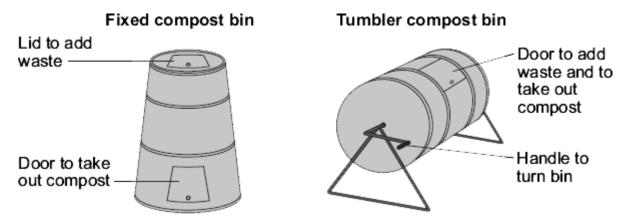
ORGANISATION OF AN ECOSYSTEM PART II


Q1.

Garden waste can be recycled.

One way of recycling garden waste is to use a compost bin.

The diagram shows two types of compost bin.

Each bin can contain the same amount of waste.

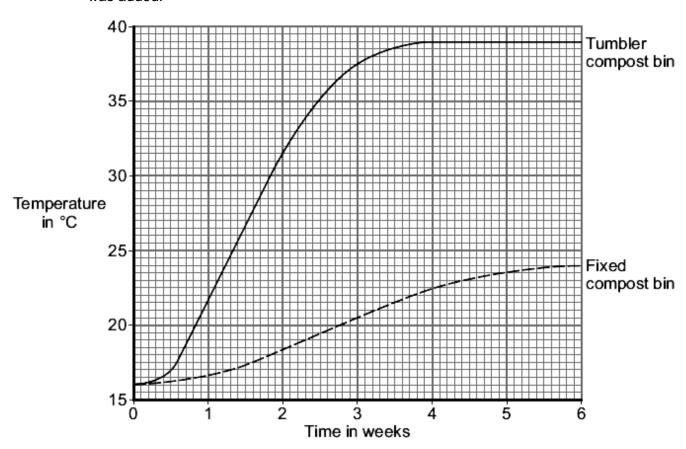
Information about the compost bins is given below.

Fixed compost bin

- Compost can be taken out after two years.
- The bin costs about £40.
- The bin takes up an area of 1 m².

Tumbler compost bin

/:\


- The bin is turned twice a day using the handle.
- Six weeks later compost can be taken out.
- The bin costs about £80.
- The bin takes up an area of 2 m².
- A gardener is buying a compost bin. (a)

(i)	Give one advantage to the gardener of buying a tumbler compost bin and not a fixed compost bin.

Give two advantages to the gardener of buying a fixed compost bin and not a (ii) tumbler compost bin.

(1)

(b) The same amounts of waste were added to the two types of bin. The graph shows the temperature in the bins in the first six weeks after the waste was added.

(i) Give **two** differences between the results for the tumbler compost bin and the fixed compost bin.

1.			

(ii) Complete the sentences.

The waste is converted into compost by organisms

called _____

The conversion of waste into compost works best in warm, moist

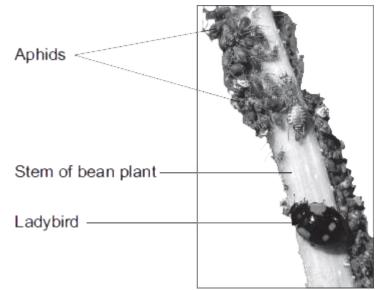
and _____ conditions.

(2)

(2)

(iii) There was a big difference in the final temperatures in the two bins.

Suggest an explanation for this temperature difference.


(2)

(Total 9 marks)

Q2.

Students investigated a food chain in a garden.

The students found 650 aphids feeding on one bean plant. Five ladybirds were feeding on the aphids.

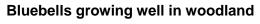
Photograph supplied by Hemera/Thinkstock

(a) (i) Draw a pyramid of biomass for this food chain. Label the pyramid.

(2)

(ii)	The biomass in the five ladybirds is less than the biomass in the bean plant.						
	Give two reasons why.						

(2)


(b) The carbon in dead bean plants is returned to the atmosphere via the carbon cycle.Describe this part of the carbon cycle.

(4) (Total 8 marks)

Q3.

In a woodland, bluebells grow well every year.

