PARK HIGH SCHOOL

Topic/Skill	Definition/Tips	Example
1. Integer	A whole number that can be positive, negative or zero.	$-3,0,92$
2. Decimal	A number with a decimal point in it. Can be positive or negative.	3.7, 0.94,-24.07
3. Negative Number	A number that is less than zero. Can be decimals.	-8, -2.5
4. Addition	To find the total, or sum, of two or more numbers. 'add', 'plus', ‘sum'	$3+2+7=12$
5. Subtraction	To find the difference between two numbers. To find out how many are left when some are taken away. 'minus', 'take away', 'subtract'	$10-3=7$
6. Multiplication	Can be thought of as repeated addition. 'multiply', 'times', 'product'	$3 \times 6=6+6+6=18$
7. Division	Splitting into equal parts or groups. The process of calculating the number of times one number is contained within another one. 'divide', 'share'	$\begin{gathered} 20 \div 4=5 \\ \frac{20}{4}=5 \end{gathered}$
8. Remainder	The amount 'left over' after dividing one integer by another.	The remainder of $20 \div 6$ is 2 , because 6 divides into 20 exactly 3 times, with 2 left over.
9. BIDMAS	An acronym for the order you should do calculations in. BIDMAS stands for 'Brackets, Indices, Division, Multiplication, Addition and Subtraction'. Indices are also known as 'powers' or 'orders'. With strings of division and multiplication, or strings of addition and subtraction, and no brackets, work from left to right.	$6+3 \times 5=21, \text { not } 45$ $5^{2}=25$, where the 2 is the index/power. $12 \div 4 \div 2=1.5, \text { not } 6$
10. Recurring Decimal	A decimal number that has digits that repeat forever. The part that repeats is usually shown by placing a dot above the digit that repeats, or	$\begin{gathered} \frac{1}{3}=0.333 \ldots=0 . \dot{3} \\ \frac{1}{7}=0.142857142857 \ldots=0 . \dot{1} 4285 \dot{7} \end{gathered}$

dots over the first and last digit of the repeating pattern.

$$
\frac{77}{600}=0.128333 \ldots=0.128 \dot{3}
$$

Topic/Skill	Definition/Tips	Example
1. Perimeter	The total distance around the outside of a shape. Units include: $m m, c m, m$ etc.	
2. Area	The amount of space inside a shape. Units include: $\mathrm{mm}^{2}, \mathrm{~cm}^{2}, \mathrm{~m}^{2}$	
3. Area of a Rectangle	Length x Width	
4. Area of a Parallelogram	Base x Perpendicular Height Not the slant height.	
5. Area of a Triangle	Base x Height $\div 2$	
6. Area of a Kite	Split in to two triangles and use the method above.	8 m $A=8.8 m^{2}$
7. Area of a Trapezium	$\frac{(a+b)}{2} \times h$ "Half the sum of the parallel side, times the height between them. That is how you calculate the area of a trapezium"	
8. Compound Shape	A shape made up of a combination of other known shapes put together.	

Topic/Skill	Definition/Tips	Example
1. Ratio	Ratio compares the size of one part to another part. Written using the ' $:$ ' symbol.	$3: 1$
2. Proportion	Proportion compares the size of one part to the size of the whole. Usually written as a fraction.	In a class with 13 boys and 9 girls, the proportion of boys is $\frac{13}{22}$ and the proportion of girls is $\frac{9}{22}$
3. Simplifying Ratios	Divide all parts of the ratio by a common factor.	$5: 10=1: 2$ (divide both by 5) $14: 21=2: 3$ (divide both by 7)
4. Ratios in the form 1: n or $n: 1$	Divide both parts of the ratio by one of the numbers to make one part equal 1.	$\begin{aligned} & 5: 7=1: \frac{7}{5} \text { in the form } 1: \mathrm{n} \\ & 5: 7=\frac{5}{7}: 1 \text { in the form } \mathrm{n}: 1 \end{aligned}$
5. Sharing in a Ratio	1. Add the total parts of the ratio. 2. Divide the amount to be shared by this value to find the value of one part. 3. Multiply this value by each part of the ratio. Use only if you know the total.	Share $£ 60$ in the ratio $3: 2: 1$. $\begin{aligned} & 3+2+1=6 \\ & 60 \div 6=10 \\ & 3 \times 10=30,2 \times 10=20,1 \times 10=10 \\ & £ 30: £ 20: £ 10 \end{aligned}$
6. Proportional Reasoning	Comparing two things using multiplicative reasoning and applying this to a new situation. Identify one multiplicative link and use this to find missing quantities.	
7. Unitary Method	Finding the value of a single unit and then finding the necessary value by multiplying the single unit value.	3 cakes require 450 g of sugar to make. Find how much sugar is needed to make 5 cakes. $\begin{aligned} & 3 \text { cakes }=450 \mathrm{~g} \\ & \text { So } 1 \text { cake }=150 \mathrm{~g}(\div \text { by } 3) \\ & \text { So } 5 \text { cakes }=750 \mathrm{~g}(\mathrm{x} \text { by } 5) \end{aligned}$
8. Ratio already shared	Find what one part of the ratio is worth using the unitary method.	Money was shared in the ratio 3:2:5 between Ann, Bob and Cat. Given that Bob had $£ 16$, found out the total amount of money shared. $\begin{aligned} & £ 16=2 \text { parts } \\ & \text { So } £ 8=1 \text { part } \\ & 3+2+5=10 \text { parts, so } 8 \times 10=£ 80 \end{aligned}$
9. Best Buys	Find the unit cost by dividing the price by the quantity. The lowest number is the best value.	8 cakes for $£ 1.28 \rightarrow 16$ p each (\div by 8) 13 cakes for $£ 2.05 \rightarrow 15.8$ p each (\div by 13) Pack of 13 cakes is best value.

