

Topic: Basic Number and Decimals

Topic/Skill	Definition/Tips	Example		
1. Integer	A whole number that can be positive,	-3, 0, 92		
	negative or zero.			
2. Decimal	A number with a decimal point in it. Can	3.7, 0.94, -24.07		
	be positive or negative.			
3 Negative	A number that is less than zero. Can be			
Number	decimals	-0, -2.5		
rumoer				
4. Addition	To find the total , or sum , of two or more	3 + 2 + 7 = 12		
	numbers.			
	'add', 'plus', 'sum'			
5. Subtraction	To find the difference between two	10 - 3 = 7		
	numbers.			
	To find out now many are left when some			
	are taken away.			
	'minus', 'take away', 'subtract'			
6.	Can be thought of as repeated addition .	$3 \times 6 = 6 + 6 + 6 = 18$		
Multiplication				
	'multiply', 'times', 'product'			
7. Division	Splitting into equal parts or groups.	$20 \div 4 = 5$		
	The process of calculating the number of			
	times one number is contained within	$\frac{20}{20} = 5$		
	another one.	4		
	'divide' 'share'			
8. Remainder	The amount ' left over ' after dividing one	The remainder of $20 \div 6$ is 2 because		
011011001	integer by another.	6 divides into 20 exactly 3 times, with 2		
		left over.		
9. BIDMAS	An acronym for the order you should do	$6 + 3 \times 5 = 21$, not 45		
	calculations in.			
	BIDMAS stands for 'Brackets, Indices,	$5^2 = 25$, where the 2 is the		
	Division, Multiplication, Addition and	index/power.		
	Subtraction'.			
	Indices are also known as 'nowers' or			
	'orders'			
	With strings of division and multiplication,	$12 \div 4 \div 2 = 1.5$. not 6		
	or strings of addition and subtraction, and			
	no brackets, work from left to right.			
10. Recurring	A decimal number that has digits that	$\frac{1}{2} = 0.333 = 0.3$		
Decimal	repeat forever.	3 - 0.555 0.5		
		1		
	I ne part that repeats is usually shown by	$\frac{1}{7} = 0.142857142857 \dots = 0.142857$		
	placing a dot above the digit that repeats, or	/		

dots over the first and last digit of the repeating pattern.	$\frac{77}{600} = 0.128333 \dots = 0.1283$

Topic: Perimeter and Area

Topic/Skill	Definition/Tips	Example
1. Perimeter	The total distance around the outside of a	8 cm
	shape.	
	Units include: <i>mm, cm, m</i> etc.	5 cm
		P = 8 + 5 + 8 + 5 = 26cm
2. Area	The amount of space inside a shape.	
	Units include: mm^2 , cm^2 , m^2	
3. Area of a	Length x Width	9 cm
Rectangle		4 cm $A = 36 cm^2$
4. Area of a	Base x Perpendicular Height	
Parallelogram	Not the slant height.	4 cm 3 cm $A = 21 cm^2$
5. Area of a Triangle	Base x Height ÷ 2	9 4 5 $A = 24cm^2$
6. Area of a	Split in to two triangles and use the	
Kite	method above.	$A = 8.8m^2$
7. Area of a	$(a+b) \sim b$	6 cm
Trapezium	$\frac{1}{2} \times n$	
		5 cm
	height between them. That is how you calculate the area of a trapezium"	$\xleftarrow{16 \text{ cm}} A = 55 \text{ cm}^2$
8. Compound	A shape made up of a combination of	
Shape	other known shapes put together.	

Topic: Ratio

Topic/Skill	Definition/Tips	Example			
1. Ratio	Ratio compares the size of one part to	3:1			
	another part.				
2 Duon oution	Written using the 's symbol.	In a close with 12 hours and 0 sinds the			
2. Proportion	Proportion compares the size of one part to the size of the whole	In a class with 15 boys and 9 girls, the 13			
	the size of the whole.	proportion of boys is $\frac{1}{22}$ and the			
	Usually written as a fraction.	proportion of girls is $\frac{9}{22}$			
3. Simplifying	Divide all parts of the ratio by a common	5:10 = 1:2 (divide both by 5)			
Ratios	factor.	14:21 = 2:3 (divide both by 7)			
		7			
4. Ratios in the	Divide both parts of the ratio by one of the numbers to make one part equal 1	$5:7 = 1:\frac{7}{5}$ in the form 1: n			
n: 1	numbers to make one part equal 1.	$5:7 = \frac{5}{7}:1$ in the form n : 1			
<i>n</i> · 1		7			
5. Sharing in a	1. Add the total parts of the ratio.	Share $\pounds 60$ in the ratio $3:2:1$.			
Ratio	2. Divide the amount to be shared by this				
	value to find the value of one part.	3 + 2 + 1 = 6			
	3. Multiply this value by each part of the	$60 \div 6 = 10$			
	ratio.	$3 \times 10 = 30, 2 \times 10 = 20, 1 \times 10 = 10$			
	Use only if you know the total	£50.£20.£10			
6. Proportional	Comparing two things using multiplicative	X 2			
Reasoning	reasoning and applying this to a new				
	situation.	30 minutes 60 pages			
		? minutes 150 pages			
	Identify one multiplicative link and use this				
	to find missing quantities.	X 2			
7. Unitary	Finding the value of a single unit and then	3 cakes require 450g of sugar to make.			
Method	the single unit value	make 5 cakes.			
	the single unit value.	make 5 cakes.			
		3 cakes = 450 g			
		So 1 cake = $150g$ (÷ by 3)			
		So 5 cakes = $750 \text{ g} (x \text{ by } 5)$			
8. Ratio	Find what one part of the ratio is worth	Money was shared in the ratio 3:2:5			
already shared	using the unitary method .	between Ann, Bob and Cat. Given that			
		Bob had £16, found out the total			
		amount of money shared.			
		$f_{16} - 2$ parts			
		So $f = 1$ parts			
		3+2+5=10 parts, so 8 x 10 = £80			
9. Best Buys	Find the unit cost by dividing the price by	8 cakes for £1.28 \rightarrow 16p each (÷by 8)			
	the quantity.	13 cakes for £2.05 \rightarrow 15.8p each (÷by			
	The lowest number is the best value.	13)			
		Pack of 13 cakes is best value.			