Mick Garratt [CC-BY-SA-2.0], via Wikimedia Commons

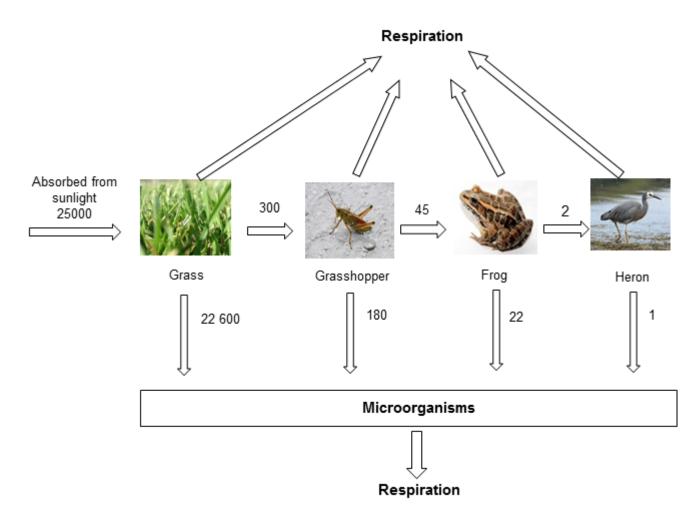
Each year the dead flowers and leaves of the bluebells and leaves from the trees fall onto the ground.

The bluebells do not run out of mineral ions.

Explain why the bluebells do **not** run out of mineral ions.

The words in the box may help you.

roots	dead leaves	mineral ions
	microorganisms	decay


(3)

(Total 3 marks)

Q4.

The diagram shows the annual energy flow through 1 m^2 of a habitat.

The unit, in each case, is kJ per m² per year.

(a) Calculate the percentage of the energy absorbed by the grass from sunlight that is transferred to the frog.

Show clearly how you work out your answer.

Answer ______ %

(2)

(b) All of the energy the grass absorbs from the sun is eventually lost to the surroundings.

In what form is this energy lost?	
Food chains are usually not more than five organisms long.	
Explain why.	
To gain full marks you must use data from the diagram.	
In this habitat microorganisms help to recycle materials.	
Explain how.	
	(Total 8 ma

Grass by By Catarina Carvalho from Lisboa, Portugal (Flickr) [CC-BY-2.0], via Wikimedia Commons. Grasshopper by I, Daniel Schwen [GFDL, CC-BY-SA-3.0], via Wikimedia Commons. Frog by Brian Gratwicke (Pickerel Frog) [CC-BY-2.0], via Wikimedia Commons. Heron by Glen Fergus (Own work, Otago Peninsula, New Zealand) [CC-BY-SA-2.5], via Wikimedia Commons.

Q5.

Some scientists set up a biogas generator.

The table shows how the rate of biogas production and the composition of the biogas changed over the first 30 days.

	Rate of biogas	Composition	ition of the biogas		
Time in days	production in cm³ per hour	Percentage of methane	Percentage of carbon dioxide		

1	110	27	56
5	90	20	78
10	50	30	68
15	170	68	30
20	115	72	26
25	110	71	27
30	105	70	28

		105	70	28					
(i)	Nam	e the process that p	roduces the methane	in biogas.	•				
(ii)	For the first 10 days, the gas released from the generator contained a concentration of carbon dioxide. This was because there was air in the generator when it was first set up.								
	Expla		' e of air results in a hi	gh concentration of c	arbon				
	the scientists concluded that it would not be profitable to collect biogas from the enerator until after about 20 days.								
Use									

Suggest one reason why.

									(Total 6	(mark
)_										
	en pla	ants are fo	ound at th	e start of a	all food chains	S.				
(a)	Со	mplete th	e sentend	es.						
	(i)	The so	ource of e	nergy for g	reen plants is	radiatio	n from	the		
	(ii)	Green	plants ab	sorb some	of the light e	nergy tha	at reac	hes them f	or a	
		proces	s called _							
(b)	Dra	aw a ring	around th	e correct a	inswer to con	nplete ea	ach ser	ntence.		
						chemi	cal]		
	(i)	This pro	cess trans	sfers light e	energy into	sound		energy.		
						electri	cal			
								<u>.</u>		
					carbon die	oxide.]			
	(ii)	The pro	ocess use	es the gas	oxygen.					
	(/			a wa gas	water.					
							j			
									carbohydra	
	(iii)	The	nrocess n	roduces ca	arbon-contain	ina com	nound	s called	minerals.	дю э .
	(''')	1110	p100000 p	1000000	arborr cornair	ing com	pourid	3 canca	salts.	
									Saits.	
(c)		e amount previous	_	naterial (bi	omass) at ea	ch stage	in a fo	ood chain is	s less than a	it
	The	diagram	shows a	food chain						
		oak tree		→ cate	rpillar	→	blue-	tit	hav	wk
	Giv	e two wa	ys in whic	ch biomass	is lost in this	food ch	ain.			
		< (√) two	-							

As carbon dioxide from the caterpillar	
As food eaten by the hawk	
As oxygen from the oak tree	
As faeces (droppings) from the blue-tit	
	(2)
	(Total 7 marks)

Q7.