Topic/Skill	Definition/Tips	Example
1. Direct Proportion	If two quantities are in direct proportion, as one increases, the other increases by the same percentage. If y is directly proportional to x, this can be written as $\boldsymbol{y} \propto \boldsymbol{x}$ An equation of the form $\boldsymbol{y}=\boldsymbol{k} \boldsymbol{x}$ represents direct proportion, where k is the constant of proportionality.	
2. Inverse Proportion	If two quantities are inversely proportional, as one increases, the other decreases by the same percentage. If y is inversely proportional to x, this can be written as $y \propto \frac{1}{x}$ An equation of the form $\boldsymbol{y}=\frac{\boldsymbol{k}}{\boldsymbol{x}}$ represents inverse proportion.	
3. Using proportionality formulae	Direct: $\mathbf{y}=\mathbf{k x}$ or $\mathbf{y} \propto \mathbf{x}$ Inverse: $\mathbf{y}=\frac{k}{x}$ or $\mathbf{y} \propto \frac{1}{x}$ 1. Solve to find \mathbf{k} using the pair of values in the question. 2. Rewrite the equation using the k you have just found. 3. Substitute the other given value from the question in to the equation to find the missing value.	p is directly proportional to q . When $\mathrm{p}=12, \mathrm{q}=4$. Find p when $\mathrm{q}=20$. $\begin{aligned} & \text { 1. } \mathrm{p}=\mathrm{kq} \\ & 12=\mathrm{kx} 4 \\ & \text { so } \mathrm{k}=3 \end{aligned}$ 2. $p=3 q$ 3. $p=3 \times 20=60$, so $p=60$
4. Direct Proportion with powers	Graphs showing direct proportion can be written in the form $\boldsymbol{y}=\boldsymbol{k} \boldsymbol{x}^{\boldsymbol{n}}$ Direct proportion graphs will always start at the origin.	
5. Inverse Proportion with powers	Graphs showing inverse proportion can be written in the form $\boldsymbol{y}=\frac{\boldsymbol{k}}{x^{n}}$ Inverse proportion graphs will never start at the origin.	Inverse Proportion Graphs $=\sim=2$

Topic/Skill	Definition/Tips	Example
1. Types of Angles	Acute angles are less than 90°. Right angles are exactly 90°. Obtuse angles are greater than 90° but less than 180°. Reflex angles are greater than 180° but less than 360°.	
2. Angle Notation	Can use one lower-case letters, eg. θ or x Can use three upper-case letters, eg. $B A C$	
3. Angles at a Point	Angles around a point add up to 360°.	
4. Angles on a Straight Line	Angles around a point on a straight line add up to 180°.	
5. Opposite Angles	Vertically opposite angles are equal.	$\frac{x / y}{y / x}$
6. Alternate Angles	Alternate angles are equal. They look like Z angles, but never say this in the exam.	
7. Corresponding Angles	Corresponding angles are equal. They look like F angles, but never say this in the exam.	
8. Co-Interior Angles	Co-Interior angles add up to 180°. They look like C angles, but never say this in the exam.	

| 9. Angles in a
 Triangle | Angles in a triangle add up to 180

 ${ }^{\circ}$. |
| :--- | :--- | :--- |
| 10. Types of
 Triangles | Right Angle Triangles have a 90
 Isosceles Triangles have 2 equal sides and
 2 equal base angles.
 Equilateral Triangles have 3 equal sides
 and 3 equal angles (60 |
| Scalene Triangles have different sides and | |
| different angles. | |
| Base angles in an isosceles triangle are | |
| equal. | |

	$\mathbf{1 8 0}$ - Size of Exterior Angle	
17. Size of Exterior Angle in a Regular Polygon$\quad \frac{\mathbf{3 6 0}}{\boldsymbol{n}}$	Size of Exterior Angle in a Regular Octagon $=$ You can also use the formula: $\mathbf{1 8 0}-$ Size of Interior Angle	$\frac{360}{8}=45^{\circ}$

Topic/Skill	Definition/Tips	Example
1. Square	- Four equal sides - Four right angles - Opposite sides parallel - Diagonals bisect each other at right angles - Four lines of symmetry - Rotational symmetry of order four	
2. Rectangle	- Two pairs of equal sides - Four right angles - Opposite sides parallel - Diagonals bisect each other, not at right angles - Two lines of symmetry - Rotational symmetry of order two	
3. Rhombus	- Four equal sides - Diagonally opposite angles are equal - Opposite sides parallel - Diagonals bisect each other at right angles - Two lines of symmetry - Rotational symmetry of order two	
4. Parallelogram	- Two pairs of equal sides - Diagonally opposite angles are equal - Opposite sides parallel - Diagonals bisect each other, not at right angles - No lines of symmetry - Rotational symmetry of order two	
5. Kite	- Two pairs of adjacent sides of equal length - One pair of diagonally opposite angles are equal (where different length sides meet) - Diagonals intersect at right angles, but do not bisect - One line of symmetry - No rotational symmetry	
6. Trapezium	- One pair of parallel sides - No lines of symmetry - No rotational symmetry Special Case: Isosceles Trapeziums have one line of symmetry.	

