
Knowledge organiser

Mathematics — 11z4

RAYNES PARK HIGH SCHOOL

Topic: Basic Number and Decimals

Topic/Skill	Definition/Tips	Example
1. Integer	A whole number that can be positive,	-3,0,92
2. Decimal	negative or zero. A number with a decimal point in it. Can be positive or negative.	3.7, 0.94, -24.07
3. Negative Number	A number that is less than zero . Can be decimals.	-8, -2.5
4. Addition	To find the total , or sum , of two or more numbers.	3 + 2 + 7 = 12
5. Subtraction	'add', 'plus', 'sum' To find the difference between two numbers. To find out how many are left when some are taken away.	10 - 3 = 7
6. Multiplication	'minus', 'take away', 'subtract' Can be thought of as repeated addition . 'multiply', 'times', 'product'	$3 \times 6 = 6 + 6 + 6 = 18$
7. Division	Splitting into equal parts or groups. The process of calculating the number of times one number is contained within another one. 'divide', 'share'	$20 \div 4 = 5$ $\frac{20}{4} = 5$
8. Remainder	The amount 'left over' after dividing one integer by another.	The remainder of 20 ÷ 6 is 2, because 6 divides into 20 exactly 3 times, with 2 left over.
9. BIDMAS	An acronym for the order you should do calculations in.	$6 + 3 \times 5 = 21, not 45$
	BIDMAS stands for 'Brackets, Indices, Division, Multiplication, Addition and Subtraction'.	$5^2 = 25$, where the 2 is the index/power.
	Indices are also known as 'powers' or 'orders'.	
	With strings of division and multiplication, or strings of addition and subtraction, and no brackets, work from left to right.	$12 \div 4 \div 2 = 1.5, not 6$
10. Recurring Decimal	A decimal number that has digits that repeat forever.	$\frac{1}{3} = 0.333 \dots = 0.3$
	The part that repeats is usually shown by placing a dot above the digit that repeats, or	$\frac{1}{7} = 0.142857142857 \dots = 0.\dot{1}4285\dot{7}$

dots over the first and last digit of the repeating pattern.	$\frac{77}{600} = 0.128333 \dots = 0.1283$

Topic: Sequences

Topic/Skill	Definition/Tips	Example
1. Linear	A number pattern with a common	2, 5, 8, 11 is a linear sequence
Sequence	difference.	-
2. Term	Each value in a sequence is called a term.	In the sequence 2, 5, 8, 11, 8 is the
		third term of the sequence.
2 F		
3. Term-to-	A rule which allows you to find the next	First term is 2. Term-to-term rule is
term rule	term in a sequence if you know the	'add 3'
	previous term.	Sequence is: 2 5 8 11
4. nth term	A rule which allows you to calculate the	Sequence is: 2, 5, 8, 11 nth term is $3n - 1$
i. iidi terili	term that is in the nth position of the	
	sequence.	The 100^{th} term is $3 \times 100 - 1 = 299$
	1	
	Also known as the 'position-to-term' rule.	
	n refers to the position of a term in a	
1	sequence.	F: 11 1 00 5 11 15
5. Finding the	1. Find the difference .	Find the nth term of: 3, 7, 11, 15
nth term of a linear	 2. Multiply that by n. 3. Substitute n = 1 to find out what 	1. Difference is +4
sequence	number you need to add or subtract to	2. Start with 4n
sequence	get the first number in the sequence.	3. $4 \times 1 = 4$, so we need to subtract 1
	get the first number in the sequence.	to get 3.
6. Fibonacci	A sequence where the next number is found	The Fibonacci sequence is:
type sequences	by adding up the previous two terms	1,1,2,3,5,8,13,21,34
		An example of a Fibonacci-type
		sequence is:
5 G		4, 7, 11, 18, 29
7. Geometric	A sequence of numbers where each term is	An example of a geometric sequence is:
Sequence	found by multiplying the previous one by	2, 10, 50, 250
	a number called the common ratio, r .	The common ratio is 5
		Another example of a geometric
		sequence is:
		81, -27, 9, -3, 1
		The common ratio is $-\frac{1}{2}$
8. Quadratic	A sequence of numbers where the second	2 6 12 20 30 42
Sequence	difference is constant.	+4 +6 +8 +10 +12
Soquence		
	A quadratic sequence will have a n^2 term.	+2 +2 +2 +2
9. nth term of a	ar^{n-1}	The nth term of 2, 10, 50, 250 Is
geometric		
sequence	where a is the first term and r is the	$2 \times 5^{n-1}$
	common ratio	

		I
10. nth term of	1. Find the first and second differences.	Find the nth term of: 4, 7, 14, 25, 40
a quadratic	2. Halve the second difference and multiply	
sequence	this by n^2 .	Answer:
	3. Substitute $n = 1,2,3,4$ into your	Second difference = $+4 \rightarrow$ nth term =
	expression so far.	$2n^2$
	4. Subtract this set of numbers from the	
	corresponding terms in the sequence from	Sequence: 4, 7, 14, 25, 40
	the question.	$2n^2$ 2, 8, 18, 32, 50
	5. Find the nth term of this set of numbers.	Difference: 2, -1, -4, -7, -10
	6. Combine the nth terms to find the overall	, , , ,
	nth term of the quadratic sequence.	Nth term of this set of numbers is
	•	-3n + 5
	Substitute values in to check your nth term	
	works for the sequence.	Overall nth term: $2n^2 - 3n + 5$
		0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11. Triangular	The sequence which comes from a pattern	
numbers	of dots that form a triangle.	1 3 6 10
	1, 3, 6, 10, 15, 21	
	_, _, _, _, _, _, _,	

Topic: Perimeter and Area

Topic/Skill	Definition/Tips	Example
1. Perimeter	The total distance around the outside of a	8 cm
	shape. Units include: mm, cm, m etc.	5 cm
		P = 8 + 5 + 8 + 5 = 26cm
2. Area	The amount of space inside a shape. Units include: mm^2 , cm^2 , m^2	
3. Area of a Rectangle	Length x Width	4 cm $A = 36 cm^2$
4. Area of a Parallelogram	Base x Perpendicular Height Not the slant height.	$_{7 ext{cm}}$ $_{7 ext{cm}}$ $_{7 ext{cm}}$ $_{7 ext{cm}}$
5. Area of a Triangle	Base x Height ÷ 2	$ \begin{array}{c} 9 & 4 \\ \hline & 12 \end{array} $ $A = 24cm^2$
6. Area of a Kite	Split in to two triangles and use the method above.	$A = 8.8m^2$
7. Area of a Trapezium	$\frac{(a+b)}{2} \times h$ "Half the sum of the parallel side, times the height between them. That is how you calculate the area of a trapezium"	$ \begin{array}{c} 6 \text{ cm} \\ \hline & 16 \text{ cm} \end{array} $ $A = 55cm^2$
8. Compound Shape	A shape made up of a combination of other known shapes put together.	- + +