When animals die, they usually fall to the ground and decay. In 1977 the body of a baby mammoth was discovered. The baby mammoth died 40 000 years ago and its body froze in ice.

The picture shows the mammoth.

By Thomas Quine [CC BY-SA 2.0], via Wikimedia Commons

(a)	Explain why the body of the baby mammoth did not decay.

(b) Mammoths are closely related to modern elephants. The pictures show these two animals.

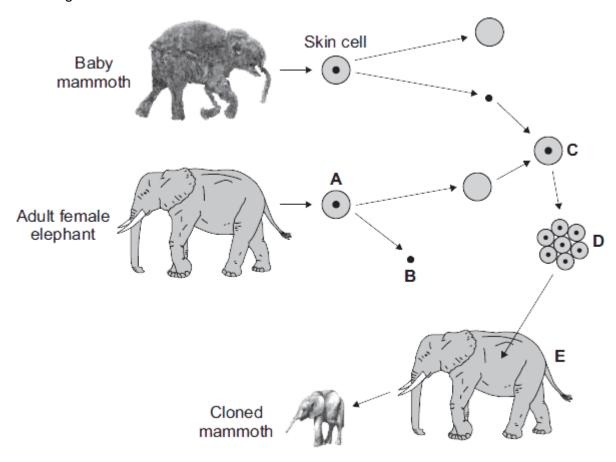
What scientists think a mammoth looked like

Modern elephant

(2)

By WolfmanSF (Own work) [CC-BY-SA-3.0], via Wikimedia By Caitlin from Hertfordshire, UK [CC-BY-2.0], via Commons Wikimedia Commons

Mammoths are extinct. What does extinct mean?

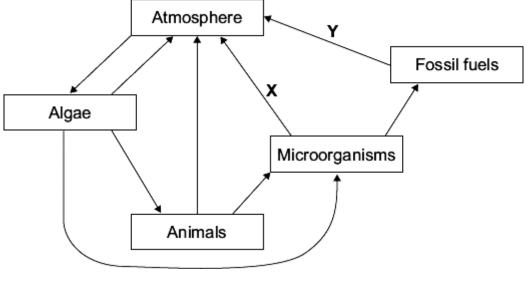


(1)

(c) Scientists believe they may be able to use adult cell cloning to recreate a living mammoth.

The scientists will use a skin cell from the baby mammoth.

The diagrams show how the skin cell will be used.

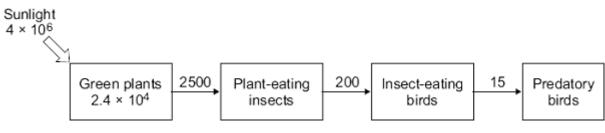


	What type	of cell is cell A?		
	skin ce	ell egg cell	sperm cell	
(ii)	Part B is re	moved from cell A .		
	What part o	of the cell is part B ?		
	nucleu	s cytoplas	m cell membrane	
(iii)	After cell C	is formed, it divides into	o embryo cells.	
	What is dor	ne to cell C to make it d	livide?	
	Cell C is	treated with enzymes	ls.	
		given an electric shoo	ж.	
(iv)	The embryo		lls. The ball of cells will be put into fema	ale
	Which part	of elephant E is the bal	Il of cells put into?	
		womb	stomach ovary	
	scientists ex not like an el		ne adult cell cloning to look like a mamn	noth

In each question, draw a ring around the correct answer.

Q8.

The diagram shows part of a carbon cycle in a habitat.