	Topic: Proportion				
Topic/Skill	Definition/Tips	Example			
1. Direct Proportion	If two quantities are in direct proportion, as one increases, the other increases by the same percentage.	y = kx			
	If y is directly proportional to x, this can be written as $y \propto x$	x			
	An equation of the form $y = kx$ represents direct proportion, where k is the constant of proportionality.				
2. Inverse Proportion	If two quantities are inversely proportional, as one increases, the other decreases by the same percentage.	$y = \frac{k}{x}$			
	If y is inversely proportional to x, this can be written as $y \propto \frac{1}{x}$	x			
	An equation of the form $y = \frac{k}{x}$ represents inverse proportion.	\downarrow			
3. Using	Direct : $\mathbf{y} = \mathbf{k}\mathbf{x}$ or $\mathbf{y} \propto \mathbf{x}$	p is directly proportional to q.			
proportionality formulae	Inverse : $\mathbf{y} = \frac{k}{x}$ or $\mathbf{y} \propto \frac{1}{x}$	When $p = 12$, $q = 4$. Find p when $q = 20$.			
	1. Solve to find k using the pair of values in the question.	1. $p = kq$ 12 = k x 4 so k = 3			
	 2. Rewrite the equation using the k you have just found. 3. Substitute the other given value from 	2. $p = 3q$			
	the question in to the equation to find the missing value .	3. $p = 3 \ge 20 = 60$, so $p = 60$			
4. Direct Proportion with powers	Graphs showing direct proportion can be written in the form $y = kx^n$ Direct proportion graphs will always start at the origin.	Direct Proportion Graphs			
5. Inverse	Graphs showing inverse proportion can be	Inverse Proportion Graphs			
Proportion with powers	written in the form $y = \frac{\kappa}{x^n}$ Inverse proportion graphs will never start at the origin.	$y = \frac{3}{a^2}$			
		-2			

Topic: Angles

Topic/Skill	Definition/Tips	Example
1. Types of	Acute angles are less than 90°.	
Angles	Right angles are exactly 90°.	
	Obtuse angles are greater than 90° but less	Acute Right Obtuse Reflex
	than 180° .	
	then 360°	
2 Angle	Can use one lower-case letters eq. θ or γ	
Notation		
	Can use three upper-case letters, eg. <i>BAC</i>	
		$A \longleftarrow \theta$
2 Angles et e	Angles around a point add up to 360°	
Point	Angles around a point add up to 500.	
Tome		c b
		$a+b+c+d=360^{\circ}$
4. Angles on a	Angles around a point on a straight line	
Straight Line	add up to 180°.	
		x y
		$x + y = 180^{\circ}$
5. Opposite	Vertically opposite angles are equal.	
Angles		
		2/2
6. Alternate	Alternate angles are equal.	
Angles	They look like Z angles, but never say this	
	in the exam.	
		xy
7	Corresponding angles are equal	v/
Corresponding	They look like F angles, but never say this	
Angles	in the exam.	
		/*
8. Co-Interior	Co-Interior angles add up to 180°.	
Angles	They look like \breve{C} angles, but never say this	y x
	in the exam.	
		x y

9. Angles in a Triangle	Angles in a triangle add up to 180°.	B 45 ° 55° C
10. Types of Triangles	 Right Angle Triangles have a 90° angle in. Isosceles Triangles have 2 equal sides and 2 equal base angles. Equilateral Triangles have 3 equal sides and 3 equal angles (60°). Scalene Triangles have different sides and different angles. Base angles in an isosceles triangle are equal. 	Right Angled Isosceles
11. Angles in a Quadrilateral	Angles in a quadrilateral add up to 360°.	65° 93°
12. Polygon	A 2D shape with only straight edges .	Rectangle, Hexagon, Decagon, Kite etc.
13. Regular	A shape is regular if all the sides and all the angles are equal .	
14. Names of Polygons	3-sided = Triangle 4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon 7-sided = Heptagon/Septagon 8-sided = Octagon 9-sided = Nonagon 10-sided = Decagon	Triangle Quadrilateral Pentagon Hexagon Heptagon Octagon Nonagon Decagon
15. Sum of Interior Angles	$(n-2) \times 180$ where n is the number of sides.	Sum of Interior Angles in a Decagon = $(10 - 2) \times 180 = 1440^{\circ}$
16. Size of Interior Angle in a Regular Polygon	$\frac{(n-2) \times 180}{n}$ You can also use the formula:	Size of Interior Angle in a Regular Pentagon = $\frac{(5-2) \times 180}{5} = 108^{\circ}$

	180 – Size of Exterior Angle	
17. Size of	360	Size of Exterior Angle in a Regular
Exterior Angle	\overline{n}	Octagon =
in a Regular		360 - 45°
Polygon	You can also use the formula:	
	180 – Size of Interior Angle	-

Topic: Properties of Polygons

Topic/Skill	Definition/Tips	Example
1. Square	Four equal sides	
	• Four right angles	
	Opposite sides parallel	
	• Diagonals hisect each other at right	
	angles	
	Four lines of symmetry	
	Potational symmetry of order four	
2 Rectangle	• Two pairs of equal sides	
2. Rectangle	• Four right angles	
	Onnosite sides narallel	
	• Diagonals bisect each other not at right	
	angles	
	• Two lines of symmetry	//
	Rotational symmetry of order two	
3 Rhombus	• Four equal sides	<u>^</u>
5. Mionious	Diagonally opposite angles are equal	\checkmark
	Onnosite sides narallel	
	• Diagonals bisect each other at right	
	angles	\times \checkmark
	• Two lines of symmetry	\sim
	Rotational symmetry of order two	
4.	• Two pairs of equal sides	
Parallelogram	• Diagonally opposite angles are equal	
	• Opposite sides parallel	t t
	• Diagonals bisect each other, not at right	1 1
	angles	
	• No lines of symmetry	
	• Rotational symmetry of order two	
5. Kite	• Two pairs of adjacent sides of equal	
	length	\sim \sim
	• One pair of diagonally opposite angles	
	are equal (where different length sides	$\times \neq$
	meet)	
	• Diagonals intersect at right angles, but	\checkmark
	do not bisect	
	• One line of symmetry	
	No rotational symmetry	
6. Trapezium	One pair of parallel sides	
	No lines of symmetry	
	No rotational symmetry	
	Special Case: Isosceles Trapeziums have	·
	one line of symmetry.	