Topic/Skill	Definition/Tips	Example
1. Ratio	Ratio compares the size of one part to	3:1
	another part.	
	Written using the ':' symbol.	
2. Proportion	Proportion compares the size of one part to	In a class with 13 boys and 9 girls, the
	the size of the whole .	proportion of boys is $\frac{13}{22}$ and the
	Usually written as a fraction.	proportion of girls is $\frac{9}{22}$
3. Simplifying	Divide all parts of the ratio by a common	5: 10 = 1: 2 (divide both by 5)
Ratios	factor.	14 : 21 = 2 : 3 (divide both by 7)
4. Ratios in the	Divide both parts of the ratio by one of the	$5:7=1:\frac{7}{5}$ in the form 1:n
form $1: n$ or	numbers to make one part equal 1.	$5: 7 = \frac{5}{7}: 1$ in the form $n: 1$
n: 1		$\frac{3}{7}$. This die form in . T
5. Sharing in a	1. Add the total parts of the ratio.	Share £60 in the ratio 3:2:1.
Ratio	2. Divide the amount to be shared by this value to find the value of one part.	3+2+1=6
	3. Multiply this value by each part of the	$60 \div 6 = 10$
	ratio.	$3 \times 10 = 30, 2 \times 10 = 20, 1 \times 10 = 10$
	Use only if you know the total	£30 : £20 : £10
6. Proportional	Use only if you know the total . Comparing two things using multiplicative	X 2
Reasoning	reasoning and applying this to a new	
	situation.	30 minutes 60 pages ? minutes 150 pages
	Identify one multiplicative link and use this	: Hillington
	to find missing quantities.	X 2
7. Unitary	Finding the value of a single unit and then	3 cakes require 450g of sugar to make.
Method	finding the necessary value by multiplying the single unit value.	Find how much sugar is needed to make 5 cakes.
	the single unit value.	make 5 cakes.
		3 cakes = 450g
		So 1 cake = $150g \div y 3$
8. Ratio	Find what one part of the ratio is worth	So 5 cakes = 750 g (x by 5) Money was shared in the ratio 3:2:5
already shared	using the unitary method.	between Ann, Bob and Cat. Given that
		Bob had £16, found out the total
		amount of money shared.
		£ $16 = 2$ parts
		So £8 = 1 part $3 + 2 + 5 = 10$ parts so 8 v 10 = £80
9. Best Buys	Find the unit cost by dividing the price by	$3 + 2 + 5 = 10$ parts, so $8 \times 10 = £80$ 8 cakes for £1.28 \rightarrow 16p each (÷by 8)
= = = = = = = = = = = = = = = = = = = =	the quantity.	13 cakes for £2.05 \rightarrow 15.8p each (÷by
	The lowest number is the best value.	13)
		Pack of 13 cakes is best value.

Topic/Skill	Definition/Tips	Example
1. Direct Proportion	If two quantities are in direct proportion, as one increases, the other increases by the same percentage.	$y \uparrow$ $y = kx$
	If y is directly proportional to x, this can be written as $y \propto x$	* X
	An equation of the form $y = kx$ represents direct proportion, where k is the constant of proportionality.	/ ↓
2. Inverse Proportion	If two quantities are inversely proportional, as one increases, the other decreases by the same percentage.	$y = \frac{k}{x}$
	If y is inversely proportional to x, this can be written as $y \propto \frac{1}{x}$	*
	An equation of the form $y = \frac{k}{x}$ represents inverse proportion.	↓
3. Using	Direct : $y = kx$ or $y \propto x$	p is directly proportional to q.
proportionality formulae	Inverse: $y = \frac{k}{x}$ or $y \propto \frac{1}{x}$	When $p = 12$, $q = 4$. Find p when $q = 20$.
	1. Solve to find k using the pair of values in the question.	1. $p = kq$ 12 = $k \times 4$
	2. Rewrite the equation using the k you have just found.	so k = 3
	3. Substitute the other given value from the question in to the equation to find the missing value.	2. $p = 3q$ 3. $p = 3 \times 20 = 60$, so $p = 60$
4. Direct Proportion with powers	Graphs showing direct proportion can be written in the form $y = kx^n$ Direct proportion graphs will always start at the origin.	Direct Proportion Graphs $y = 3x^{2}$ $y = 2x$ $y = 0.5x^{5}$
5. Inverse Proportion with powers	Graphs showing inverse proportion can be written in the form $y = \frac{k}{x^n}$ Inverse proportion graphs will never start at the origin.	Inverse Proportion Graphs $y = \frac{2}{x}$ $y = \frac{3}{x^2}$ $y = \frac{3}{x^3}$

Topic: Angles

Topic/Skill	Definition/Tips	Example
1. Types of	Acute angles are less than 90°.	
Angles	Right angles are exactly 90°.	
1 1118100	Obtuse angles are greater than 90° but less	
	than 180°.	Acute Right Obtuse Reflex
	Reflex angles are greater than 180° but less	
	than 360°.	
2. Angle	Can use one lower-case letters, eg. θ or x	
Notation		
	Can use three upper-case letters, eg. <i>BAC</i>	
		$A \leftarrow \theta$
3. Angles at a	Angles around a point add up to 360°.	$\sim d$
Point		c a
		b
		$a+b+c+d=360^{\circ}$
4. Angles on a	Angles around a point on a straight line	/
Straight Line	add up to 180° .	
		x /y
		$x + y = 180^{\circ}$
5. Opposite	Vertically opposite angles are equal.	/u
Angles		x/y
		<i>y/x</i>
6. Alternate	Alternate angles are equal.	
Angles	They look like Z angles, but never say this	y/x
	in the exam.	/
		~ /v
		1/ / →
7.	Corresponding angles are equal.	у/
Corresponding	They look like F angles, but never say this	/x
Angles	in the exam.	
		/
		<u> </u>
		/*
8. Co-Interior	Co-Interior angles add up to 180°.	
Angles	They look like C angles, but never say this	y/x
11118100	in the exam.	
		/
		x / v
		
