. Volume	Volume is a measure of the amount of space inside a solid shape. Units: mm^3 , cm^3 , m^3 etc.	
2. Volume of a Cube/Cuboid	$V = Length \times Width \times Height$ $V = L \times W \times H$ You can also use the Volume of a Prism formula for a cube/cuboid.	3 cm 3 cm 5 cm $volume = 6 \times 5 \times 3$ $= 90 \text{ cm}^3$
3. Prism	A prism is a 3D shape whose cross section is the same throughout.	Triangle Prism Pentagonal Prism
4. Cross Section	The cross section is the shape that continues all the way through the prism .	Cross Section
5. Volume of a Prism	V = Area of Cross Section imes Length V = A imes L	Area of Cross Section Length
6. Volume of a Cylinder	$V = \pi r^2 h$	$5cm \qquad \boxed{2cm} \qquad \qquad$
7. Volume of a Cone	$V = \frac{1}{3}\pi r^2 h$	$V = \frac{1}{3}\pi(4)(5)$ $= 20.9cm^{3}$

	4	
8. Volume of a	$V_{olume} = \frac{1}{-Rh}$	
Pyramid	$Volume = \frac{1}{3}Bh$	
	where $\mathbf{B} = $ area of the base	76m
		6cm 6cm
		•
		$V = \frac{1}{3} \times 6 \times 6 \times 7 = 84 cm^3$
		5
9. Volume of a	$V = \frac{4}{2} - 2^{3}$	Find the volume of a sphere with
Sphere	$V = \frac{4}{3}\pi r^3$	diameter 10cm.
-		
	Look out for hemispheres – just halve the	$4 - 500\pi$
	volume of a sphere.	$V = \frac{4}{3}\pi(5)^3 = \frac{500\pi}{3}cm^3$
		5 5
10. Frustums	A frustum is a solid (usually a cone or	
	pyramid) with the top removed .	12cm
	Find the volume of the whole shape, then	24cm 5cm
	take away the volume of the small	$(10 \text{ m})^{*}$
	cone/pyramid removed at the top.	
		Volume = ?
		$V = \frac{1}{3}\pi(10)^2(24) - \frac{1}{3}\pi(5)^2(12)$
		$= 700\pi cm^{3}$