NEWTON'S FIRST LAW

Q1.

The stopping distance of a car is the sum of the thinking distance and the braking distance.

The table below shows how the thinking distance and braking distance vary with speed.

Speed in \mathbf{m} / \mathbf{s}	Thinking distance in \mathbf{m}	Braking distance in \mathbf{m}
10	6	6.0
15	9	13.5
20	12	24.0
25	15	37.5
30	18	54.0

(a) What is meant by the braking distance of a vehicle?
\qquad
\qquad
(b) The data in the table above refers to a car in good mechanical condition driven by an alert driver.

Explain why the stopping distance of the car increases if the driver is very tired.
\qquad
\qquad
\qquad
\qquad
(c) A student looks at the data in the table above and writes the following:
thinking distance \propto speed
thinking distance \propto speed
Explain whether the student is correct.
\qquad
\qquad
\qquad
\qquad
(d) Applying the brakes with too much force can cause a car to skid.

The distance a car skids before stopping depends on the friction between the road surface and the car tyres and also the speed of the car.

Friction can be investigated by pulling a device called a 'sled' across a surface at constant speed.

The figure below shows a sled being pulled correctly and incorrectly across a surface.

The constant of friction for the surface is calculated from the value of the force pulling the sled and the weight of the sled.

Why is it important that the sled is pulled at a constant speed?
Tick one box.

If the sled accelerates it will be difficult to control.

If the sled accelerates the value for the constant of friction will be wrong.

If the sled accelerates the normal contact force will change.

(e) If the sled is pulled at an angle to the surface the value calculated for the constant of friction would not be appropriate.

Explain why.
\qquad
\qquad
\qquad
\qquad
(f) By measuring the length of the skid marks, an accident investigator determines that the distance a car travelled between the brakes being applied and stopping was 22 m.

The investigator used a sled to determine the friction. The investigator then calculated that the car decelerated at $7.2 \mathrm{~m} / \mathrm{s}^{2}$.

Calculate the speed of the car just before the brakes were applied.
Give your answer to two significant figures.
Use the correct equation from the Physics Equation Sheet.
\qquad
\qquad
\qquad
\qquad
Speed = \qquad m/s

Q2.
Figure 1 shows a golfer using a runway for testing how far a golf ball travels on grass.
One end of the runway is placed on the grass surface.
The other end of the runway is lifted up and a golf ball is put at the top.
The golf ball goes down the runway and along the grass surface.
Figure 1

(a) A test was done three times with the same golf ball.

The results are shown in Figure 2.
Figure 2

Test 3

(i) Make measurements on Figure 2 to complete Table 1.

Test	Distance measured in centimetres
1	8.5
2	
3	

(ii) Calculate the mean distance, in centimetres, between the ball and the edge of the runway in Figure 2.
\qquad
Mean distance $=$ \qquad cm
(iii) Figure 2 is drawn to scale.

Scale: $1 \mathrm{~cm}=20 \mathrm{~cm}$ on the grass.
Calculate the mean distance, in centimetres, the golf ball travels on the grass surface.
\qquad
Mean distance on the grass surface $=$ \qquad cm
(iv) The distance the ball travels along the grass surface is used to estimate the 'speed' of the grass surface.

The words used to describe the 'speed' of a grass surface are given in Table 2.

Table 2

Speed' of grass surface	Mean distance the golf ball travels in centimetres
Fast	250
Medium fast	220
Medium	190
Medium Slow	160
Slow	130

Use Table 2 and your answer in part (iii) to describe the 'speed' of the grass surface.
\qquad
(b) The shorter the grass, the greater the distance the golf ball will travel. A student uses the runway on the grass in her local park to measure the distance the golf ball travels.
(i) Suggest two variables the student should control.
\qquad
\qquad
\qquad
(ii) She carried out the test five times.

Her measurements, in centimetres, are shown below.
$\begin{array}{lllll}75 & 95 & 84 & 74 & 79\end{array}$

What can she conclude about the length of the grass in the park?
\qquad
\qquad
(c) Another student suggests that the 'speed' of a grass surface depends on factors other than grass length.

She wants to test the hypothesis that 'speed' depends on relative humidity.
Relative humidity is the percentage of water in the air compared to the maximum amount of water the air can hold. Relative humidity can have values between 1% and 100%.

The student obtains the data in Table 3 from the Internet.
Table 3

Relative humidity expressed as a percentage	Mean distance the golf ball travels in centimetres
71	180
79	162
87	147

(i) Describe the pattern shown in Table 3.
\qquad
\qquad
(ii) The student writes the following hypothesis:
'The mean distance the golf ball travels is inversely proportional to relative humidity.'

Use calculations to test this hypothesis and state your conclusion.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) The data in Table 3 does not allow a conclusion to be made with confidence.

Give a reason why.
\qquad
\qquad
(d) In a test, a golf ball hits a flag pole on the golf course and travels back towards the edge of the runway as shown in Figure 3.

Figure 3

The distance the ball travels and the displacement of the ball are not the same.
What is the difference between distance and displacement?
\qquad
\qquad
\qquad
\qquad

Q3.
(a) The diagram shows a car at position \mathbf{X}.