		- 1

9. Angles in a	Angles in a triangle add up to 180° .	A
Triangle		800
		B 45°
10. 77.		
10. Types of Triangles	Right Angle Triangles have a 90° angle in. Isosceles Triangles have 2 equal sides and	
Trangles	2 equal base angles.	
	Equilateral Triangles have 3 equal sides	
	and 3 equal angles (60°).	Right Angled Isosceles
	Scalene Triangles have different sides and different angles .	A
	unicient angles.	60
	Base angles in an isosceles triangle are	
	equal.	60" 60"
		Equilateral Scalene
11. Angles in a Quadrilateral	Angles in a quadrilateral add up to 360°.	750
Quadifiateral		126°
		65° 93°
12. Polygon	A 2D shape with only straight edges.	Rectangle, Hexagon, Decagon, Kite etc.
12. Polygon	A 2D shape with only straight edges.	Rectangle, Hexagon, Decagon, Kite etc.
		Rectangle, Hexagon, Decagon, Kite etc.
12. Polygon 13. Regular	A 2D shape with only straight edges. A shape is regular if all the sides and all the angles are equal.	Rectangle, Hexagon, Decagon, Kite etc.
	A shape is regular if all the sides and all the	Rectangle, Hexagon, Decagon, Kite etc.
	A shape is regular if all the sides and all the	Rectangle, Hexagon, Decagon, Kite etc.
	A shape is regular if all the sides and all the	Rectangle, Hexagon, Decagon, Kite etc.
	A shape is regular if all the sides and all the angles are equal . 3-sided = Triangle	Rectangle, Hexagon, Decagon, Kite etc.
13. Regular	A shape is regular if all the sides and all the angles are equal. 3-sided = Triangle 4-sided = Quadrilateral	Rectangle, Hexagon, Decagon, Kite etc.
13. Regular 14. Names of	A shape is regular if all the sides and all the angles are equal. 3-sided = Triangle 4-sided = Quadrilateral 5-sided = Pentagon	Rectangle, Hexagon, Decagon, Kite etc.
13. Regular 14. Names of	A shape is regular if all the sides and all the angles are equal. 3-sided = Triangle 4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon	
13. Regular 14. Names of	A shape is regular if all the sides and all the angles are equal. 3-sided = Triangle 4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon 7-sided = Heptagon/Septagon 8-sided = Octagon	
13. Regular 14. Names of	A shape is regular if all the sides and all the angles are equal. 3-sided = Triangle 4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon 7-sided = Heptagon/Septagon 8-sided = Octagon 9-sided = Nonagon	
13. Regular 14. Names of Polygons	A shape is regular if all the sides and all the angles are equal. 3-sided = Triangle 4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon 7-sided = Heptagon/Septagon 8-sided = Octagon 9-sided = Nonagon 10-sided = Decagon	Triangle Quadrilateral Pentagon Hexagon Heptagon Octagon Nonagon Decagon
13. Regular 14. Names of Polygons 15. Sum of	A shape is regular if all the sides and all the angles are equal. 3-sided = Triangle 4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon 7-sided = Heptagon/Septagon 8-sided = Octagon 9-sided = Nonagon 10-sided = Decagon $(n-2) \times 180$	Triangle Quadrilateral Pentagon Hexagon Heptagon Octagon Nonagon Decagon Sum of Interior Angles in a Decagon =
13. Regular 14. Names of Polygons 15. Sum of Interior Angles	A shape is regular if all the sides and all the angles are equal. 3-sided = Triangle 4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon 7-sided = Heptagon/Septagon 8-sided = Octagon 9-sided = Nonagon 10-sided = Decagon $(n-2) \times 180$ where n is the number of sides.	Triangle Quadrilateral Pentagon Hexagon Octagon Nonagon Decagon Sum of Interior Angles in a Decagon = $(10-2) \times 180 = 1440^{\circ}$
13. Regular 14. Names of Polygons 15. Sum of Interior Angles 16. Size of	A shape is regular if all the sides and all the angles are equal. 3-sided = Triangle 4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon 7-sided = Heptagon/Septagon 8-sided = Octagon 9-sided = Nonagon 10-sided = Decagon $(n-2) \times 180$	Triangle Quadrilateral Pentagon Hexagon When the property of
13. Regular 14. Names of Polygons 15. Sum of Interior Angles 16. Size of Interior Angle	A shape is regular if all the sides and all the angles are equal. 3-sided = Triangle 4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon 7-sided = Heptagon/Septagon 8-sided = Octagon 9-sided = Nonagon 10-sided = Decagon $(n-2) \times 180$ where n is the number of sides.	Triangle Quadrilateral Pentagon Hexagon Wheptagon Octagon Nonagon Decagon Sum of Interior Angles in a Decagon = $(10-2) \times 180 = 1440^{\circ}$ Size of Interior Angle in a Regular Pentagon =
13. Regular 14. Names of Polygons 15. Sum of Interior Angles 16. Size of	A shape is regular if all the sides and all the angles are equal. 3-sided = Triangle 4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon 7-sided = Heptagon/Septagon 8-sided = Octagon 9-sided = Nonagon 10-sided = Decagon $(n-2) \times 180$ where n is the number of sides. $(n-2) \times 180$	Triangle Quadrilateral Pentagon Hexagon When the property of

	180 – Size of Exterior Angle	
17. Size of Exterior Angle in a Regular Polygon	$\frac{360}{n}$ You can also use the formula: $180 - Size \ of \ Interior \ Angle$	Size of Exterior Angle in a Regular Octagon = $\frac{360}{8} = 45^{\circ}$

Topic: Bearings and Scale Diagrams

Topic/Skill	Definition/Tips	Example
1. Scale	The ratio of the length in a model to the length of the real thing.	Scale 1:10
		Real Horse 1500 mm high 2000 mm long Drawn Horse 150 mm high 200 mm long
2. Scale (Map)	The ratio of a distance on the map to the actual distance in real life.	1 in. = 250 mi 1 cm = 160 km
3. Bearings	 Measure from North (draw a North line) Measure clockwise Your answer must have 3 digits (eg. 047°) 	The bearing of <u>B</u> from <u>A</u>
	Look out for where the bearing is measured <u>from</u> .	The bearing of \underline{A} from \underline{B}
4. Compass Directions	You can use an acronym such as 'Never Eat Shredded Wheat' to remember the order of the compass directions in a clockwise direction.	NW NE
	Bearings: $NE = 045^{\circ}$, $W = 270^{\circ}$ etc.	SW SE

