NEWTON'S THIRD LAW

Q1.

The figure below shows the forces acting on a child who is balancing on a pogo stick.
The child and pogo stick are not moving.

(a) The downward force of the child on the spring is equal to the upward force of the spring on the child.

This is an example of which one of Newton's Laws of motion?

Tick one box.
First Law

Second Law

Third Law
(b) Complete the sentence.

Use an answer from the box.

elastic potential potential	gravitational kinetic

The compressed spring stores \qquad energy.
(c) The child has a weight of 343 N .

Gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$

Write down the equation which links gravitational field strength, mass and weight.
\qquad
(d) Calculate the mass of the child.
\qquad
\qquad
\qquad
Mass = \qquad kg
(e) The weight of the child causes the spring to compress elastically from a length of 30 cm to a new length of 23 cm .

Write down the equation which links compression, force and spring constant.
\qquad
(f) Calculate the spring constant of the spring.

Give your answer in newtons per metre.
\qquad
\qquad
\qquad
Spring constant $=$ \qquad N / m
(Total 11 marks)

Q2.
When two objects interact, they exert forces on each other.
(a) Which statement about the forces is correct?

Tick (\checkmark) one box.

	Tick (\checkmark)
The forces are equal in size and act in the same direction.	
The forces are unequal in size and act in the same direction.	
The forces are equal in size and act in opposite directions.	
The forces are unequal in size and act in opposite directions.	

(b) A fisherman pulls a boat towards land.

The forces acting on the boat are shown in Diagram 1.
The fisherman exerts a force of 300 N on the boat.
The sea exerts a resistive force of 250 N on the boat.
Diagram 1

(i) Describe the motion of the boat.
\qquad
\qquad
\qquad
\qquad
(ii) When the boat reaches land, the resistive force increases to 300 N .

The fisherman continues to exert a force of 300 N .
Describe the motion of the boat.
Tick (\checkmark) one box.
Accelerating to the right

Constant velocity to the right

Stationary

(iii) Explain your answer to part (b)(ii).
\qquad
\qquad
\qquad
\qquad
(iv) Another fisherman comes to help pull the boat. Each fisherman pulls with a force of 300 N , as shown in Diagram 2.

Diagram 2 is drawn to scale.
Add to Diagram 2 to show the single force that has the same effect as the two

300 N forces.
Determine the value of this resultant force.

Diagram 2

Resultant force $=$ \qquad N

Q3.
(a) The diagrams, \mathbf{A}, \mathbf{B} and \mathbf{C}, show the horizontal forces acting on a moving car.

Draw a line to link each diagram to the description of the car's motion at the moment when the forces act.

Draw only three lines.

B
slowing down

C
accelerating forwards
(b) The front crumple zone of a car is tested at a road traffic laboratory. This is done by using a remote control device to drive the car into a strong barrier. Electronic sensors are attached to a dummy inside the car.

(i) Draw an arrow in Box 1 to show the direction of the force that the car exerts on the barrier.
(ii) Draw an arrow in Box 2 to show the direction of the force that the barrier exerts on the car.
(iii) Complete the following by drawing a ring around the correct line in the box.

The car exerts a force of 5000 N on the barrier. The barrier does not move. The force

exerted by the barrier on the car will be \begin{tabular}{|l|}

\hline | more than |
| :--- |
| equal to |
| less than |

\hline
\end{tabular}

(iv) Which one of the following gives the most likely reason for attaching electronic sensors to the dummy?

Put a tick (\checkmark) in the box next to your answer.

To measure the speed of the car just before the impact.

To measure the forces exerted on the dummy during the impact.

To measure the distance the car travels during the impact. \square
(a) A car is being driven along a straight road. The diagrams, A, B and C, show the horizontal forces acting on the moving car at three different points along the road.

Describe the motion of the car at each of the points, \mathbf{A}, \mathbf{B} and \mathbf{C}.

(b) The diagram below shows the stopping distance for a family car, in good condition, driven at $22 \mathrm{~m} / \mathrm{s}$ on a dry road. The stopping distance has two parts.
(i) Complete the diagram below by adding an appropriate label to the second part of the stopping distance.

The distance the car travels during the driver's reaction time

(ii) State one factor that changes both the first part and the second part of the stopping distance.
\qquad
(c) The front crumple zone of a car is tested at a road traffic laboratory. This is done by using a remote control device to drive the car into a strong barrier. Electronic sensors are attached to the dummy inside the car.

(i) At the point of collision, the car exerts a force of 5000 N on the barrier.

State the size and direction of the force exerted by the barrier on the car.
\qquad
\qquad
(ii) Suggest why the dummy is fitted with electronic sensors.
\qquad
\qquad
(iii) The graph shows how the velocity of the car changes during the test.

Use the graph to calculate the acceleration of the car just before the collision with the barrier.

Show clearly how you work out your answer, including how you use the graph, and give the unit.

Acceleration $=$
(3)
(Total 10 marks)