Topic/Skill	Definition/Tips	Example
1. Pythagoras' Theorem	For any right angled triangle: $a^{2}+b^{2}=c^{2}$ Used to find missing lengths. a and b are the shorter sides, c is the hypotenuse (longest side).	a8 SUBTRACT: $a^{2}=c^{2}-b^{2}$ $y^{2}=100-64$ $y^{2}=36$ $y=6$
2. 3D Pythagoras' Theorem	Find missing lengths by identifying right angled triangles. You will often have to find a missing length you are not asked for before finding the missing length you are asked for.	Can a pencil that is 20 cm long fit in a pencil tin with dimensions $12 \mathrm{~cm}, 13 \mathrm{~cm}$ and 9 cm ? The pencil tin is in the shape of a cuboid. Hypotenuse of the base $=$ $\sqrt{12^{2}+13^{2}}=17.7$ Diagonal of cuboid $=\sqrt{17.7^{2}+9^{2}}=$ 19.8 cm No, the pencil cannot fit.

Topic/Skill	Definition/Tips	Example
1. Multiple	The result of multiplying a number by an integer. The times tables of a number.	The first five multiples of 7 are: $7,14,21,28,35$
2. Factor	A number that divides exactly into another number without a remainder. It is useful to write factors in pairs	The factors of 18 are: $1,2,3,6,9,18$ The factor pairs of 18 are: $\begin{gathered} 1,18 \\ 2,9 \\ 3,6 \\ \hline \end{gathered}$
3. Lowest Common Multiple (LCM)	The smallest number that is in the times tables of each of the numbers given.	The LCM of 3, 4 and 5 is 60 because it is the smallest number in the 3,4 and 5 times tables.
4. Highest Common Factor (HCF)	The biggest number that divides exactly into two or more numbers.	The HCF of 6 and 9 is 3 because it is the biggest number that divides into 6 and 9 exactly.
5. Prime Number	A number with exactly two factors. A number that can only be divided by itself and one. The number $\mathbf{1}$ is not prime, as it only has one factor, not two.	The first ten prime numbers are: $2,3,5,7,11,13,17,19,23,29$
6. Prime Factor	A factor which is a prime number.	The prime factors of 18 are: $2,3$
7. Product of Prime Factors	Finding out which prime numbers multiply together to make the original number. Use a prime factor tree. Also known as 'prime factorisation'.	$36=2 \times 2 \times 3 \times 3$ $\text { or } 2^{2} \times 3^{2}$ (2)

Topic: Representing Data

5. Pictogram	Uses pictures or symbols to show the value of the data. A pictogram must have a key.	```Black Red \(\boldsymbol{B}_{\text {日 }}\) Green \(\boldsymbol{5}\) \(F_{i}=4\) cars Others \(\beta\) 日 \(\rho\)```
6. Line Graph	A graph that uses points connected by straight lines to show how data changes in values. This can be used for time series data, which is a series of data points spaced over uniform time intervals in time order.	
7. Two Way Tables	A table that organises data around two categories. Fill out the information step by step using the information given. Make sure all the totals add up for all columns and rows.	
8. Box Plots	The minimum, lower quartile, median, upper quartile and maximum are shown on a box plot. A box plot can be drawn independently or from a cumulative frequency diagram.	Students sit a maths test. The highest score is 19 , the lowest score is 8 , the median is 14 , the lower quartile is 10 and the upper quartile is 17 . Draw a box plot to represent this information.
9. Comparing Box Plots	Write two sentences. 1. Compare the averages using the medians for two sets of data. 2. Compare the spread of the data using the range or IQR for two sets of data. The smaller the range/IQR, the more consistent the data. You must compare box plots in the context of the problem.	'On average, students in class A were more successful on the test than class B because their median score was higher.' 'Students in class B were more consistent than class A in their test scores as their IQR was smaller.'