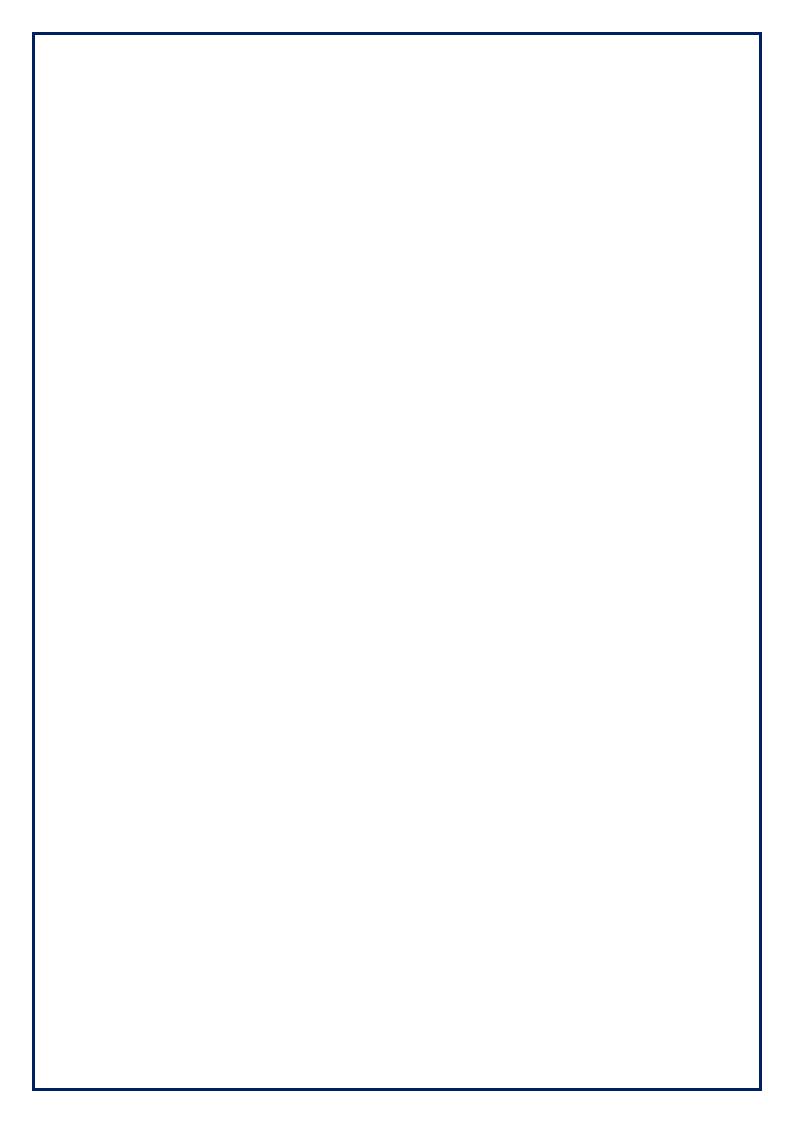
Topic: Properties of Polygons

Topic/Skill	Definition/Tips	Example
1. Square	Four equal sides	
	• Four right angles	
	Opposite sides parallel	
	• Diagonals bisect each other at right	
	angles	
	• Four lines of symmetry	
	• Rotational symmetry of order four	
2. Rectangle	• Two pairs of equal sides	
2. Rectangle	• Four right angles	
	• Opposite sides parallel	
	• Diagonals bisect each other, not at right	
	angles	
	• Two lines of symmetry	//
	• Rotational symmetry of order two	
3. Rhombus	• Four equal sides	^
	• Diagonally opposite angles are equal	× ×
	• Opposite sides parallel	
	• Diagonals bisect each other at right	
	angles	
	• Two lines of symmetry	<u> </u>
	• Rotational symmetry of order two	
4.	• Two pairs of equal sides	//
Parallelogram	 Diagonally opposite angles are equal 	
	Opposite sides parallel	1 1
	• Diagonals bisect each other, not at right	
	angles	
	• No lines of symmetry	
	• Rotational symmetry of order two	
5. Kite	• Two pairs of adjacent sides of equal	× ×
	length	
	• One pair of diagonally opposite angles	
	are equal (where different length sides	\ \ \ \ \
	meet)	
	• Diagonals intersect at right angles, but	v v
	do not bisect	
	• One line of symmetry	
(T :	• No rotational symmetry	
6. Trapezium	• One pair of parallel sides	
	No lines of symmetry	
	No rotational symmetry	
	Special Case: Isosceles Trapeziums have	
	one line of symmetry.	
	one mie or symmeny.	

Topic: Pythagoras' Theorem

Topic/Skill	Definition/Tips	Example
1. Pythagoras' Theorem	For any right angled triangle : $a^2 + b^2 = c^2$ Used to find missing lengths . a and b are the shorter sides, c is the	Finding a Shorter Side 10 SUBTRACT! 8 $a = y, b = 8, c = 10$ $a^2 = c^2 - b^2$ $y^2 = 100 - 64$ $y^2 = 36$ $y = 6$
2. 3D Pythagoras' Theorem	hypotenuse (longest side). Find missing lengths by identifying right angled triangles. You will often have to find a missing length you are not asked for before finding the missing length you are asked for.	Can a pencil that is 20cm long fit in a pencil tin with dimensions 12cm, 13cm and 9cm? The pencil tin is in the shape of a cuboid. Hypotenuse of the base = $\sqrt{12^2 + 13^2} = 17.7$ Diagonal of cuboid = $\sqrt{17.7^2 + 9^2} = 19.8cm$ No, the pencil cannot fit.

Topic: Factors and Multiples


Topic/Skill	Definition/Tips	Example
1. Multiple	The result of multiplying a number by an	The first five multiples of 7 are:
	integer.	
	The times tables of a number.	7, 14, 21, 28, 35
2. Factor	A number that divides exactly into another	The factors of 18 are:
	number without a remainder.	1, 2, 3, 6, 9, 18
	It is useful to write factors in pairs	The factor pairs of 18 are:
		1, 18
		2,9
		3,6
3. Lowest	The smallest number that is in the times	The LCM of 3, 4 and 5 is 60 because it
Common	tables of each of the numbers given.	is the smallest number in the 3, 4 and 5
Multiple		times tables.
(LCM)		
4. Highest	The biggest number that divides exactly	The HCF of 6 and 9 is 3 because it is
Common	into two or more numbers.	the biggest number that divides into 6
Factor (HCF)		and 9 exactly.
5. Prime	A number with exactly two factors .	The first ten prime numbers are:
Number		
	A number that can only be divided by itself	2, 3, 5, 7, 11, 13, 17, 19, 23, 29
	and one.	
	The number 1 is not prime, as it only has	
(D :	one factor, not two.	TTI : C : C 10
6. Prime	A factor which is a prime number.	The prime factors of 18 are:
Factor		2.2
7. Product of	Finding out which prime numbers	2,3
Prime Factors	multiply together to make the original	$36 = 2 \times 2 \times 3 \times 3$
1 Time Tactors	number.	(2) 18 or $2^2 \times 3^2$
	number.	
	Use a prime factor tree.	9
	ose a prime factor tree.	
	Also known as 'prime factorisation'.	(3) (3)
	This kilo wil as printe factorisation.	~ ~

Topic: Representing Data

Topic/Skill	Definition/Tips	Example		
1. Frequency	A record of how often each value in a set	Number of marks	Tally marks	Frequency
Table	of data occurs .	1	JHT 11	7
		2	#	5
		3	JH1	6
		4	1111	5
		5 Total	III	3 26
2. Bar Chart	Democrate data as ventical blocks	Total		20
2. Bar Chart	Represents data as vertical blocks.	¹⁴]		
		12		
	x - axis shows the type of data	≥ 10 -		
	y - axis shows the frequency for each	Frequency		
	type of data	<u>₽</u> 6-		
	Each bar should be the same width	4-		
	There should be gaps between each bar	2-		
	Remember to label each axis.	0	1 2 3	4
		No	umber of pets o	wned
3. Types of	Compound/Composite Bar Charts show		Iron	
Bar Chart		00	Carbon	
Dai Chart	data stacked on top of each other.	70-	Aluminum	
		50-		
		Weight (gm) 40		
		30-		
		20-		
		0 A	B Sample	С
	Comparative/Dual Bar Charts show data	50	ainfall	
	side by side.	40		Key:
	•			London Bristol
		cm 30		Bristoi
		20		
		10		
		0		
		Jan Feb	o Mar Apr May Month	,
			Bar Chart	
4. Pie Chart	Used for showing how data breaks down		juash	
	into its constituent parts.	Tennis	36°	
		40		
	When drawing a pie chart, divide 360° by	\	0° 144°	
	the total frequency. This will tell you how	Hockey	80°	
	many degrees to use for the frequency of		Netball	
	each category.			
		If there are 40 ==	onlo in o a	urvov than
	Remember to label the category that each	If there are 40 pe	-	•
	sector in the pie chart represents.	each person will	be worth 3	0U-4U=9°
	1 1	of the pie chart.		