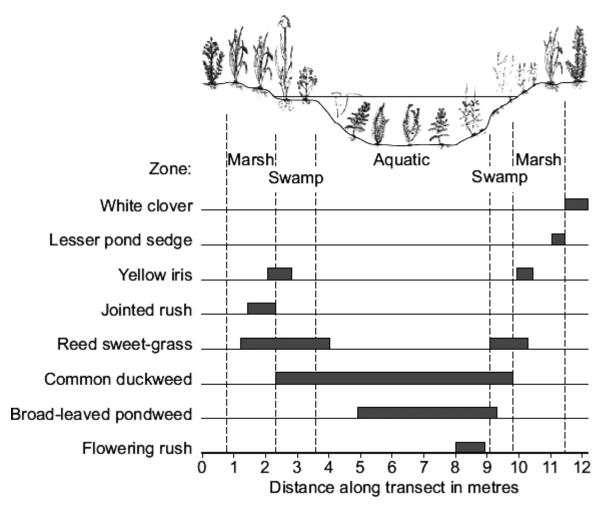
′			
Describe the part playe	ed by algae in this	carbon cycle.	
n tropical rainforests p	rocess X is much	faster than in most other habitats.	ı
Suggest why.			

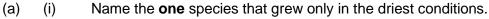
(Total 7 marks)

The diagram shows the annual flow of energy through a habitat.

The figures are in kJ m⁻².

		2.4 × 10 ⁴		insects		birds		bi
(i)		culate the per gy in the gree		f the energy in	sunlight	that was transfe	erred into	0
	Sho	w clearly how	you work	out your answe	er.			
				Aı	nswer =			 %
(ii)		gest reasons) was so low.	why the p	ercentage ener	gy transf	er you calculate	ed in par	rt
(ii)			why the p	ercentage ener	gy transf	er you calculate	ed in pai	rt
(ii)			why the p	ercentage ener	gy transf	er you calculate	ed in par	rt
Co	(a)(i) was so low.	f energy tr	ransferred to the				rt
Co am	(a)(i	the amount o	f energy tr	ransferred to the	e insect-	eating birds witl	h the	
Co am	(a)(i	the amount o	f energy tr	ransferred to the	e insect-	eating birds witl	h the	


(1)


(1)

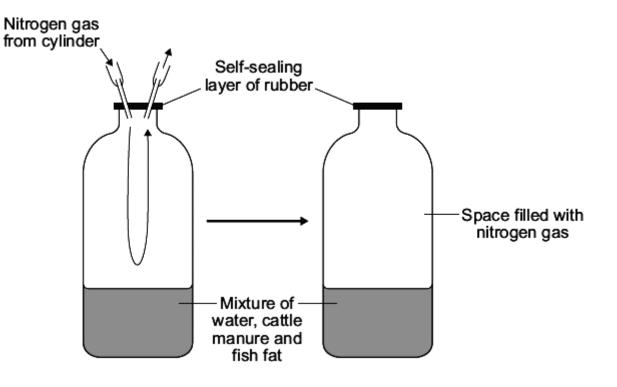
Q10.

Some students investigated the distribution of some of the plants growing in and around a shallow stream. They sampled along a transect line.

The diagram shows their results.

(ii) Only **one** species grew in the marsh, the swamp and in the aquatic zones. Which species?

(iii) Duckweed grows floating in water. What evidence is there for this in the students' results?


(b)	In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.
	Describe how you would use a $\frac{1}{2}$ -metre \times $\frac{1}{2}$ -metre quadrat frame and a 30-metre tape measure to obtain data similar to the data shown in the diagram.
	You should include details of how you would make sure that you would obtain valid results.
	(Total 9 mark

Q11.

Norway has a large fishing industry. Norwegian scientists investigated the effect of adding waste fish fat to cattle manure to improve the production of biogas.

The scientists set up many jars containing different concentrations of fish fat added to the cattle manure. The air in each jar was removed and replaced with pure nitrogen gas.

The diagram shows how one of these jars was set up.

The scientists then kept all the jars in an incubator at 35 °C for 6 weeks.

(a)	The scientists sealed each jar with a layer of rubber and replaced the air in the jars
	with nitrogen gas.

Explain why.				

(2)

(b) The scientists removed samples of gas from each jar at intervals over the 6 weeks.

The table shows some of the scientists' results.