Topic/Skill	Definition/Tips	Example
1. Square Number	The number you get when you multiply a number by itself.	$\begin{gathered} 1,4,9,16,25,36,49,64,81,100,121, \\ 144,169,196,225 \ldots \\ 9^{2}=9 \times 9=81 \end{gathered}$
2. Square Root	The number you multiply by itself to get another number. The reverse process of squaring a number.	$\sqrt{36}=6$ because $6 \times 6=36$
$\begin{aligned} & \text { 3. Solutions to } \\ & x^{2}=\ldots . \end{aligned}$	Equations involving squares have two solutions, one positive and one negative.	Solve $x^{2}=25$ $x=5 \text { or } x=-5$ This can also be written as $x= \pm 5$
4. Cube Number	The number you get when you multiply a number by itself and itself again.	$\begin{aligned} & 1,8,27,64,125 \ldots \\ & 2^{3}=2 \times 2 \times 2=8 \\ & \hline \end{aligned}$
5. Cube Root	The number you multiply by itself and itself again to get another number. The reverse process of cubing a number.	$\begin{array}{r} \sqrt[3]{125}=5 \\ \text { because } 5 \times 5 \times 5=125 \end{array}$
6. Powers of...	The powers of a number are that number raised to various powers.	The powers of 3 are: $\begin{aligned} & 3^{1}=3 \\ & 3^{2}=9 \\ & 3^{3}=27 \\ & 3^{4}=81 \text { etc. } \end{aligned}$
7. Multiplication Index Law	When multiplying with the same base (number or letter), add the powers. $a^{m} \times a^{n}=a^{m+n}$	$\begin{gathered} 7^{5} \times 7^{3}=7^{8} \\ a^{12} \times a=a^{13} \\ 4 x^{5} \times 2 x^{8}=8 x^{13} \end{gathered}$
8. Division Index Law	When dividing with the same base (number or letter), subtract the powers. $a^{m} \div a^{n}=a^{m-n}$	$\begin{gathered} 15^{7} \div 15^{4}=15^{3} \\ x^{9} \div x^{2}=x^{7} \\ 20 a^{11} \div 5 a^{3}=4 a^{8} \end{gathered}$
9. Brackets Index Laws	When raising a power to another power, multiply the powers together. $\left(a^{m}\right)^{n}=a^{m n}$	$\begin{gathered} \left(y^{2}\right)^{5}=y^{10} \\ \left(6^{3}\right)^{4}=6^{12} \\ \left(5 x^{6}\right)^{3}=125 x^{18} \end{gathered}$
10. Notable Powers	$\begin{aligned} & p=p^{1} \\ & p^{0}=1 \end{aligned}$	$99999^{0}=1$
11. Negative Powers	A negative power performs the reciprocal. $a^{-m}=\frac{1}{a^{m}}$	$3^{-2}=\frac{1}{3^{2}}=\frac{1}{9}$
12. Fractional Powers	The denominator of a fractional power acts as a 'root'. The numerator of a fractional power acts as a normal power. $a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}$	$\begin{gathered} 27^{\frac{2}{3}}=(\sqrt[3]{27})^{2}=3^{2}=9 \\ \left(\frac{25}{16}\right)^{\frac{3}{2}}=\left(\frac{\sqrt{25}}{\sqrt{16}}\right)^{3}=\left(\frac{5}{4}\right)^{3}=\frac{125}{64} \end{gathered}$

Topic/Skill	Definition/Tips	Example
1. Circle	A circle is the locus of all points equidistant from a central point.	
2. Parts of a Circle	Radius - the distance from the centre of a circle to the edge Diameter - the total distance across the width of a circle through the centre. Circumference - the total distance around the outside of a circle Chord - a straight line whose end points lie on a circle Tangent - a straight line which touches a circle at exactly one point Arc - a part of the circumference of a circle Sector - the region of a circle enclosed by two radii and their intercepted arc Segment - the region bounded by a chord and the arc created by the chord	
3. Area of a Circle	$\boldsymbol{A}=\boldsymbol{\pi} \boldsymbol{r}^{2}$ which means 'pix radius squared'.	If the radius was 5 cm , then: $A=\pi \times 5^{2}=78.5 \mathrm{~cm}^{2}$
4. Circumference of a Circle	$\boldsymbol{C}=\boldsymbol{\pi} \boldsymbol{d}$ which means 'pix diameter'	If the radius was 5 cm , then: $C=\pi \times 10=31.4 \mathrm{~cm}$
5. π ('pi')	Pi is the circumference of a circle divided by the diameter. $\pi \approx 3.14$	
6. Arc Length of a Sector	The arc length is part of the circumference. Take the angle given as a fraction over 360° and multiply by the circumference.	$\text { Arc Length }=\frac{115}{360} \times \pi \times 8=8.03 \mathrm{~cm}$
7. Area of a Sector	The area of a sector is part of the total area. Take the angle given as a fraction over 360° and multiply by the area.	$\text { Area }=\frac{115}{360} \times \pi \times 4^{2}=16.1 \mathrm{~cm}^{2}$

8. Surface Area of a Cylinder	Curved Surface Area $=\boldsymbol{\pi d h}$ or $\mathbf{2 \pi r} \boldsymbol{h}$ Total SA $=\mathbf{2} \pi r^{2}+\pi d h$ or $\mathbf{2} \pi r^{2}+\mathbf{2 \pi r h}$	
9. Surface Area of a Cone	Curved Surface Area $=\pi r l$ where $l=$ slant height Total SA $=\pi r l+\pi r^{2}$ You may need to use Pythagoras' Theorem to find the slant height	
10. Surface Area of a Sphere	$S A=4 \pi r^{2}$ Look out for hemispheres - halve the SA of a sphere and add on a circle $\left(\pi r^{2}\right)$	Find the surface area of a sphere with radius 3 cm . $S A=4 \pi(3)^{2}=36 \pi \mathrm{~cm}^{2}$

Topic/Skill	Definition/Tips	Example
1. Translation	Translate means to move a shape. The shape does not change size or orientation.	
2. Column Vector	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-)	$\binom{2}{3}$ means ' 2 right, 3 up' $\binom{-1}{-5}$ means ' 1 left, 5 down'
3. Rotation	The size does not change, but the shape is turned around a point. Use tracing paper.	Rotate Shape A 90° anti-clockwise about $(0,1)$
4. Reflection	The size does not change, but the shape is 'flipped' like in a mirror. Line $\boldsymbol{x}=$? is a vertical line. Line $\boldsymbol{y}=$? is a horizontal line. Line $\boldsymbol{y}=\boldsymbol{x}$ is a diagonal line.	Reflect shape C in the line $y=x$
5. Enlargement	The shape will get bigger or smaller. Multiply each side by the scale factor.	```Scale Factor = 3 means ' }3\mathrm{ times larger = multiply by 3' Scale Factor = 1/2 means 'half the size = divide by 2'```