5. Pictogram	Uses pictures or symbols to show the value of the data. A pictogram must have a key .	Black A A A A A A A A A A A Cars Green A A A A A A A A A A A Cars Others A A A A A A A
6. Line Graph	A graph that uses points connected by straight lines to show how data changes in values. This can be used for time series data , which is a series of data points spaced over uniform time intervals in time order .	14 12 10 8 6 4 2 0 1 2 3 4 5 6 7 8 9
7. Two Way Tables	A table that organises data around two categories. Fill out the information step by step using the information given. Make sure all the totals add up for all columns and rows.	Question: Complete the 2 way table below.
8. Box Plots	The minimum, lower quartile, median, upper quartile and maximum are shown on a box plot. A box plot can be drawn independently or from a cumulative frequency diagram.	Students sit a maths test. The highest score is 19, the lowest score is 8, the median is 14, the lower quartile is 10 and the upper quartile is 17. Draw a box plot to represent this information.
9. Comparing Box Plots	Write two sentences. 1. Compare the averages using the medians for two sets of data. 2. Compare the spread of the data using the range or IQR for two sets of data. The smaller the range/IQR, the more consistent the data. You must compare box plots in the context of the problem.	'On average, students in class A were more successful on the test than class B because their median score was higher.' 'Students in class B were more consistent than class A in their test scores as their IQR was smaller.'

Topic/Skill	Definition/Tips	Example
1. Square	The number you get when you multiply a	1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121,
Number	number by itself.	144, 169, 196, 225
	•	$9^2 = 9 \times 9 = 81$
2. Square Root	The number you multiply by itself to get	$\sqrt{36} = 6$
	another number.	
		because $6 \times 6 = 36$
	The reverse process of squaring a number.	
3. Solutions to	Equations involving squares have two	Solve $x^2 = 25$
$x^2 =$	solutions, one positive and one negative.	
		x = 5 or x = -5
		This can also be written as $x = \pm 5$
4. Cube	The number you get when you multiply a	1, 8, 27, 64, 125
Number	number by itself and itself again.	$2^{3} = 2 \times 2 \times 2 = 8$ $\sqrt[3]{125} = 5$
5. Cube Root	The number you multiply by itself and	$\sqrt[3]{125} = 5$
	itself again to get another number.	
		because $5 \times 5 \times 5 = 125$
C D C	The reverse process of cubing a number.	TI CO
6. Powers of	The powers of a number are that number	The powers of 3 are:
	raised to various powers.	21 2
		$3^1 = 3$
		$3^2 = 9$ $3^3 = 27$
		$3^{3} = 2/$
7.	When multipling with the same has	$3^{\circ} = 81 \text{ etc.}$
	When multiplying with the same base	$3^{3} = 27$ $3^{4} = 81 \text{ etc.}$ $7^{5} \times 7^{3} = 7^{8}$ $a^{12} \times a = a^{13}$
Multiplication Index Law	(number or letter), add the powers.	$a^{-1} \times a = a^{-1}$ $4x^5 \times 2x^8 = 8x^{13}$
muex Law	$a^m \times a^n = a^{m+n}$	$4x^{\circ} \times 2x^{\circ} = 8x^{13}$
8. Division	When dividing with the same base (number	$15^7 \div 15^4 = 15^3$
Index Law	or letter), subtract the powers.	$x^9 \div x^2 = x^7$
mack Law	of letter), substitute the powers.	$20a^{11} \div 5a^3 = 4a^8$
	$a^m \div a^n = a^{m-n}$	20 <i>u</i> . 3 <i>u</i> – 4 <i>u</i>
9. Brackets	When raising a power to another power,	$(v^2)^5 = v^{10}$
Index Laws	multiply the powers together.	$(y^{2})^{5} = y^{10}$ $(6^{3})^{4} = 6^{12}$ $(5x^{6})^{3} = 125x^{18}$
	r-y r	$(5x^6)^3 = 125x^{18}$
	$(a^m)^n = a^{mn}$	(5%) 125%
10. Notable	$p = p^1$	$99999^0 = 1$
Powers	$p^0 = 1$	
11. Negative	A negative power performs the reciprocal.	2-2 1 1
Powers		$3^{-2} = \frac{1}{3^2} = \frac{1}{9}$
	$a^{-m} = \frac{1}{a^m}$ The denominator of a fractional power acts	
12. Fractional	The denominator of a fractional power acts	$27^{\frac{2}{3}} = \left(\sqrt[3]{27}\right)^2 = 3^2 = 9$
Powers	as a 'root'.	273 - (127) - 3 - 9
		3 3
	The numerator of a fractional power acts as	$\left(\frac{25}{16}\right)^{\frac{3}{2}} = \left(\frac{\sqrt{25}}{\sqrt{16}}\right)^3 = \left(\frac{5}{4}\right)^3 = \frac{125}{64}$
	a normal power.	$\left(\frac{16}{16}\right) = \left(\frac{1}{\sqrt{16}}\right) = \left(\frac{1}{4}\right) = \frac{1}{64}$
	m	· · · · ·
	$a^{\frac{m}{n}} = (\sqrt[n]{a})^m$	
	· /	

Topic: Coordinates and Linear Graphs

Topic/Skill	Definition/Tips	Example
1. Coordinates	Written in pairs. The first term is the x-coordinate (movement across). The second term is the y-coordinate (movement up or down)	A: (4,7) B: (-6,-3) B: (-6,-3)
2. Midpoint of a Line	Method 1: add the x coordinates and divide by 2, add the y coordinates and divide by 2 Method 2: Sketch the line and find the values half way between the two x and two y values.	Find the midpoint between $(2,1)$ and $(6,9)$ $\frac{2+6}{2} = 4 \text{ and } \frac{1+9}{2} = 5$ So, the midpoint is $(4,5)$
3. Linear	Straight line graph.	Example:
Graph	The general equation of a linear graph is $y = mx + c$ where <i>m</i> is the gradient and <i>c</i> is the y-intercept. The equation of a linear graph can contain	Other examples: x = y y = 4 x = -2 y = 2x - 7 y = 4 y = 2x - 7 y = 4 y = 4 y = 4
	an x-term, a y-term and a number.	
4. Plotting Linear Graphs	Method 1: Table of Values Construct a table of values to calculate coordinates.	x -3 -2 -1 0 1 2 3 y= x +3 0 1 2 3 4 5 6
	Method 2: Gradient-Intercept Method (use when the equation is in the form $y = mx + c$) 1. Plots the y-intercept 2. Using the gradient, plot a second point. 3. Draw a line through the two points plotted.	$y = \frac{3}{2}x + 1$
	Method 3: Cover-Up Method (use when the equation is in the form $ax + by = c$) 1. Cover the x term and solve the resulting equation. Plot this on the $x - axis$. 2. Cover the y term and solve the resulting equation. Plot this on the $y - axis$. 3. Draw a line through the two points plotted.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