Contents of jar	Yield of biogas in cm³ per gram	Yield of methane in cm³ per gram	Proportion of methane in the biogas
Cattle manure	426	256	0.60
Cattle manure + 2.5 % fish fat	686	426	
Cattle manure + 5 % fish fat	861	543	0.63
Cattle manure	999	630	0.63

0 % fish fat			
The final colu	mn of the table show	s the proportion of m	ethane in the biogas.
•	e methane and the ad st of the rest of the bi	•	the other gas that
Calculate the padded to the r	proportion of methand	e in the biogas wher	2.5 % fish fat was
Show clearly h	now you work out you	ur answer.	
	Proportion of metha	ane =	
Describe the	effects on biogas pro	oduction of adding fi	sh fat to cattle manure.
	•		es from the sea. He from his 50 cattle to his
Olaf decided r	not to add fish fat to h	nis biogas generator	
Suggest one	reason why.		
			(Total 8

Q12.

The amount of carbon dioxide in the atmosphere is increasing.

The table shows the estimated mass of carbon dioxide exchanged with the atmosphere in one year.

Mass of carbon dioxide exchanged with

	the atmosphere in millions of tonnes				
	Passed out into the atmosphere	Taken in from the atmosphere			
Plants	30	64			
Animals	10	0			
Microorganisms	24	0			
Combustion	6	0			

(a)	(i)	Calculate the total mass of carbon dioxide one year.	passed out into the a	atmosphere in	
		Show clearly how you work out your answe	er.		
		Answer		_ million tonnes	(2)
	(ii)	Calculate the increase in the mass of carbo year.	on dioxide in the atmo	osphere in one	(2)
		You should use your answer to part (a)(i) in	n your calculation.		
		Show clearly how you work out your answe	er.		
		Answer		 _ million tonnes	
(b)	Dra	w a ring around the correct answer to compl	ete the sentence.		(2)
			decomposition.]	
	Plan	nts use carbon dioxide in the process of	photosynthesis.		
			respiration.		
					(1)

(Total 5 marks)

Q13.

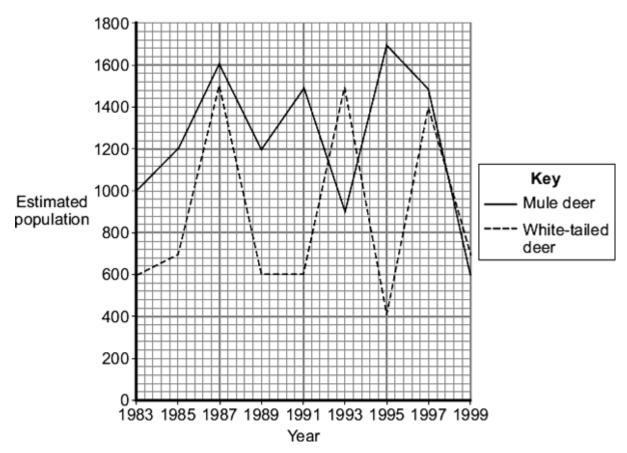
Animals in a habitat compete with each other.

(a) Give **two** factors for which animals may compete.

ı	
٠.	

2. _____

(b) The photographs show a mule deer and a white-tailed deer.


Mule deer

White-tailed deer

Mule deer by Dcrjsr (Own work) [CC-BY-3.0], via Wikimedia Commons. White-tailed deer by Clay Heaton (Own work) [CC-BY-SA-3.0], via Wikimedia Commons

Mule deer and white-tailed deer live together in the same national park in the USA.

The graph shows changes in the populations of the two deer species between 1983 and 1999.

(i) Describe the changes in the population of white-tailed deer between 1991 and 1995.

(2)

Q14.

The table shows energy transfers in a large insect and a small mammal.

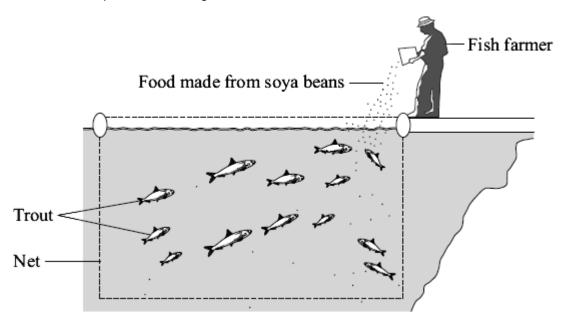
Both animals feed mainly on grass.