Topic: Pythagoras' Theorem

Topic/Skill	Definition/Tips	Example			
1. Pythagoras'	For any right angled triangle :	Finding a Shorter Side			
Theorem		10			
	$a^2 + b^2 = c^2$	y 10			
		SUBTRACT!			
		°			
	c	8			
	a	a = y, b = 8, c = 10			
		$a^2 = c^2 - b^2$			
	b	$y^2 = 100 - 64$			
		$y^2 = 36$			
	Used to find missing lengths .	v = 6			
	a and b are the shorter sides, c is the				
	hypotenuse (longest side).				
2. 3D	Find missing lengths by identifying right	Can a pencil that is 20cm long fit in a			
Pythagoras'	angled triangles.	pencil tin with dimensions 12cm, 13cm			
Theorem		and 9cm? The pencil tin is in the shape			
	You will often have to find a missing	of a cuboid.			
	length you are not asked for before finding				
	the missing length you are asked for.	Hypotenuse of the base =			
		$\sqrt{12^2 + 13^2} = 17.7$			
		Diagonal of cuboid = $\sqrt{17.7^2 + 9^2}$ =			
		19.8 <i>cm</i>			
		No, the pencil cannot fit.			

Topic: Factors and Multiples

Topic/Skill	Definition/Tips	Example			
1. Multiple	The result of multiplying a number by an	The first five multiples of 7 are:			
	integer.				
	The times tables of a number.	7, 14, 21, 28, 35			
2. Factor	A number that divides exactly into another	The factors of 18 are:			
	number without a remainder.	1, 2, 3, 6, 9, 18			
	It is useful to write factors in pairs	The factor pairs of 18 are:			
		1, 18			
		2,9			
		3,6			
3. Lowest	The smallest number that is in the times	The LCM of 3, 4 and 5 is 60 because it			
Common	tables of each of the numbers given.	is the smallest number in the 3, 4 and 5			
Multiple		times tables.			
(LCM)					
4. Highest	The biggest number that divides exactly	The HCF of 6 and 9 is 3 because it is			
Common	into two or more numbers.	the biggest number that divides into 6			
Factor (HCF)		and 9 exactly.			
5. Prime	A number with exactly two factors .	The first ten prime numbers are:			
Number	A graph of the toop only he divided by itself				
	A number that can only be divided by itself	2, 3, 5, 7, 11, 13, 17, 19, 23, 29			
	and one.				
	The number 1 is not prime, as it only has				
	one factor, not two				
6 Prime	A factor which is a prime number	The prime factors of 18 are:			
Factor	r luctor which is a princ humber.	The prime factors of 10 are.			
		2.3			
7. Product of	Finding out which prime numbers	36			
Prime Factors	multiply together to make the original	$36 = 2 \times 2 \times 3 \times 3$			
	number.	(2) 18 or $2^2 \times 3^2$			
	Use a prime factor tree.	2 9			
	Also known as 'prime factorisation'.				

Topic: Representing Data

Topic/Skill	Definition/Tips	Example			
1. Frequency	A record of how often each value in a set	Number of marks	Tally marks	Frequency	
Table	of data occurs .	1	1111 II	7	
		2	1111	5	
		3	JHT I	6	
		4	11HT	5	
		5	111	3	
		Total		26	
2. Bar Chart	Represents data as vertical blocks.	¹⁴			
		12-			
	x - axis shows the type of data	চ ¹⁰			
	y - axis shows the irequency for each task of late	8			
	type of data	6- 			
	Each bar should be the same width	4-			
	There should be gaps between each bar	2-			
	Remember to label each axis.	0	1 2 3	4	
		Number of pets owned			
3. Types of	Compound/Composite Bar Charts show	tron			
Bar Chart	data stacked on top of each other.	80	Carbon	-	
	I I I I I I I I I I I I I I I I I I I	70- 60- 50- Weight (gm) 40- 30- 20- 10-			
		A	B Sample	С	
			ainfall		
	Comparative/Dual Bar Charts show data side by side.	50			
		40		Key:	
		30		Bristol	
		cm			
			╶╏╴╏╴╏		
		0 Jan Feb	Mar Apr May	/	
		Dual	Month Bar Chart		
4. Pie Chart	Used for showing how data breaks down				
	into its constituent parts.	Sq	uash 36°		
	-	Tennis 40	Football		
	When drawing a pie chart, divide 360° by	60	0° 144°		
	the total frequency. This will tell you how	Hockey	80°		
	many degrees to use for the frequency of		Netball		
	each category.				
		If there are 40 pe	ople in a si	irvey, then	
	Remember to label the category that each each person will be w		be worth 3	rth $360 \div 40 = 9^{\circ}$	
	sector in the pie chart represents.	of the pie chart.			
L	1	pro pro oriurt.			