5. Gradient	The gradient of a line is how steep it is.	Gradient = 4/2 = 2
	Gradient = $\frac{Change \ in \ y}{Change \ in \ x} = \frac{Rise}{Run}$	Gradient = -3/1 = -3
	The gradient can be positive (sloping upwards) or negative (sloping downwards)	1 1
6. Finding the Equation of a Line given a point and a gradient	Substitute in the gradient (m) and point (x,y) in to the equation $y = mx + c$ and solve for c.	Find the equation of the line with gradient 4 passing through (2,7). $y = mx + c$ $7 = 4 \times 2 + c$ $c = -1$
7. Finding the Equation of a Line given two points	Use the two points to calculate the gradient. Then repeat the method above using the gradient and either of the points.	Find the equation of the line passing through (6,11) and (2,3) $m = \frac{11-3}{6-2} = 2$ $y = mx + c$ $11 = 2 \times 6 + c$ $c = -1$ $v = 2x - 1$
8. Parallel Lines	If two lines are parallel , they will have the same gradient . The value of m will be the same for both lines.	$y = 2x - 1$ Are the lines $y = 3x - 1$ and $2y - 6x + 10 = 0$ parallel? Answer: Rearrange the second equation in to the form $y = mx + c$ $2y - 6x + 10 = 0 \rightarrow y = 3x - 5$ Since the two gradients are equal (3), the lines are parallel.
9. Perpendicular Lines	If two lines are perpendicular , the product of their gradients will always equal -1 . The gradient of one line will be the negative reciprocal of the gradient of the other line. You may need to rearrange equations of lines to compare gradients (they need to be in the form $y = mx + c$)	Find the equation of the line perpendicular to $y = 3x + 2$ which passes through (6,5) Answer: As they are perpendicular, the gradient of the new line will be $-\frac{1}{3}$ as this is the negative reciprocal of 3. $y = mx + c$

$5 = -\frac{1}{3} \times 6 + c$ $c = 7$
$y = -\frac{1}{3}x + 7$ Or
3x + x - 7 = 0

Topic: Circumference and Area

Topic/Skill	Definition/Tips	Example
1. Circle	A circle is the locus of all points equidistant from a central point.	
2. Parts of a Circle	Radius – the distance from the centre of a circle to the edge Diameter – the total distance across the width of a circle through the centre. Circumference – the total distance around the outside of a circle Chord – a straight line whose end points lie on a circle Tangent – a straight line which touches a circle at exactly one point Arc – a part of the circumference of a circle Sector – the region of a circle enclosed by two radii and their intercepted arc Segment – the region bounded by a chord and the arc created by the chord	Parts of a Circle Radius Diameter Circumference Arc Tangent Segment Sector
3. Area of a Circle	$A = \pi r^2$ which means 'pi x radius squared'.	If the radius was 5cm, then: $A = \pi \times 5^2 = 78.5cm^2$
4. Circumference of a Circle	$C = \pi d$ which means 'pi x diameter'	If the radius was 5cm, then: $C = \pi \times 10 = 31.4cm$
5. π ('pi')	Pi is the circumference of a circle divided by the diameter. $\pi \approx 3.14$	2 Ran# Ran
6. Arc Length of a Sector	The arc length is part of the circumference. Take the angle given as a fraction over 360° and multiply by the circumference .	Arc Length = $\frac{115}{360} \times \pi \times 8 = 8.03cm$
7. Area of a Sector	The area of a sector is part of the total area. Take the angle given as a fraction over 360° and multiply by the area .	Area = $\frac{115}{360} \times \pi \times 4^2 = 16.1cm^2$

8. Surface	Curved Surface Area = πdh or $2\pi rh$	
Area of a		
Cylinder	Total SA = $2\pi r^2 + \pi dh$ or $2\pi r^2 + 2\pi rh$	5
		2
		$Total SA = 2\pi(2)^2 + \pi(4)(5) = 28\pi$
9. Surface	Curved Surface Area = $\pi r l$	//\
Area of a Cone	where $l = slant\ height$	5m/
	Total SA = $\pi r l + \pi r^2$	
	You may need to use Pythagoras' Theorem	3m
	to find the slant height	$Total SA = \pi(3)(5) + \pi(3)^2 = 24\pi$
10. Surface	$SA = 4\pi r^2$	Find the surface area of a sphere with
Area of a		radius 3cm.
Sphere	Look out for hemispheres – halve the SA of	
	a sphere and add on a circle (πr^2)	$SA = 4\pi(3)^2 = 36\pi cm^2$

Topic: Accuracy

Topic/Skill	Definition/Tips	Example	
1. Place Value	The value of where a digit is within a	In 726, the value of the 2 is 20, as it is	
	number.	in the 'tens' column.	
2. Place Value	The names of the columns that determine	PLACE VALUE CHART	
Columns	the value of each digit.	Millions Hundred Thousands Ten Thousands Thousands Hundreds Tens Ones Tents Tenths Hundredths Thousandths Thousandths Thousandths Thousandths Millionths	
	The 'ones' column is also known as the 'units' column.	Millions Hundred Thousands Thousands Thousands Tens Ones Decimal Point Tenths Thousandths Thousandths The Ten-Thousandths Thousandths Thousandths Millionths	
3. Rounding	To make a number simpler but keep its	74 rounded to the nearest ten is 70,	
	value close to what it was.	because 74 is closer to 70 than 80.	
	If the digit to the right of the rounding	152,879 rounded to the nearest	
	digit is less than 5, round down . If the digit to the right of the rounding digit is 5 or more, round up .	thousand is 153,000.	
4. Decimal	The position of a digit to the right of a	In the number 0.372, the 7 is in the	
Place	decimal point.	second decimal place.	
		0.372 rounded to two decimal places is	
		0.37, because the 2 tells us to round	
		down.	
		Careful with money - don't write £27.4,	
		instead write £27.40	
5. Significant	The significant figures of a number are the	In the number 0.00821, the first	
Figure	digits which carry meaning (ie. are	significant figure is the 8.	
	significant) to the size of the number.		
		In the number 2.740, the 0 is not a	
	The first significant figure of a number	significant figure.	
	cannot be zero.		
		0.00821 rounded to 2 significant figures	
	In a number with a decimal, trailing zeros are not significant.	is 0.0082.	
		19357 rounded to 3 significant figures	
		is 19400. We need to include the two	
		zeros at the end to keep the digits in the	
		same place value columns.	
6. Truncation	A method of approximating a decimal	3.14159265 can be truncated to	
	number by dropping all decimal places	3.1415 (note that if it had been	
7.5	past a certain point without rounding.	rounded, it would become 3.1416)	
7. Error	A range of values that a number could	0.6 has been rounded to 1 decimal	
Interval	have taken before being rounded or truncated.	place.	
		The error interval is:	
	An error interval is written using		
	inequalities, with a lower bound and an upper bound .	$0.55 \le x < 0.65$	
		The lower bound is 0.55	
		The upper bound is 0.65	