6. Finding the Centre of Enlargement	Draw straight lines through corresponding corners of the two shapes. The centre of enlargement is the point where all the lines cross over. Be careful with negative enlargements as the corresponding corners will be the other way around.	
7. Describing Transformatio ns	Give the following information when describing each transformation: Look at the number of marks in the question for a hint of how many pieces of information are needed. If you are asked to describe a 'transformation', you need to say the name of the type of transformation as well as the other details.	- Translation, Vector - Rotation, Direction, Angle, Centre - Reflection, Equation of mirror line - Enlargement, Scale factor, Centre of enlargement
8. Negative Scale Factor Enlargements	Negative enlargements will look like they have been rotated. $S F=-2$ will be rotated, and also twice as big.	Enlarge ABC by scale factor -2 , centre $(1,1)$
9. Invariance	A point, line or shape is invariant if it does not change/move when a transformation is performed. An invariant point 'does not vary'.	If shape P is reflected in the $y-$ axis, then exactly one vertex is invariant.

Topic/Skill	Definition/Tips	Example
1. Trigonometry	The study of triangles.	
2. Hypotenuse	The longest side of a right-angled triangle. Is always opposite the right angle.	
3. Adjacent	Next to	
4. Trigonometric Formulae	Use SOHCAHTOA. $\begin{aligned} & \sin \theta=\frac{O}{H} \\ & \cos \theta=\frac{A}{H} \\ & \tan \theta=\frac{O}{A} \end{aligned}$ When finding a missing angle, use the 'inverse' trigonometric function by pressing the 'shift' button on the calculator.	Use 'Opposite' and 'Adjacent', so use 'tan' $\begin{gathered} \tan 35=\frac{x}{11} \\ x=11 \tan 35=7.70 \mathrm{~cm} \end{gathered}$ use 'cos' $\begin{gathered} \cos x=\frac{5}{7} \\ x=\cos ^{-1}\left(\frac{5}{7}\right)=44.4^{\circ} \end{gathered}$ Use 'Adjacent' and 'Hypotenuse', so
$\begin{aligned} & \text { 5. 3D } \\ & \text { Trigonometry } \end{aligned}$	Find missing lengths by identifying right angled triangles. You will often have to find a missing length you are not asked for before finding the missing length you are asked for.	

Topic/Skill	Definition/Tips	Example
1. Place Value	The value of where a digit is within a number.	In 726 , the value of the 2 is 20 , as it is in the 'tens' column.
2. Place Value Columns	The names of the columns that determine the value of each digit. The 'ones' column is also known as the 'units' column.	
3. Rounding	To make a number simpler but keep its value close to what it was. If the digit to the right of the rounding digit is less than 5 , round down. If the digit to the right of the rounding digit is 5 or more, round up.	74 rounded to the nearest ten is 70 , because 74 is closer to 70 than 80 . 152,879 rounded to the nearest thousand is 153,000 .
4. Decimal Place	The position of a digit to the right of a decimal point.	In the number 0.372 , the 7 is in the second decimal place. 0.372 rounded to two decimal places is 0.37 , because the 2 tells us to round down. Careful with money - don’t write $£ 27.4$, instead write $£ 27.40$
5. Significant Figure	The significant figures of a number are the digits which carry meaning (ie. are significant) to the size of the number. The first significant figure of a number cannot be zero. In a number with a decimal, trailing zeros are not significant.	In the number 0.00821 , the first significant figure is the 8 . In the number 2.740, the 0 is not a significant figure. 0.00821 rounded to 2 significant figures is 0.0082 . 19357 rounded to 3 significant figures is 19400 . We need to include the two zeros at the end to keep the digits in the same place value columns.
6. Truncation	A method of approximating a decimal number by dropping all decimal places past a certain point without rounding.	$3.14159265 \ldots$ can be truncated to 3.1415 (note that if it had been rounded, it would become 3.1416)
7. Error Interval	A range of values that a number could have taken before being rounded or truncated. An error interval is written using inequalities, with a lower bound and an upper bound.	0.6 has been rounded to 1 decimal place. The error interval is: $0.55 \leq x<0.65$ The lower bound is 0.55 The upper bound is 0.65