5. Pictogram	Uses pictures or symbols to show the	Black 🚍 🚍 🖣
	value of the data.	Red 🚔 🚔 🚍
		a = 4 cars
	A pictogram must have a key .	Green
		Others 🚍 🚝 🚝
6. Line Graph	A graph that uses points connected by	14
	straight lines to show how data changes in	12
	values.	10
		8
	This can be used for time series data ,	
	which is a series of data points spaced over	
	uniform time intervals in time order .	0
		1 2 3 4 5 6 7 8 9
7. Two Way	A table that organises data around two	Question: Complete the 2 way table below.
Tables	categories.	Boys 10 58
		Total 84 100
	Fill out the information step by step using	Answer: Step 1, fill out the easy parts (the totals)
	the information given.	Boys 10 48 58
		Girls 42 Total 16 84 100
	Make sure all the totals add up for all	Answer: Step 2, fill out the remaining parts
	columns and rows.	Boys 10 48 58
		Girls 0 30 42 Total 16 84 100
8. Box Plots	The minimum, lower quartile, median,	Students sit a maths test. The highest
	upper quartile and maximum are shown on	score is 19, the lowest score is 8, the
	a box plot.	median is 14, the lower quartile is 10
		and the upper quartile is 17. Draw a
	A box plot can be drawn independently or	box plot to represent this information.
	from a cumulative frequency diagram.	
		8 10 12 14 16 18 20
9. Comparing	Write two sentences.	'On average, students in class A were
Box Plots	1. Compare the averages using the	more successful on the test than class B
201111000	medians for two sets of data.	because their median score was higher.'
	2. Compare the spread of the data using the	
	range or IOR for two sets of data.	'Students in class B were more
		consistent than class A in their test
	The smaller the range/IQR, the more	scores as their IQR was smaller.'
	consistent the data.	,
	You must compare box plots in the context	
	of the problem.	

Topic: Indices

Topic/Skill	Definition/Tips	Example
1. Square	The number you get when you multiply a	1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121,
Number	number by itself.	144, 169, 196, 225
		$9^2 = 9 \times 9 = 81$
2. Square Root	The number you multiply by itself to get another number.	$\sqrt{36} = 6$
	The reverse process of squaring a number	because $6 \times 6 = 36$
3 Solutions to	Equations involving squares have two	Solvo $r^2 - 25$
$x^2 =$	solutions, one positive and one negative.	Solve $x = 25$
		x = 5 or x = -5
		This can also be written as $x = \pm 5$
4. Cube	The number you get when you multiply a	1, 8, 27, 64, 125
Number	number by itself and itself again.	$2^3 = 2 \times 2 \times 2 = 8$
5. Cube Root	The number you multiply by itself and	$\sqrt[3]{125} = 5$
	itself again to get another number.	
		because $5 \times 5 \times 5 = 125$
	The reverse process of cubing a number.	
6. Powers of	The powers of a number are that number	The powers of 3 are:
	raised to various powers.	
		$3^{1}_{2} = 3$
		$3^2 = 9$
		$3^3 = 27$
		$3^4 = 81$ etc.
7.	When multiplying with the same base	$7^5 \times 7^3 = 7^8$
Multiplication	(number or letter), add the powers.	$a^{12} \times a = a^{13}$
Index Law	m n $m \perp n$	$4x^5 \times 2x^8 = 8x^{13}$
0. D' ' '	$a^m \times a^n = a^{m+n}$	
8. Division	when dividing with the same base (number	$15' \div 15^{+} = 15^{3}$
Index Law	or letter), subtract the powers.	$x^{\prime} \div x^{2} = x^{\prime}$
	$a^m \cdot a^n - a^{m-n}$	$20a^{11} \div 5a^{3} = 4a^{3}$
0 Draalzata	$u \div u - u$	(2)5
9. Drackets	when raising a power to another power, multiply the powers together	$(y^2)^3 = y^{23}$
Index Laws	multiply the powers together.	$(6^{\circ})^{\circ} = 6^{-2}$
	$(a^m)^n - a^{mn}$	$(5x^2)^2 = 125x^{-2}$
10 Notable	$n = n^1$	$99999^0 = 1$
Powers	p - p $n^0 - 1$	<i>yyyyy</i> = 1
11 Negative	P - I A negative power performs the reciprocal	1 1
Powers	1	$3^{-2} = \frac{1}{3^2} = \frac{1}{0}$
100010	$a^{-m} = \frac{-}{a^m}$	5- 9
12. Fractional	The denominator of a fractional power acts	$2\pi^2 = (^3/2\pi)^2 = 2^2 = 0$
Powers	as a 'root'.	$273 = (\sqrt{27})^2 = 3^2 = 9$
		3
	The numerator of a fractional power acts as	$(25)^{\frac{3}{2}}$ $(\sqrt{25})^{3}$ $(5)^{3}$ 125
	a normal power.	$\left(\frac{16}{16}\right) = \left(\frac{1}{\sqrt{16}}\right) = \left(\frac{1}{4}\right) = \frac{1}{64}$
	<i>m</i>	
	$a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^m$	

Topic: Standard Form

Topic/Skill	Definition/Tips	Example
1. Standard	$A \times 10^{b}$	$8400 = 8.4 \text{ x } 10^3$
Form		
	where $1 \le A < 10$, $b = integer$	$0.00036 = 3.6 \times 10^{-4}$
2. Multiplying	Multiply: Multiply the numbers and add	$(1.2 \times 10^3) \times (4 \times 10^6) = 8.8 \times 10^9$
or Dividing	the powers.	
with Standard	Divide: Divide the numbers and subtract	$(4.5 \times 10^5) \div (3 \times 10^2) = 1.5 \times 10^3$
Form	the powers.	
3. Adding or	Convert in to ordinary numbers, calculate	$2.7 \times 10^4 + 4.6 \times 10^3$
Subtracting	and then convert back in to standard form	= 27000 + 4600 = 31600
with Standard		$= 3.16 \times 10^4$
Form		