	Note that the lower bound inequality can be 'equal to', but the upper bound cannot be 'equal to'.	
8. Estimate	To find something close to the correct answer.	An estimate for the height of a man is 1.8 metres.
9. Approximation	When using approximations to estimate the solution to a calculation, round each number in the calculation to 1 significant figure. ≈ means 'approximately equal to'	$\frac{348 + 692}{0.526} \approx \frac{300 + 700}{0.5} = 2000$ 'Note that dividing by 0.5 is the same as multiplying by 2'
10. Rational Number	A number of the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$. A number that cannot be written in this form is called an 'irrational' number	$\frac{4}{9}$, 6, $-\frac{1}{3}$, $\sqrt{25}$ are examples of rational numbers. π , $\sqrt{2}$ are examples of an irrational numbers.
11. Surd	The irrational number that is a root of a positive integer, whose value cannot be determined exactly. Surds have infinite non-recurring decimals.	$\sqrt{2}$ is a surd because it is a root which cannot be determined exactly. $\sqrt{2} = 1.41421356 \dots \text{ which never repeats.}$
12. Rules of Surds	$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$ $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ $a\sqrt{c} \pm b\sqrt{c} = (a \pm b)\sqrt{c}$ $\sqrt{a} \times \sqrt{a} = a$	$\sqrt{48} = \sqrt{16} \times \sqrt{3} = 4\sqrt{3}$ $\sqrt{\frac{25}{36}} = \frac{\sqrt{25}}{\sqrt{36}} = \frac{5}{6}$ $2\sqrt{5} + 7\sqrt{5} = 9\sqrt{5}$ $\sqrt{7} \times \sqrt{7} = 7$
13. Rationalise a Denominator	The process of rewriting a fraction so that the denominator contains only rational numbers.	$ \sqrt{7} \times \sqrt{7} = 7 $ $ \frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{3} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{6}}{2} $ $ \frac{6}{3 + \sqrt{7}} = \frac{6(3 - \sqrt{7})}{(3 + \sqrt{7})(3 - \sqrt{7})} $ $ = \frac{18 - 6\sqrt{7}}{9 - 7} $ $ = \frac{18 - 6\sqrt{7}}{2} = 9 - 3\sqrt{7} $

Topic: Basic Probability

Topic/Skill	Definition/Tips	Example
1. Probability	The likelihood/chance of something	
	happening.	
		Impossible Unlikely Even Chance Likely Certain
	Is expressed as a number between 0	0 1
	(impossible) and 1 (certain).	A in F. Change
	Can be expressed as a fraction, decimal,	1-in-6 Chance 4-in-5 Chance
	percentage or in words (likely, unlikely,	
	even chance etc.)	
2. Probability	P(A) refers to the probability that event A	P(Red Queen) refers to the probability
Notation	will occur.	of picking a Red Queen from a pack of
2 771 4: 1	Name have of Equation at la Outgam of	cards.
3. Theoretical Probability	Number of Favourable Outcomes	Probability of rolling a 4 on a fair 6-
•	Total Number of Possible Outcomes	sided die = $\frac{1}{6}$.
4. Relative	Number of Successful Trials	A coin is flipped 50 times and lands on
Frequency	Total Number of Trials	Tails 29 times.
		The relative frequency of getting Tails
		$= \frac{29}{50}.$
5 Francis I	To Condide words on Comment of the conditions	
5. Expected Outcomes	To find the number of expected outcomes, multiply the probability by the number of	The probability that a football team wins is 0.2 How many games would
Outcomes	trials.	you expect them to win out of 40?
		you expect them to will out of 10.
		$0.2 \times 40 = 8 games$
6. Exhaustive	Outcomes are exhaustive if they cover the	When rolling a six-sided die, the
	entire range of possible outcomes.	outcomes 1, 2, 3, 4, 5 and 6 are
	The probabilities of an exhaustive set of	exhaustive, because they cover all the
	The probabilities of an exhaustive set of outcomes adds up to 1 .	possible outcomes.
7. Mutually	Events are mutually exclusive if they	Examples of mutually exclusive events:
Exclusive	cannot happen at the same time.	T J J
		- Turning left and right
	The probabilities of an exhaustive set of	- Heads and Tails on a coin
	mutually exclusive events adds up to 1.	F1
		Examples of non mutually exclusive events:
		Cvento.
		- King and Hearts from a deck of cards,
		because you can pick the King of
		Hearts
8. Frequency	A diagram showing how information is	Wears glasses
Tree	categorised into various categories.	18 Does not wenn
	The numbers at the ends of branches tells	Bout Does not wear glasses
	us how often something happened	100505
	(frequency).	Wears glasses Wears
		Does not 8
		Does not wear glasses 8

	The lines connected the numbers are called									
	branches.									_
9. Sample	The set of all possible outcomes of an		+	1	2	3	4	5	6	
Space	experiment.		1	2	3	4	5	6	7	
			2	3	4	5	6	7	8	
			3	4	5	6	7	8	9	
			4	5	6	7	8	9	10	
			5	6	7	8	9	10	11	
			6	7	8	9	10	11	12	
10. Sample	A sample is a small selection of items from	A samp	ole c	oul	d be	e se	lect	ing	10 s	students
	a population.	from a	yea	r gr	oup	at s	scho	ol.		
	A1 :- 1:1 ::: iii									
	A sample is biased if individuals or groups									
	from the population are not represented in									
	the sample.									
11. Sample	The larger a sample size, the closer those	A sample size of 100 gives a more								
Size	probabilities will be to the true probability.	reliable	res	ult	thar	ı a s	sam	ple	size	of 10.