	Note that the lower bound inequality can be 'equal to', but the upper bound cannot be 'equal to'.	
8. Estimate	To find something close to the correct answer.	An estimate for the height of a man is 1.8 metres.
9. Approximation	When using approximations to estimate the solution to a calculation, round each number in the calculation to 1 significant figure. \approx means 'approximately equal to'	$\frac{348+692}{0.526} \approx \frac{300+700}{0.5}=2000$ 'Note that dividing by 0.5 is the same as multiplying by 2 '
10. Rational Number	A number of the form $\frac{p}{q}$, where \boldsymbol{p} and \boldsymbol{q} are integers and $\boldsymbol{q} \neq \mathbf{0}$. A number that cannot be written in this form is called an 'irrational' number	$\frac{4}{9}, 6,-\frac{1}{3}, \sqrt{25}$ are examples of rational numbers. $\pi, \sqrt{2}$ are examples of an irrational numbers.
11. Surd	The irrational number that is a root of a positive integer, whose value cannot be determined exactly. Surds have infinite non-recurring decimals.	$\sqrt{2}$ is a surd because it is a root which cannot be determined exactly. $\sqrt{2}=1.41421356 \ldots$ which never repeats.
12. Rules of Surds	$\begin{gathered} \sqrt{a b}=\sqrt{a} \times \sqrt{b} \\ \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}} \\ a \sqrt{c} \pm b \sqrt{c}=(a \pm b) \sqrt{c} \\ \sqrt{a} \times \sqrt{a}=a \end{gathered}$	$\begin{gathered} \sqrt{48}=\sqrt{16} \times \sqrt{3}=4 \sqrt{3} \\ \sqrt{\frac{25}{36}}=\frac{\sqrt{25}}{\sqrt{36}}=\frac{5}{6} \\ 2 \sqrt{5}+7 \sqrt{5}=9 \sqrt{5} \\ \sqrt{7} \times \sqrt{7}=7 \end{gathered}$
13. Rationalise a Denominator	The process of rewriting a fraction so that the denominator contains only rational numbers.	$\begin{gathered} \frac{\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{3} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}}=\frac{\sqrt{6}}{2} \\ \frac{6}{3+\sqrt{7}}=\frac{6(3-\sqrt{7})}{(3+\sqrt{7})(3-\sqrt{7})} \\ =\frac{18-6 \sqrt{7}}{9-7} \\ =\frac{18-6 \sqrt{7}}{2}=9-3 \sqrt{7} \end{gathered}$

Topic/Skill	Definition/Tips	Example
1. Volume	Volume is a measure of the amount of space inside a solid shape. Units: $\mathrm{mm}^{3}, \mathrm{~cm}^{3}, \mathrm{~m}^{3}$ etc.	
2. Volume of a Cube/Cuboid	$\begin{gathered} V=\text { Length } \times \text { Width } \times \text { Height } \\ V=L \times W \times H \end{gathered}$ You can also use the Volume of a Prism formula for a cube/cuboid.	
3. Prism	A prism is a 3D shape whose cross section is the same throughout.	
4. Cross Section	The cross section is the shape that continues all the way through the prism.	
5. Volume of a Prism	$\begin{gathered} V=\text { Area of Cross Section } \times \text { Length } \\ V=A \times L \end{gathered}$	
6. Volume of a Cylinder	$V=\pi r^{2} h$	
7. Volume of a Cone	$V=\frac{1}{3} \pi r^{2} h$	

8. Volume of a Pyramid	Volume $=\frac{\mathbf{1}}{\mathbf{3}} \boldsymbol{B} \boldsymbol{h}$ where $\mathrm{B}=$ area of the base	
9. Volume of a Sphere	Look out for hemispheres - just halve the volume of a sphere.	Find the volume of a sphere with diameter 10 cm.
10. Frustums		
A frustum is a solid (usually a cone or pyramid) with the top removed. Find the volume of the whole shape, then take away the volume of the small cone/pyramid removed at the top.		

Topic/Skill	Definition/Tips	Example
1. Fraction	A mathematical expression representing the division of one integer by another. Fractions are written as two numbers separated by a horizontal line.	$\frac{2}{7}$ is a 'proper' fraction. $\frac{9}{4}$ is an 'improper' or 'top-heavy' fraction.
2. Numerator	The top number of a fraction.	In the fraction $\frac{3}{5}, 3$ is the numerator.
3. Denominator	The bottom number of a fraction.	In the fraction $\frac{3}{5}, 5$ is the denominator.
4. Unit Fraction	A fraction where the numerator is one and the denominator is a positive integer.	$\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ etc. are examples of unit fractions.
5. Reciprocal	The reciprocal of a number is $\mathbf{1}$ divided by the number. The reciprocal of x is $\frac{1}{x}$ When we multiply a number by its reciprocal we get 1 . This is called the 'multiplicative inverse'.	The reciprocal of 5 is $\frac{1}{5}$ The reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$, because $\frac{2}{3} \times \frac{3}{2}=1$
6. Mixed Number	A number formed of both an integer part and a fraction part.	$3 \frac{2}{5}$ is an example of a mixed number.
7. Simplifying Fractions	Divide the numerator and denominator by the highest common factor.	$\frac{20}{45}=\frac{4}{9}$
8. Equivalent Fractions	Fractions which represent the same value.	$\frac{2}{5}=\frac{4}{10}=\frac{20}{50}=\frac{60}{150} \text { etc. }$
9. Comparing Fractions	To compare fractions, they each need to be rewritten so that they have a common denominator. Ascending means smallest to biggest. Descending means biggest to smallest.	Put in to ascending order: $\frac{3}{4}, \frac{2}{3}, \frac{5}{6}, \frac{1}{2}$. Equivalent: $\frac{9}{12}, \frac{8}{12}, \frac{10}{12}, \frac{6}{12}$ Correct order: $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{5}{6}$
10. Fraction of an Amount	Divide by the bottom, times by the top	$\begin{aligned} & \text { Find } \frac{2}{5} \text { of } £ 60 \\ & 60 \div 5=12 \\ & 12 \times 2=24 \\ & \hline \end{aligned}$
11. Adding or Subtracting Fractions	Find the LCM of the denominators to find a common denominator. Use equivalent fractions to change each fraction to the common denominator.	$\frac{2}{3}+\frac{4}{5}$ Multiples of 3: $3,6,9,12,15 .$. Multiples of 5: 5, $10,15 .$. LCM of 3 and $5=15$