Energy transfer	Amount of energy in kJ.			
	Large insect	Small mammal		
Eaten as grass	4.00	25.00		
Absorbed into body	1.60	12.50		
Leaves body as faeces	2.40	12.50		
Production of new tissue	0.64	0.25		
Transferred by respiration	0.96	12.25		

)	What percentage of the energy in food is transferred into new tissue in the large insect?
	Show clearly how you work out your answer.
	Answer =

(b) The proportion of energy in the food transferred into new tissue is much greater in the large insect than in the small mammal.

Explain why as fully as you can.


(2)

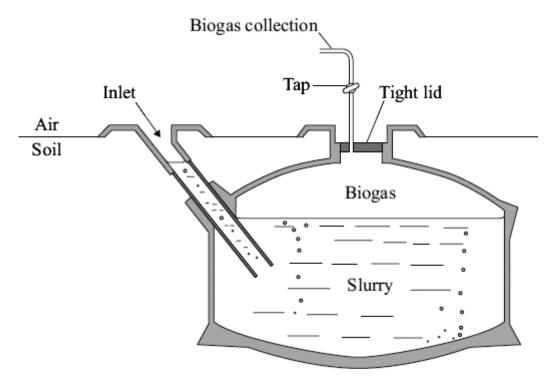
u should include refer		adia iii yodi c		
			 	

(Total 5 marks)

Q15.

A fish farmer keeps trout in a large net in a lake.

The fish farmer feeds the trout on food made from soya beans.


When the trout are large enough the farmer sells them for food for people.

(a) Draw a pyramid of biomass for the three organisms in this food chain.Label the pyramid.

It would be more energy efficient if people ate the soya bettrout.	J
Which two of the following are reasons for this?	
Tick (✓) two boxes.	
Some people do not like eating animals such as trout.	
The trout release energy when they respire.	
Soya bean plants release energy when they respire.	
Some energy will be lost in waste from the trout.	
Soya bean plants absorb energy during photosynthesis.	
Suggest one advantage to the fish farmer of keeping the tr	
of letting them swim freely in the lake.	out in a large net instead
	out in a large net instead
of letting them swim freely in the lake. Some trout die before they are large enough to be sold.	
Some trout die before they are large enough to be sold. The dead trout contain carbon. Use your knowledge of the carbon cycle to describe how the	
Some trout die before they are large enough to be sold. The dead trout contain carbon. Use your knowledge of the carbon cycle to describe how the	
Some trout die before they are large enough to be sold. The dead trout contain carbon. Use your knowledge of the carbon cycle to describe how the	

Q16.

The diagram shows one type of biogas generator.

(a) Give two advantages of having the biogas generator underground.Tick (✓) two boxes.

It allows the digested slurry to soak into the soil.	
The biogas produced will be at a lower pressure.	
Very little of the biogas generator will be seen.	
It prevents unpleasant smells escaping.	
The temperature inside will not change much.	

(b) The table shows the percentages of the different gases found in this biogas.

Gas	Percentage
Carbon dioxide	35.0
Hydrogen sulfide	1.5
Ammonia	1.5
Water vapour	2.0
Gas X	

(2)

Gas **X** is the main fuel gas found in biogas.

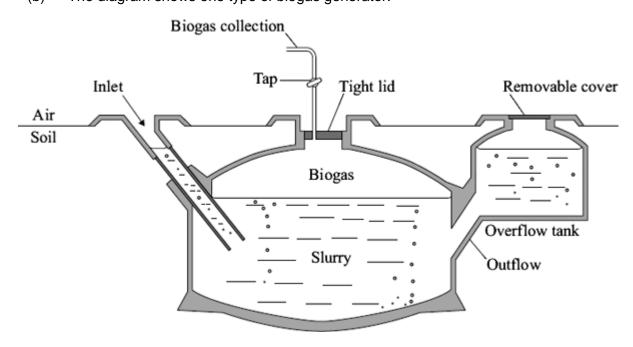
(i) What is the name of gas X?

Draw a ring around **one** answer.

	hydrogen	methane	oxygen	
				(1)
ii)	What is the percentage	of gas X in the biogas?		
	Show clearly how you w	ork out your answer.		
		Percentage of gas	s X =	
		i si samago oi ga		(2)

Q17.

Biogas can be produced from waste materials that contain carbohydrates.