Topic/Skill	Definition/Tips	Example
1. Fraction	A mathematical expression representing the	$\frac{2}{7}$ is a 'proper' fraction.
	division of one integer by another.	7 s a proper fraction.
	Fractions are written as two numbers	$\frac{9}{4}$ is an 'improper' or 'top-heavy'
	separated by a horizontal line.	fraction.
2. Numerator	The top number of a fraction.	In the fraction $\frac{3}{5}$, 3 is the numerator.
3. Denominator	The bottom number of a fraction.	In the fraction $\frac{3}{5}$, 5 is the denominator.
4. Unit	A fraction where the numerator is one and	$\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ etc. are examples of unit
Fraction	the denominator is a positive integer.	fractions.
5. Reciprocal	The reciprocal of a number is 1 divided by the number .	The reciprocal of 5 is $\frac{1}{5}$
	The reciprocal of x is $\frac{1}{x}$	The reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$, because
		2 3
	When we multiply a number by its reciprocal we get 1. This is called the 'multiplicative inverse'.	$\frac{2}{3} \times \frac{3}{2} = 1$
6. Mixed Number	A number formed of both an integer part and a fraction part .	$3\frac{2}{5}$ is an example of a mixed number.
7. Simplifying	Divide the numerator and denominator	20 4
Fractions	by the highest common factor.	$\frac{26}{45} = \frac{1}{9}$
8. Equivalent Fractions	Fractions which represent the same value .	$\frac{2}{5} = \frac{4}{10} = \frac{20}{50} = \frac{60}{150} etc.$
9. Comparing Fractions	To compare fractions, they each need to be rewritten so that they have a common	Put in to ascending order: $\frac{3}{4}$, $\frac{2}{3}$, $\frac{5}{6}$, $\frac{1}{2}$.
	denominator.	Equivalent: $\frac{9}{12}$, $\frac{8}{12}$, $\frac{10}{12}$, $\frac{6}{12}$
	Ascending means smallest to biggest.	12'12'12
		Correct order: $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{5}{6}$
10. Fraction of	Descending means biggest to smallest. Divide by the bottom, times by the top	T: 1 ² case
an Amount	Divide by the bottom, times by the top	Find $\frac{2}{5}$ of £60
an i miouit		$60 \div 5 = 12$ 12 × 2 = 24
11. Adding or	Find the LCM of the denominators to find	$12 \times 2 = 24$ $\frac{2}{3} + \frac{4}{5}$
Subtracting	a common denominator.	$\frac{3}{3} + \frac{5}{5}$
Fractions	Use equivalent fractions to change each	Multiples of 3: 3, 6, 9, 12, 15
	fraction to the common denominator .	Multiples of 5: 5, 10, 15
		LCM of 3 and $5 = 15$

	Then just add or subtract the numerators and keep the denominator the same.	$\frac{\frac{2}{3}}{\frac{4}{5}} = \frac{\frac{10}{15}}{\frac{12}{15}}$
		$\frac{10}{15} + \frac{12}{15} = \frac{22}{15} = 1\frac{7}{15}$
12.	Multiply the numerators together and	3 2 6 1
Multiplying	multiply the denominators together.	$\frac{1}{8} \times \frac{1}{9} = \frac{1}{72} = \frac{1}{12}$
Fractions		
13. Dividing Fractions	'Keep it, Flip it, Change it – KFC' Keep the first fraction the same Flip the second fraction upside down Change the divide to a multiply	$\frac{3}{4} \div \frac{5}{6} = \frac{3}{4} \times \frac{6}{5} = \frac{18}{20} = \frac{9}{10}$
	Multiply by the reciprocal of the second fraction.	

Topic: Basic Percentages

Topic/Skill	Definition/Tips	Example
1. Percentage	Number of parts per 100.	31% means $\frac{31}{100}$
2. Finding 10%	To find 10%, divide by 10	10% of £36 = $36 \div 10 = £3.60$
3. Finding 1%	To find 1%, divide by 100	1% of £8 = $8 \div 100 = £0.08$
4. Percentage Change	$rac{Difference}{Original} imes 100\%$	A games console is bought for £200 and sold for £250. % change = $\frac{50}{200} \times 100 = 25\%$
5. Fractions to Decimals	Divide the numerator by the denominator using the bus stop method.	$\frac{3}{8} = 3 \div 8 = 0.375$
6. Decimals to Fractions	Write as a fraction over 10, 100 or 1000 and simplify.	$0.36 = \frac{36}{100} = \frac{9}{25}$
7. Percentages to Decimals	Divide by 100	$8\% = 8 \div 100 = 0.08$
8. Decimals to Percentages	Multiply by 100	$0.4 = 0.4 \times 100\% = 40\%$
9. Fractions to Percentages	Percentage is just a fraction out of 100. Make the denominator 100 using equivalent fractions. When the denominator descrit go in to	$\frac{3}{25} = \frac{12}{100} = 12\%$
	When the denominator doesn't go in to 100, use a calculator and multiply the fraction by 100.	$\frac{9}{17} \times 100 = 52.9\%$
10. Percentages to Fractions	Percentage is just a fraction out of 100. Write the percentage over 100 and simplify.	$14\% = \frac{14}{100} = \frac{7}{50}$

Topic: Calculating with Percentages

Topic/Skill	Definition/Tips	Example
1. Increase or	Non-calculator: Find the percentage and	Increase 500 by 20% (Non Calc):
Decrease by a	add or subtract it from the original	10% of 500 = 50
Percentage	amount.	so 20% of 500 = 100
		500 + 100 = 600
	Calculator: Find the percentage multiplier	
	and multiply.	Decrease 800 by 17% (Calc):
		100%-17%=83%
		$83\% \div 100 = 0.83$
		$0.83 \times 800 = 664$
2. Percentage	The number you multiply a quantity by to	The multiplier for increasing by 12% is
Multiplier	increase or decrease it by a percentage.	1.12
		The multiplier for decreasing by 120/ is
		The multiplier for decreasing by 12% is 0.88
		0.88
		The multiplier for increasing by 100%
		is 2.
3. Reverse	Find the correct percentage given in the	A jumper was priced at £48.60 after a
Percentage	question, then work backwards to find	10% reduction. Find its original price.
	100%	
		100% - 10% = 90%
	Look out for words like 'before' or	
	'original'	90% = £48.60
		1% = £0.54
		100% = £54
4. Simple	Interest calculated as a percentage of the	£1000 invested for 3 years at 10%
Interest	original amount.	simple interest.
		10% of £1000 = £100
		Interest = $3 \times £100 = £300$

Topic/Skill	Definition/Tips	Example
1. Expression	A mathematical statement written using symbols, numbers or letters,	$3x + 2 \text{ or } 5y^2$
2. Equation	A statement showing that two expressions are equal	2y - 17 = 15
3. Identity	An equation that is true for all values of the variables An identity uses the symbol: ≡	$2x \equiv x + x$
4. Formula	Shows the relationship between two or more variables	Area of a rectangle = length x width or A= LxW
5. Simplifying Expressions	Collect 'like terms'. Be careful with negatives. x^2 and x are not like terms.	$2x + 3y + 4x - 5y + 3$ $= 6x - 2y + 3$ $3x + 4 - x^{2} + 2x - 1 = 5x - x^{2} + 3$
6. <i>x</i> times <i>x</i>	The answer is x^2 not $2x$.	Squaring is multiplying by itself, not by 2.
7. $p \times p \times p$	The answer is p^3 not $3p$	If p=2, then p^3 =2x2x2=8, not 2x3=6
8. p + p + p	The answer is 3p not p^3	If p=2, then $2+2+2=6$, not $2^3 = 8$
9. Expand	To expand a bracket, multiply each term in the bracket by the expression outside the bracket.	3(m+7) = 3x + 21
10. Factorise	The reverse of expanding. Factorising is writing an expression as a product of terms by 'taking out' a common factor.	6x - 15 = 3(2x - 5), where 3 is the common factor.