Topic: Circumference and Area

Topic/Skill	Definition/Tips	Example
1. Circle	A circle is the locus of all points equidistant from a central point.	•
2. Parts of a Circle	 Radius – the distance from the centre of a circle to the edge Diameter – the total distance across the width of a circle through the centre. Circumference – the total distance around the outside of a circle Chord – a straight line whose end points lie on a circle Tangent – a straight line which touches a circle at exactly one point Arc – a part of the circumference of a circle Sector – the region of a circle enclosed by two radii and their intercepted arc 	Parts of a Circle Radius Diameter Circumference Chord Arc Tangent Segment Sector
3. Area of aCircle4.Circumference	and the arc created by the chord $A = \pi r^2$ which means 'pi x radius squared'. $C = \pi d$ which means 'pi x diameter'	If the radius was 5cm, then: $A = \pi \times 5^2 = 78.5 cm^2$ If the radius was 5cm, then: $C = \pi \times 10 = 31.4 cm$
of a Circle 5. π ('pi')	Pi is the circumference of a circle divided by the diameter. $\pi \approx 3.14$	$\begin{array}{c c} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} F$
6. Arc Length of a Sector	The arc length is part of the circumference. Take the angle given as a fraction over 360 ° and multiply by the circumference .	Arc Length = $\frac{115}{360} \times \pi \times 8 = 8.03cm$
7. Area of a Sector	The area of a sector is part of the total area. Take the angle given as a fraction over 360 ° and multiply by the area .	Area = $\frac{115}{360} \times \pi \times 4^2 = 16.1 cm^2$

8. Surface	Curved Surface Area = πdh or $2\pi rh$	
Area of a		
Cylinder	Total SA = $2\pi r^2 + \pi dh$ or $2\pi r^2 + 2\pi rh$	5
		2
		$Total SA = 2\pi(2)^2 + \pi(4)(5) = 28\pi$
9. Surface	Curved Surface Area = πrl	
Area of a Cone	where $l = slant \ height$	5m
	Total SA = $\pi r l + \pi r^2$	
	You may need to use Pythagoras' Theorem	3m
	to find the slant height	$Total SA = \pi(3)(5) + \pi(3)^2 = 24\pi$
10. Surface	$SA = 4\pi r^2$	Find the surface area of a sphere with
Area of a		radius 3cm.
Sphere	Look out for hemispheres – halve the SA of	
	a sphere and add on a circle (πr^2)	$SA = 4\pi(3)^2 = 36\pi cm^2$

Topic: Shape Transformations

Topic/Skill	Definition/Tips	Example
1. Translation	Translate means to move a shape . The shape does not change size or orientation .	
2. Column Vector	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-)	$\binom{2}{3}$ means '2 right, 3 up' $\binom{-1}{-5}$ means '1 left, 5 down'
3. Rotation	The size does not change, but the shape is turned around a point .	Rotate Shape A 90° anti-clockwise about (0,1)
	Use tracing paper.	X. X.
4. Reflection	The size does not change, but the shape is 'flipped' like in a mirror. Line $x =$? is a vertical line. Line $y =$? is a horizontal line. Line $y = x$ is a diagonal line.	Reflect shape C in the line $y = x$
5. Enlargement	The shape will get bigger or smaller . Multiply each side by the scale factor .	Scale Factor = 3 means '3 times larger = multiply by 3' Scale Factor = ½ means 'half the size = divide by 2'

6. Finding the Centre of Enlargement	Draw straight lines through corresponding corners of the two shapes. The centre of enlargement is the point where all the lines cross over . Be careful with negative enlargements as the corresponding corners will be the other way around.	A to B is an enlargement SF 2 about the point (2,1)
7. Describing Transformatio ns	 Give the following information when describing each transformation: Look at the number of marks in the question for a hint of how many pieces of information are needed. If you are asked to describe a 'transformation', you need to say the name of the type of transformation as well as the other details. 	 Translation, Vector Rotation, Direction, Angle, Centre Reflection, Equation of mirror line Enlargement, Scale factor, Centre of enlargement
8. Negative Scale Factor Enlargements	Negative enlargements will look like they have been rotated. SF = -2 will be rotated, and also twice as big.	Enlarge ABC by scale factor -2, centre (1,1)
9. Invariance	A point, line or shape is invariant if it does not change/move when a transformation is performed. An invariant point 'does not vary'.	If shape P is reflected in the $y - axis$, then exactly one vertex is invariant.

Topic/Skill Definition/Tips Example The study of triangles. 1. Trigonometry The longest side of a right-angled 2. Hypotenuse hypotenuse triangle. Is always **opposite** the **right angle**. Р 3. Adjacent Next to Hypotenuse Opposite R Adjacent Use SOHCAHTOA. 4. Trigonometric Formulae $\sin\theta=\frac{\theta}{H}$ х 35° 11cm $\cos\theta = \frac{A}{H}$ Use 'Opposite' and 'Adjacent', so use 'tan' $\tan 35 = \frac{x}{11}$ $\tan\theta=\frac{\theta}{4}$ $x = 11 \tan 35 = 7.70 cm$ 7cmWhen finding a missing angle, use the x 'inverse' trigonometric function by 5cm pressing the 'shift' button on the calculator. Use 'Adjacent' and 'Hypotenuse', so use 'cos' $\cos x = \frac{5}{7}$ $x = \cos^{-1}\left(\frac{5}{7}\right) = 44.4^{\circ}$ Find missing lengths by identifying right 5.3D Trigonometry angled triangles. You will often have to find a missing length you are not asked for before finding the missing length you are asked for.

Topic: Right Angled Trigonometry

Topic: Accuracy

Topic/Skill	Definition/Tips	Example
1. Place Value	The value of where a digit is within a	In 726, the value of the 2 is 20, as it is
	number.	in the 'tens' column.
2. Place Value	The names of the columns that determine	PLACE VALUE CHART
Columns	the value of each digit. The 'ones' column is also known as the	Illions Indred Thousands Thousands Indreds Indreds Indreds Indredths ousandths ousandths Illionths
	'units' column.	
3. Rounding	To make a number simpler but keep its value close to what it was.	74 rounded to the nearest ten is 70, because 74 is closer to 70 than 80.
	If the digit to the right of the rounding digit is less than 5, round down . If the digit to the right of the rounding digit is 5 or more, round up .	152,879 rounded to the nearest thousand is 153,000.
4. Decimal Place	The position of a digit to the right of a decimal point .	In the number 0.372, the 7 is in the second decimal place.
		0.372 rounded to two decimal places is 0.37, because the 2 tells us to round down.
		Careful with money - don't write £27.4, instead write £27.40
5. Significant	The significant figures of a number are the	In the number 0.00821, the first
Figure	digits which carry meaning (ie. are significant) to the size of the number.	significant figure is the 8.
	The first significant figure of a number cannot be zero .	In the number 2.740, the 0 is not a significant figure.
	In a number with a decimal, trailing zeros are not significant.	0.00821 rounded to 2 significant figures is 0.0082.
		19357 rounded to 3 significant figures is 19400. We need to include the two
		same place value columns
6. Truncation	A method of approximating a decimal	3.14159265 can be truncated to
	number by dropping all decimal places	3.1415 (note that if it had been
	past a certain point without rounding.	rounded, it would become 3.1416)
7. Error	A range of values that a number could	0.6 has been rounded to 1 decimal
Interval	have taken before being rounded or truncated.	place.
		The error interval is:
	An error interval is written using	
	inequalities, with a lower bound and an	$0.55 \le x < 0.65$
		The lower bound is 0.55
		The upper bound is 0.65

