NEWTON'S THIRD LAW

Q1.

The figure below shows the forces acting on a child who is balancing on a pogo stick.

The child and pogo stick are not moving.

(a) The downward force of the child on the spring is equal to the upward force of the spring on the child.

This is an example of which one of Newton's Laws of motion?

TICK one DOX.	
First Law	
Second Law	
Third Law	

(1)

(b) Complete the sentence.

Use an answer from the box.

elastic potential potential	gravitational kinetic	
--------------------------------	--------------------------	--

The compressed spring stores ______ energy.

(1)

(c) The child has a weight of 343 N.

Gravitational field strength = 9.8 N / kg

Calculate the mass of the chil	d.	
	Mass =	kg
The weight of the child causes	s the spring to compress elastic n.	ally from a length of
Vrite down the equation whic	h links compression, force and	spring constant.
alculate the spring constant o	of the spring.	
Give your answer in newtons	per metre.	

Q2.

When two objects interact, they exert forces on each other.

(a) Which statement about the forces is correct?

Tick (✓) one box.

	Tick (✓)
The forces are equal in size and act in the same direction.	
The forces are unequal in size and act in the same direction.	
The forces are equal in size and act in opposite directions.	
The forces are unequal in size and act in opposite directions.	

(1)

(b) A fisherman pulls a boat towards land.

The forces acting on the boat are shown in **Diagram 1**.

The fisherman exerts a force of 300 N on the boat. The sea exerts a resistive force of 250 N on the boat.

Diagram 2 is drawn to scale.

Diagram 1 250 N 300 N

When the boat reaches land The fisherman continues to	, the resistive force increases to 300 N. exert a force of 300 N.
Describe the motion of the b	ooat.
Γick (✓) one box.	
ccelerating to the right	
onstant velocity to the right	
tationary	
Explain your answer to part	(b)(ii).

Add to **Diagram 2** to show the single force that has the same effect as the two

300 N forces.

Determine the value of this resultant force.

Q3.

(a) The diagrams, **A**, **B** and **C**, show the horizontal forces acting on a **moving** car.

Draw a line to link each diagram to the description of the car's motion at the moment when the forces act.

Draw only three lines.

(b) The front crumple zone of a car is tested at a road traffic laboratory. This is done by using a remote control device to drive the car into a strong barrier. Electronic sensors are attached to a dummy inside the car.

(3)

	Box 1					
	Dummy ———————————————————————————————————	Stron Box 2	g barrier			
(i)	Draw an arrow in Box 1 to show the direction the barrier.	tion of the force t	hat the car exe	erts (1)		
(ii)	Draw an arrow in Box 2 to show the direct exerts on the car.	tion of the force tl	hat the barrier	(1)		
(iii)	Complete the following by drawing a ring a	around the correc	t line in the bo			
	The car exerts a force of 5000 N on the barrier. The barrier does not move. The force					
	exerted by the barrier on the car will be	more than equal to less than	5000 N.	(1)		
(iv)	Which one of the following gives the mos electronic sensors to the dummy?	t likely reason for	attaching	(.,		
	Put a tick (✓) in the box next to your answ	ver.				
	To measure the speed of the car just before	ore the impact.				
	To measure the forces exerted on the du	mmy during the ir	mpact.			
	To measure the distance the car travels of	luring the impact.				

Q4.

(a) A car is being driven along a straight road. The diagrams, **A**, **B** and **C**, show the horizontal forces acting on the moving car at three different points along the road.

(1)

(Total 7 marks)

Describe the motion of the car at each of the points, A, B and C.

(b) The diagram below shows the stopping distance for a family car, in good condition, driven at 22 m/s on a dry road. The stopping distance has two parts.

(3)

(1)

(1)

(i) Complete the diagram below by adding an appropriate label to the second part of the stopping distance.

(ii) State **one** factor that changes both the first part **and** the second part of the stopping distance.

(c) The front crumple zone of a car is tested at a road traffic laboratory. This is done by using a remote control device to drive the car into a strong barrier. Electronic sensors are attached to the dummy inside the car.

Sugges	st why	the dur	mmy is f	itted wi	th elec	ctronic	senso	ors.			
The gra	ph sh	ows ho	w the ve	elocity c	of the o	car cha	anges	during	the tes	st.	
Velocity n metres er second	9- 8- 7- 6- 5- 4-										
	3- 2- 1-										
	Ó		1		2		3		4		5
					Time	in se	conds				

	Acceleration = _
(3)	
(Total 10 marks)	