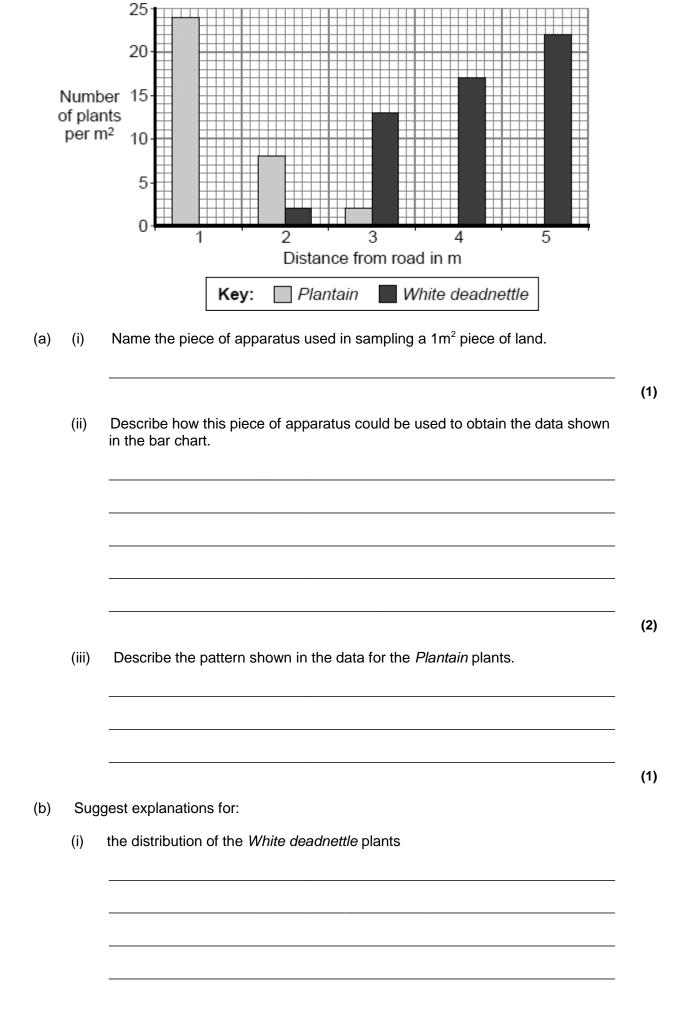

(a) Complete the sentence.

The main fuel gas present in biogas is ______

(1)

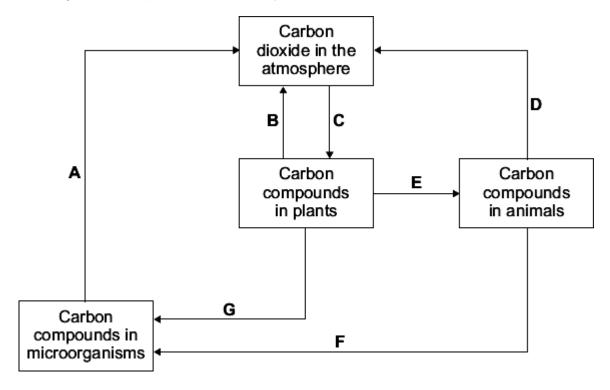
(Total 5 marks)

(b) The diagram shows one type of biogas generator.


(1)	Suggest two	· advantages of	having the	biodas denera	ator underground

Ί.				

ii)	It is important that the level of liquid in the inlet and in the overflow tank is above that of the slurry.
	Explain why.
em	nperatures in the UK are usually between 0 °C and 25 °C.
t a urn	sewage works in the UK, some of the biogas produced from sewage sludge is led and is used to heat water. The hot water is then pumped through metal
t a urn ipe	sewage works in the UK, some of the biogas produced from sewage sludge is led and is used to heat water. The hot water is then pumped through metal
t a urn ipe hic	sewage works in the UK, some of the biogas produced from sewage sludge is led and is used to heat water. The hot water is then pumped through metal s
t a urn ipe hic	sewage works in the UK, some of the biogas produced from sewage sludge is led and is used to heat water. The hot water is then pumped through metal sh pass back through the biogas generator.
t a urn ipe hic	sewage works in the UK, some of the biogas produced from sewage sludge is led and is used to heat water. The hot water is then pumped through metal sh pass back through the biogas generator.


Q18.

Students investigated the distribution of two plant species near a busy road. The bar chart shows their results.