The handbrake is released and the car rolls down the slope to \mathbf{Y}.
The car continues to roll along a horizontal surface before stopping at \mathbf{Z}.
The brakes have not been used during this time.
(i) What type of energy does the car have at \mathbf{X} ?
(ii) What type of energy does the car have at \mathbf{Y} ?
(b) The graph shows how the velocity of the car changes with time between \mathbf{Y} and \mathbf{Z}.

(i) Which feature of the graph represents the negative acceleration between \mathbf{Y} and \mathbf{Z} ?
\qquad
(ii) Which feature of the graph represents the distance travelled between \mathbf{Y} and \mathbf{Z} ?
\qquad
(iii) The car starts again at position \mathbf{X} and rolls down the slope as before. This time the brakes are applied lightly at \mathbf{Y} until the car stops.

Draw on the graph another straight line to show the motion of the car between \mathbf{Y} and \mathbf{Z}.
(c) Three students carry out an investigation. The students put trolley \mathbf{D} at position \mathbf{P} on
a slope. They release the trolley. The trolley rolls down the slope and along the floor as shown in the diagram.

Floor

The students measure the distance from \mathbf{R} at the bottom of the slope to \mathbf{S} where the trolley stops. They also measure the time taken for the trolley to travel the distance RS.
They repeat the investigation with another trolley,
E.

Their results are shown in the table.

Trolley	Distance RS in centimetres	Time taken in seconds	Average velocity in centimetres per second
D	65	2.1	
E	80	2.6	

(i) Calculate the average velocity, in centimetres per second, between \mathbf{R} and \mathbf{S} for trolleys \mathbf{D} and \mathbf{E}. Write your answers in the table.
\qquad
\qquad
\qquad
(ii) Before the investigation, each student made a prediction.

- Student 1 predicted that the two trolleys would travel the same distance.
- Student 2 predicted that the average velocity of the two trolleys would be the same.
- Student 3 predicted that the negative acceleration of the two trolleys would be the same.

Is each prediction correct?
Justify your answers.
\qquad
\qquad
\qquad

Q4.
(a) The diagram shows two forces acting on an object.

What is the resultant force acting on the object?
Tick (\checkmark) one box.
8 N to the right

8 N to the left

4 N to the right

4 N to the left

(b) BASE jumpers jump from very high buildings and mountains for sport.

The diagram shows the forces acting on a BASE jumper in flight.
The BASE jumper is wearing a wingsuit.

(i) Draw a ring around the correct answer in the box to complete each sentence.

The BASE jumper accelerates forwards when force \mathbf{A}

The BASE jumper falls with a constant speed when force C

(ii) To land safely the BASE jumper opens a parachute.

What effect does opening the parachute have on the speed of the falling BASE jumper?

Give a reason for your answer.
\qquad
\qquad

Q5.
(a) The diagrams, A, B and \mathbf{C}, show the horizontal forces acting on a moving car.

Draw a line to link each diagram to the description of the car's motion at the moment when the forces act.

Draw only three lines.

A

constant speed

B

```
slowing down
```


C
accelerating forwards
(b) The front crumple zone of a car is tested at a road traffic laboratory. This is done by using a remote control device to drive the car into a strong barrier. Electronic sensors are attached to a dummy inside the car.

(i) Draw an arrow in Box 1 to show the direction of the force that the car exerts on the barrier.
(ii) Draw an arrow in Box 2 to show the direction of the force that the barrier exerts on the car.
(iii) Complete the following by drawing a ring around the correct line in the box.

The car exerts a force of 5000 N on the barrier. The barrier does not move. The force

exerted by the barrier on the car will be | more than |
| :--- |
| equal to |
| less than |$\quad 5000 \mathrm{~N}$.

(iv) Which one of the following gives the most likely reason for attaching electronic sensors to the dummy?

Put a tick (\checkmark) in the box next to your answer.

To measure the speed of the car just before the impact.

To measure the forces exerted on the dummy during the impact.
\square
\square

To measure the distance the car travels during the impact. \square

Q6.
The diagram shows the horizontal forces acting on a car travelling along a straight road.

(a) Complete the following sentences by drawing a ring around the correct word in each box.

(i) When the driving force equals the drag force, the speed ofthe car is | decreasing |
| :--- |
| constant |
| increasing |\quad.

(ii) Putting the brakes on transforms the car's kinetic energy mainly into | heat |
| :--- |
| light |
| sound |

(b) The charts, \mathbf{A}, \mathbf{B} and \mathbf{C} give the thinking distance and the braking distance for a car driven under different conditions.
(i) Draw straight lines to match each chart to the correct conditions.

Draw only three lines.

Conditions

Charts

Speed $=22 \mathrm{~m} / \mathrm{s}$ driver wide awake

Speed $=13 \mathrm{~m} / \mathrm{s}$
driver wide awake

Speed $=13 \mathrm{~m} / \mathrm{s}$ driver very tired

Key

Thinking distance
\square Braking distance
(ii) The three charts above all apply to dry road conditions.

How would the braking distances be different if the road were wet?
\qquad
\qquad