	Note that the lower bound inequality can be 'equal to', but the upper bound cannot be	
8. Estimate	To find something close to the correct answer.	An estimate for the height of a man is 1.8 metres.
9. Approximation	When using approximations to estimate the solution to a calculation, round each number in the calculation to 1 significant figure.	$\frac{348 + 692}{0.526} \approx \frac{300 + 700}{0.5} = 2000$ 'Note that dividing by 0.5 is the same as multiplying by 2'
10. Rational Number	A number of the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.	$\frac{4}{9}$, 6, $-\frac{1}{3}$, $\sqrt{25}$ are examples of rational numbers.
	A number that cannot be written in this form is called an 'irrational' number	$\pi, \sqrt{2}$ are examples of an irrational numbers.
11. Surd	The irrational number that is a root of a positive integer , whose value cannot be determined exactly.	$\sqrt{2}$ is a surd because it is a root which cannot be determined exactly.
	Surds have infinite non-recurring decimals.	$\sqrt{2} = 1.41421356$ which never repeats.
12. Rules of Surds	$\sqrt{ab} = \sqrt{a} imes \sqrt{b}$ $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$	$\sqrt{48} = \sqrt{16} \times \sqrt{3} = 4\sqrt{3}$ $\sqrt{\frac{25}{36}} = \frac{\sqrt{25}}{\sqrt{36}} = \frac{5}{6}$
	$a\sqrt{c} \pm b\sqrt{c} = (a \pm b)\sqrt{c}$ $\sqrt{a} \times \sqrt{a} = a$	$2\sqrt{5} + 7\sqrt{5} = 9\sqrt{5}$
13. Rationalise a Denominator	The process of rewriting a fraction so that the denominator contains only rational numbers .	$\frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{3} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{6}}{2}$
		$\frac{6}{3+\sqrt{7}} = \frac{6(3-\sqrt{7})}{(3+\sqrt{7})(3-\sqrt{7})}$ $= \frac{18-6\sqrt{7}}{9-7}$ $= \frac{18-6\sqrt{7}}{2} = 9-3\sqrt{7}$

Topic: Volume

Topic/Skill	Definition/Tips	Example
1. Volume	Volume is a measure of the amount of	
	space inside a solid shape.	
	Units: mm^3 , cm^3 , m^3 etc.	
2. Volume of a	V = Length imes Width imes Height	som 1
Cube/Cuboid	$V = L \times W \times H$	och
	You can also use the Volume of a Prism	
	formula for a cube/cuboid.	3 cm
		5cm
		volume = $6 \times 5 \times 3$ = 90 cm^3
3. Prism	A prism is a 3D shape whose cross section	
	is the same throughout.	
		Rectangle Prism Cube
		Triangle Prism
		Hill
		Pentagonal Prism
4. Cross	The cross section is the shape that	
Section	continues all the way through the prism .	Cross Section
5. Volume of a	$V = Area of Cross Section \times Length$	
Prism	V = A imes L	
		Area of Cross Section
		Length
6. Volume of a	$V = \pi r^2 h$	
Cylinder		5cm
		$V = \pi(4)(5)$
		$= 62.8 cm^3$
7. Volume of \overline{a}	$V = \frac{1}{2}\pi r^2 h$	
Cone	3	5cm
		$V = \frac{1}{3}\pi(4)(5)$
		$= 20.9 cm^{3}$

8. Volume of a Pyramid	$Volume = \frac{1}{3}Bh$	
	where $\mathbf{B} = $ area of the base	
		6cm 6cm
		$V = \frac{1}{3} \times 6 \times 6 \times 7 = 84cm^3$
9. Volume of a Sphere	$V = \frac{4}{3}\pi r^3$	Find the volume of a sphere with diameter 10cm.
	Look out for hemispheres – just halve the volume of a sphere.	$V = \frac{4}{3}\pi(5)^3 = \frac{500\pi}{3}cm^3$
10. Frustums	A frustum is a solid (usually a cone or pyramid) with the top removed .	12cm
	Find the volume of the whole shape, then take away the volume of the small cone/pyramid removed at the top.	10cm
		$V = \frac{1}{3}\pi(10)^2(24) - \frac{1}{3}\pi(5)^2(12)$ = 700\pi cm^3