	Then just add or subtract the numerators and keep the denominator the same.	$\frac{2}{3}=\frac{10}{15}$ $\frac{4}{5}=\frac{12}{15}$
12. Multiplying Fractions	Multiply the numerators together and multiply the denominators together.	$\frac{10}{15}+\frac{12}{15}=\frac{22}{15}=1 \frac{7}{15}$
13. Dividing Fractions	'Keep it, Flip it, Change it - KFC Keep the first fraction the same	
Flip the second fraction upside down Change the divide to a multiply	$\frac{3}{72} \div \frac{5}{6}=\frac{3}{42} \times \frac{6}{5}=\frac{18}{20}=\frac{9}{10}$	
Multiply by the reciprocal of the second fraction.		

Topic/Skill	Definition/Tips	Example
1. Percentage	Number of parts per 100.	$31 \% \text { means } \frac{31}{100}$
$\begin{aligned} & \text { 2. Finding } \\ & 10 \% \end{aligned}$	To find $\mathbf{1 0 \%}$, divide by $\mathbf{1 0}$	10% of $£ 36=36 \div 10=£ 3.60$
3. Finding 1\%	To find $\mathbf{1 \%}$, divide by 100	1% of $£ 8=8 \div 100=£ 0.08$
4. Percentage Change	$\frac{\text { Difference }}{\text { Original }} \times 100 \%$	A games console is bought for $£ 200$ and sold for $£ 250$. $\% \text { change }=\frac{50}{200} \times 100=25 \%$
5. Fractions to Decimals	Divide the numerator by the denominator using the bus stop method.	$\frac{3}{8}=3 \div 8=0.375$
6. Decimals to Fractions	Write as a fraction over 10,100 or 1000 and simplify.	$0.36=\frac{36}{100}=\frac{9}{25}$
7. Percentages to Decimals	Divide by 100	$8 \%=8 \div 100=0.08$
8. Decimals to Percentages	Multiply by 100	$0.4=0.4 \times 100 \%=40 \%$
9. Fractions to Percentages	Percentage is just a fraction out of 100 . Make the denominator 100 using equivalent fractions. When the denominator doesn't go in to 100 , use a calculator and multiply the fraction by 100 .	$\begin{aligned} & \frac{3}{25}=\frac{12}{100}=12 \% \\ & \frac{9}{17} \times 100=52.9 \% \end{aligned}$
10. Percentages to Fractions	Percentage is just a fraction out of 100 . Write the percentage over 100 and simplify.	$14 \%=\frac{14}{100}=\frac{7}{50}$

Topic/Skill	Definition/Tips	Example
1. Increase or Decrease by a Percentage	Non-calculator: Find the percentage and add or subtract it from the original amount. Calculator: Find the percentage multiplier and multiply.	$\begin{aligned} & \underline{\text { Increase } 500 \text { by } 20 \% \text { (Non Calc): }} \\ & 10 \% \text { of } 500=50 \\ & \text { so } 20 \% \text { of } 500=100 \\ & 500+100=600 \\ & \\ & \text { Decrease } 800 \text { by } 17 \% \text { (Calc): } \\ & 100 \%-17 \%=83 \% \\ & 83 \% \div 100=0.83 \\ & 0.83 \times 800=664 \\ & \hline \end{aligned}$
2. Percentage Multiplier	The number you multiply a quantity by to increase or decrease it by a percentage.	The multiplier for increasing by 12% is 1.12 The multiplier for decreasing by 12% is 0.88 The multiplier for increasing by 100% is 2 .
3. Reverse Percentage	Find the correct percentage given in the question, then work backwards to find 100\% Look out for words like 'before' or 'original'	A jumper was priced at $£ 48.60$ after a 10% reduction. Find its original price. $\begin{aligned} & 100 \%-10 \%=90 \% \\ & 90 \%=£ 48.60 \\ & 1 \%=£ 0.54 \\ & 100 \%=£ 54 \\ & \hline \end{aligned}$
4. Simple Interest	Interest calculated as a percentage of the original amount.	$£ 1000$ invested for 3 years at 10% simple interest. $10 \% \text { of } £ 1000=£ 100$ $\text { Interest }=3 \times £ 100=£ 300$

Topic/Skill	Definition/Tips	Example
1. Expression	A mathematical statement written using symbols, numbers or letters,	$3 \mathrm{x}+2$ or $5 \mathrm{y}^{2}$
2. Equation	A statement showing that two expressions are equal	$2 \mathrm{y}-17=15$
3. Identity	An equation that is true for all values of the variables An identity uses the symbol: \equiv	$2 x \equiv x+x$
4. Formula	Shows the relationship between two or more variables	Area of a rectangle $=$ length x width or $\mathrm{A}=\mathrm{LxW}$
5. Simplifying Expressions	Collect 'like terms'. Be careful with negatives. x^{2} and x are not like terms.	$2 x+3 y+4 x-5 y+3$ $=6 x-2 y+3$
6. x times x	The answer is x^{2} not $2 x$.	Squaring is multiplying by itself, not by 2.
7. $p \times p \times p$	The answer is p^{3} not $3 p$ Th p	If $\mathrm{p}=2$, then $p^{3}=2 \mathrm{x} 2 \mathrm{x} 2=8$, not $2 \mathrm{x} 3=6$
8. $p+p+p$	The answer is 3 p not p^{3}	
9. Expand	To expand a bracket, multiply each term in the bracket by the expression outside the bracket.	The reverse of expanding. Factorising is writing an expression as a product of terms by 'taking out' a common factor.
10. Factorise $2+2+2=6$, not $2^{3}=8$		
common factor.		

Topic/Skill	Definition/Tips	Example
1. Solve	To find the answer/value of something Use inverse operations on both sides of the equation (balancing method) until you find the value for the letter.	Solve $2 x-3=7$ Add 3 on both sides $2 x=10$ Divide by 2 on both sides $x=5$
2. Inverse	Opposite	The inverse of addition is subtraction. The inverse of multiplication is division.
3. Rearranging Formulae	Use inverse operations on both sides of the formula (balancing method) until you find the expression for the letter.	Make x the subject of $y=\frac{2 x-1}{z}$ Multiply both sides by z $y z=2 x-1$ Add 1 to both sides $y z+1=2 x$ Divide by 2 on both sides $\frac{y z+1}{2}=x$ We now have x as the subject.
4. Writing Formulae	Substitute letters for words in the question.	Bob charges $£ 3$ per window and a $£ 5$ call out charge. $C=3 N+5$ Where $\mathrm{N}=$ number of windows and $\mathrm{C}=$ cost
5. Substitution	Replace letters with numbers. Be careful of $5 x^{2}$. You need to square first, then multiply by 5 .	$a=3, b=2$ and $c=5$. Find: 1. $2 a=2 \times 3=6$ 2. $3 a-2 b=3 \times 3-2 \times 2=5$ 3. $7 b^{2}-5=7 \times 2^{2}-5=23$

Topic/Skill	Definition/Tips	Example
1. Quadratic	A quadratic expression is of the form $a x^{2}+b x+c$ where a, b and c are numbers, $\boldsymbol{a} \neq \mathbf{0}$	Examples of quadratic expressions: $\begin{gathered} x^{2} \\ 8 x^{2}-3 x+7 \end{gathered}$ Examples of non-quadratic expressions: $\begin{gathered} 2 x^{3}-5 x^{2} \\ 9 x-1 \\ \hline \end{gathered}$
2. Factorising Quadratics	When a quadratic expression is in the form $x^{2}+b x+c$ find the two numbers that add to give b and multiply to give c.	$x^{2}+7 x+10=(x+5)(x+2)$ (because 5 and 2 add to give 7 and multiply to give 10) $x^{2}+2 x-8=(x+4)(x-2)$ (because +4 and -2 add to give +2 and multiply to give -8)
3. Difference of Two Squares	An expression of the form $\boldsymbol{a}^{2}-\boldsymbol{b}^{2}$ can be factorised to give $(\boldsymbol{a}+\boldsymbol{b})(\boldsymbol{a}-\boldsymbol{b})$	$\begin{aligned} x^{2}-25 & =(x+5)(x-5) \\ 16 x^{2}-81 & =(4 x+9)(4 x-9) \end{aligned}$
4. Solving Quadratics $\left(a x^{2}=b\right)$	Isolate the x^{2} term and square root both sides. Remember there will be a positive and a negative solution.	$\begin{gathered} 2 x^{2}=98 \\ x^{2}=49 \\ x= \pm 7 \end{gathered}$
5. Solving Quadratics $\left(a x^{2}+b x=\right.$ 0)	Factorise and then solve $=0$.	$\begin{gathered} x^{2}-3 x=0 \\ x(x-3)=0 \\ x=0 \text { or } x=3 \end{gathered}$
6. Solving Quadratics by Factorising ($a=1$)	Factorise the quadratic in the usual way. Solve $=0$ Make sure the equation $=0$ before factorising.	Solve $x^{2}+3 x-10=0$ Factorise: $\begin{gathered} (x+5)(x-2)=0 \\ x=-5 \text { or } x=2 \end{gathered}$
7. Factorising Quadratics when $a \neq 1$	When a quadratic is in the form $a x^{2}+b x+c$ 1. Multiply a by $\mathrm{c}=\mathrm{ac}$ 2. Find two numbers that add to give b and multiply to give ac. 3. Re-write the quadratic, replacing $b x$ with the two numbers you found. 4. Factorise in pairs - you should get the same bracket twice 5 . Write your two brackets - one will be the repeated bracket, the other will be made of the factors outside each of the two brackets.	Factorise $6 x^{2}+5 x-4$ 1. $6 \times-4=-24$ 2. Two numbers that add to give +5 and multiply to give -24 are +8 and -3 3. $6 x^{2}+8 x-3 x-4$ 4. Factorise in pairs: $\begin{array}{r} 2 x(3 x+4)-1(3 x+4) \\ \text { 5. Answer }=(3 x+4)(2 x-1) \end{array}$
8. Solving Quadratics by Factorising $(a \neq 1)$	Factorise the quadratic in the usual way. Solve $=0$ Make sure the equation $=0$ before factorising.	Solve $2 x^{2}+7 x-4=0$ Factorise: $\begin{aligned} & (2 x-1)(x+4)=0 \\ & x=\frac{1}{2} \text { or } x=-4 \end{aligned}$