Topic: Fractions

Topic/Skill	Definition/Tips	Example
1. Fraction	A mathematical expression representing the	$\frac{2}{7}$ is a 'proper' fraction.
	division of one integer by another.	/
	Fractions are written as two numbers	$\frac{9}{7}$ is an 'improper' or 'top-heavy'
	separated by a horizontal line.	fraction.
2. Numerator	The top number of a fraction.	In the fraction $\frac{3}{2}$, 3 is the numerator.
		5
3.	The bottom number of a fraction.	In the fraction $\frac{3}{2}$, 5 is the denominator.
Denominator		5
4. Unit	A fraction where the numerator is one and	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ etc. are examples of unit
Fraction	the denominator is a positive integer.	2'3'4 fractions.
5 Paginrogal	The regime coll of a number is 1 divided by	
J. Recipiocai	the number.	The reciprocal of 5 is $\frac{1}{5}$
	1	The reciprocal of $\frac{2}{2}$ is $\frac{3}{2}$ because
	The reciprocal of x is $\frac{-}{x}$	3 2,
	When we multiply a number by its	$\frac{2}{-1} \times \frac{3}{-1} = 1$
	reciprocal we get 1. This is called the	3 ~ 2 - 1
	'multiplicative inverse'.	
6. Mixed	A number formed of both an integer part	$3^{\frac{2}{2}}$ is an example of a mixed number.
Number	and a fraction part .	5
7. Simplifying	Divide the numerator and denominator	20 4
Fractions	by the highest common factor.	$\overline{45} = \overline{9}$
8. Equivalent	Fractions which represent the same value .	2 4 20 60
Fractions		$\frac{1}{5} = \frac{1}{10} = \frac{1}{50} = \frac{1}{150}$ etc.
9 Comparing	To compare fractions, they each need to be	D (1) 1 3 2 5 1
Fractions	rewritten so that they have a common	Put in to ascending order : $\frac{1}{4}, \frac{1}{3}, \frac{1}{6}, \frac{1}{2}$.
	denominator.	Foreignalent: 9 8 10 6
	A	Equivalent: $\frac{1}{12}, \frac{1}{12}, \frac{1}{12}, \frac{1}{12}$
	Ascending means smallest to biggest.	Correct order: ^{1 2 3 5}
	Descending means biggest to smallest.	Correct order: $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{6}$
10. Fraction of	Divide by the bottom, times by the top	Find $\frac{2}{5}$ of £60
an Amount		$560 \div 5 = 12$
		$12 \times 2 = 24$
11. Adding or Subtracting	Find the LCM of the denominators to find a common denominator	$\frac{2}{2} + \frac{4}{5}$
Fractions	Use equivalent fractions to change each	Multiples of 3: 3, 6, 9, 12, 15
	fraction to the common denominator .	Multiples of 5: 5, 10, 15
		LCM of 3 and 5 = 15

	Then just add or subtract the numerators and keep the denominator the same .	$\frac{\frac{2}{3} = \frac{10}{15}}{\frac{4}{5} = \frac{12}{15}}$ $\frac{\frac{10}{15} + \frac{12}{15} = \frac{22}{15} = 1\frac{7}{15}}{\frac{10}{15} = \frac{22}{15} = 1\frac{7}{15}}$
12. Multiplying Fractions	Multiply the numerators together and multiply the denominators together.	$\frac{3}{8} \times \frac{2}{9} = \frac{6}{72} = \frac{1}{12}$
13. Dividing Fractions	 'Keep it, Flip it, Change it – KFC' Keep the first fraction the same Flip the second fraction upside down Change the divide to a multiply Multiply by the reciprocal of the second fraction. 	$\frac{3}{4} \div \frac{5}{6} = \frac{3}{4} \times \frac{6}{5} = \frac{18}{20} = \frac{9}{10}$

Topic: Basic Percentages

Topic/Skill	Definition/Tips	Example
1. Percentage	Number of parts per 100.	31% means $\frac{31}{100}$
2. Finding 10%	To find 10% , divide by 10	10% of $\pounds 36 = 36 \div 10 = \pounds 3.60$
3. Finding 1%	To find 1% , divide by 100	1% of $\pounds 8 = 8 \div 100 = \pounds 0.08$
4. Percentage Change	$\frac{Difference}{Original} \times 100\%$	A games console is bought for £200 and sold for £250.
		% change = $\frac{1}{200} \times 100 = 25\%$
5. Fractions to Decimals	Divide the numerator by the denominator using the bus stop method.	$\frac{3}{8} = 3 \div 8 = 0.375$
6. Decimals to Fractions	Write as a fraction over 10, 100 or 1000 and simplify.	$0.36 = \frac{36}{100} = \frac{9}{25}$
7. Percentages to Decimals	Divide by 100	$8\% = 8 \div 100 = 0.08$
8. Decimals to Percentages	Multiply by 100	$0.4 = 0.4 \times 100\% = 40\%$
9. Fractions to Percentages	Percentage is just a fraction out of 100. Make the denominator 100 using	$\frac{3}{25} = \frac{12}{100} = 12\%$
	When the denominator doesn't go in to 100, use a calculator and multiply the fraction by 100 .	$\frac{9}{17} \times 100 = 52.9\%$
10. Percentages to Fractions	Percentage is just a fraction out of 100. Write the percentage over 100 and simplify.	$14\% = \frac{14}{100} = \frac{7}{50}$

Topic: Calculating with Percentages

Topic/Skill	Definition/Tips	Example
1. Increase or	Non-calculator: Find the percentage and	Increase 500 by 20% (Non Calc):
Decrease by a	add or subtract it from the original	10% of 500 = 50
Percentage	amount.	so 20% of 500 = 100
_		500 + 100 = 600
	Calculator: Find the percentage multiplier	
	and multiply.	Decrease 800 by 17% (Calc):
		100%-17%=83%
		$83\% \div 100 = 0.83$
		0.83 x 800 = 664
2. Percentage	The number you multiply a quantity by to	The multiplier for increasing by 12% is
Multiplier	increase or decrease it by a percentage.	1.12
		The multiplier for decreasing by 12% is
		0.88
		The multiplier for increasing by 100%
		is 2.
3. Reverse	Find the correct percentage given in the	A jumper was priced at £48.60 after a
Percentage	question, then work backwards to find	10% reduction. Find its original price.
	100%	
		100% - 10% = 90%
	Look out for words like 'before' or	
	'original'	$90\% = \pounds 48.60$
		$1\% = \pm 0.54$
		$100\% = \pounds 54$
4. Simple	Interest calculated as a percentage of the	£1000 invested for 3 years at 10%
Interest	original amount.	simple interest.
		$10\% \text{ of } \pm 1000 = \pm 100$
		$ \text{Interest} = 3 \times \pm 100 = \pm 300$

Topic: Algebra

Topic/Skill	Definition/Tips	Example
1. Expression	A mathematical statement written using	$3x + 2$ or $5y^2$
	symbols, numbers or letters,	
2. Equation	A statement showing that two expressions	2y - 17 = 15
	are equal	
3. Identity	An equation that is true for all values of	$2x \equiv x + x$
	the variables	
	An identity uses the symbol: \equiv	
4. Formula	Shows the relationship between two or	Area of a rectangle $=$ length x width or
	more variables	A = LxW
5. Simplifying	Collect 'like terms'.	2x + 3y + 4x - 5y + 3
Expressions		= 6x - 2y + 3
	Be careful with negatives.	$3x + 4 - x^2 + 2x - 1 = 5x - x^2 + 3$
	x^2 and x are not like terms.	
6. <i>x</i> times <i>x</i>	The answer is x^2 not $2x$.	Squaring is multiplying by itself, not by
		2.
7. $p \times p \times p$	The answer is p^3 not $3p$	If p=2, then $p^3=2x2x2=8$, not 2x3=6
8. $p + p + p$	The answer is 3p not p^3	If $p=2$, then $2+2+2=6$, not $2^3 = 8$
9. Expand	To expand a bracket, multiply each term in	3(m+7) = 3x + 21
	the bracket by the expression outside the	
	bracket.	
10. Factorise	The reverse of expanding.	6x - 15 = 3(2x - 5), where 3 is the
	Factorising is writing an expression as a	common factor.
	product of terms by 'taking out' a	
	common factor.	

Topic: Equations and Formulae

Topic/Skill	Definition/Tips	Example
1. Solve	To find the answer /value of something	Solve $2x - 3 = 7$
	Use inverse operations on both sides of the equation (balancing method) until you find the value for the letter.	Add 3 on both sides 2x = 10 Divide by 2 on both sides x = 5
2. Inverse	Opposite	The inverse of addition is subtraction.
		The inverse of multiplication is
	T I I I I I I I	division.
3. Rearranging	Use inverse operations on both sides of the formula (halancing method) until you	Make x the subject of $y = \frac{zx-1}{z}$
4. Writing	find the expression for the letter. Substitute letters for words in the	Multiply both sides by z yz = 2x - 1 Add 1 to both sides yz + 1 = 2x Divide by 2 on both sides $\frac{yz + 1}{2} = x$ We now have x as the subject. Bob charges £3 per window and a £5
Formulae	question.	call out charge. C = 3N + 5 Where N=number of windows and C=cost
5. Substitution	Replace letters with numbers.	a = 3, b = 2 and $c = 5$. Find:
	Do correctul of E_{α}^{2} . You need to concern first	1. $2a = 2 \times 3 = 6$
	De caleful of $5x$. Fou need to square first,	$1 2.3 \mu - 2 \mu = 3 \times 3 - 2 \times 2 = 5$

Topic: Solving Quadratics by Factorising

Topic/Skill	Definition/Tips	Example
1. Quadratic	A quadratic expression is of the form	Examples of quadratic expressions:
		x ²
	$ax^2 + bx + c$	$8x^2 - 3x + 7$
	where a, b and c are numbers, $a \neq 0$	Examples of non-quadratic expressions: $2w^3 = 5w^2$
		$2x^3 - 5x^2$
2 Factorising	When a quadratic expression is in the form	$\frac{7x-1}{x^2+7x+10-(x+5)(x+2)}$
Quadratics	$x^{2} + hx + c$ find the two numbers that add	(because 5 and 2 add to give 7 and
Quadratics	to give b and multiply to give c.	multiply to give 10)
		$x^2 + 2x - 8 = (x + 4)(x - 2)$
		(because +4 and -2 add to give +2 and
		multiply to give -8)
3. Difference	An expression of the form $a^2 - b^2$ can be	$x^2 - 25 = (x+5)(x-5)$
of Two	factorised to give $(a + b)(a - b)$	$16x^2 - 81 = (4x + 9)(4x - 9)$
Squares		22
4. Solving	Isolate the x^2 term and square root both	$2x^2 = 98$
Quadratics $(ar^2 - h)$	Sides.	$x^{-} = 49$
(ux = b)	negative solution	$x - \pm 7$
5. Solving	Factorise and then $solve = 0$.	$x^2 - 3x = 0$
Quadratics		x(x-3) = 0
$(ax^2 + bx =$		x = 0 or x = 3
0)		
6. Solving	Factorise the quadratic in the usual way.	Solve $x^2 + 3x - 10 = 0$
Quadratics by	Solve $= 0$	
Factorising		Factorise: $(x + 5)(x - 2) = 0$
(a = 1)	Make sure the equation $= 0$ before	x = -5 or x = 2
7 Easterising	Tactorising.	Eastering $G x^2 + F x = 4$
7. Factorising	when a quadratic is in the form $ar^2 + br + c$	Factorise $6x^2 + 5x - 4$
when $a \neq 1$	1 Multiply a by $c = ac$	$1.6 \times -4 = -24$
	2. Find two numbers that add to give b and	2. Two numbers that add to give $+5$ and
	multiply to give ac.	multiply to give -24 are +8 and -3
	3. Re-write the quadratic, replacing bx with	$3.6x^2 + 8x - 3x - 4$
	the two numbers you found.	4. Factorise in pairs:
	4. Factorise in pairs – you should get the	2x(3x+4) - 1(3x+4)
	same bracket twice	5. Answer = $(3x + 4)(2x - 1)$
	5. Write your two brackets – one will be the	
	repeated bracket, the other will be made of	
8 Solving	Ine factors outside each of the two brackets.	$S_{0} = 2x^{2} + 7x - 4 = 0$
o. Solving Quadratics by	Factorise the quadratic in the usual way. Solve – 0	Solve $2x^2 + 7x - 4 = 0$
Factorising		Eactorise: $(2x - 1)(x + 4) = 0$
$(a \neq 1)$	Make sure the equation $= 0$ before	$\frac{1}{1}$
	factorising.	$x = \frac{1}{2}$ or $x = -4$