	(''')	the effective time of the Direction should					(2
	(ii)	the distribution of the <i>Plantain</i> plants	5.				
						(Total 8 r	(2)
						(Total of	iiai K5
Q19. This	augetia	on is about what happens during deca	nv.				
		around the correct word to complete		onto	unco		
Diaw	anng	around the correct word to complete	each s	ente	ince.		
				ani	mals.		
(a)	After	living things die, they are decayed by	y	mic	croorganisms.		
				pla	nts.		
							(1)
						cold	1.
(b)	Dec	ay happens faster when there is plen	y of ox	ygeı	n and conditions are	e dry.	
						moi	
				_			(1)
					osmosis.		
(c)	Duri	ng decay carbon dioxide is produced	by		respiration.		
					photosynthesis		
				L	•		(1)
(d)	Deca	y releases mineral salts into the soil.					
` ,		•					
	T 1		leaves				
	ınese	mineral salts are absorbed by plant	roots.				
			stems	i.			(1)
						(Total 4 r	

The diagram shows part of the carbon cycle.

(a) Letter A represents respiration.

Which two other letters represent respiration?

	and		
	l		

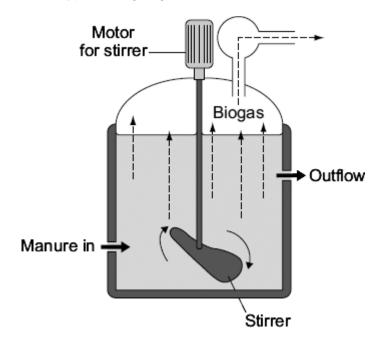
(b) Other than carbon dioxide name **two** carbon compounds found in plants.

1. _____

2. _____

(c) Gardeners use compost heaps to decay dead plants. Decayed compost is then spread onto the soil in a garden.

Explain why gardeners spread decayed compost onto the soil.



(2)

(1)

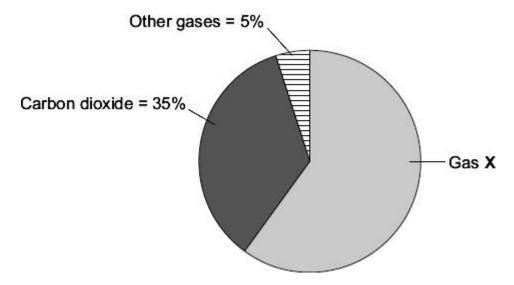
(2)

The diagram shows one type of biogas generator.

(a) With this type of biogas generator, the concentration of solids fed into the reactor must be kept very low.

Suggest one reason for this.

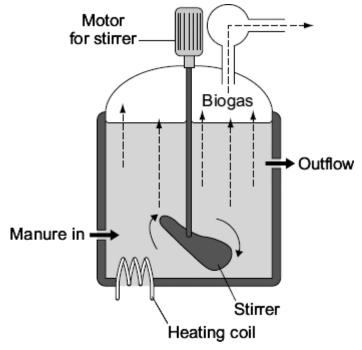
Tick (√) one box.


A higher concentration contains too little oxygen.

A higher concentration would be difficult to stir.

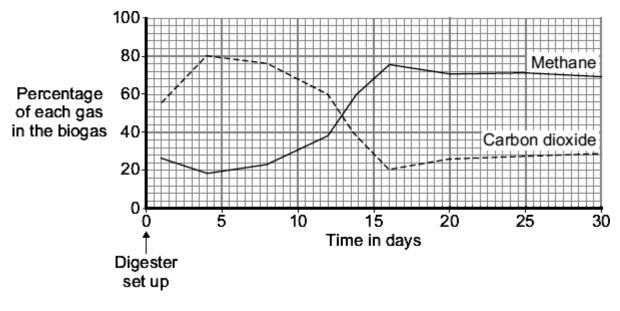
A higher concentration contains too much carbon dioxide.

(1)


(b) The pie chart shows the percentages of the different gases found in this biogas.

(i)	What is the name of gas X?		
.,	Draw a ring around one answer.		
	methane nitrogen	1	oxygen
(ii)	What is the percentage of gas X in the biogas?		
	Show clearly how you work out your answer.		
	Parcentage of gas Y -		
	Percentage of gas X = _		
	Percentage of gas $\mathbf{X} = \underline{\ }$ e biogas generator is not airtight, the biogas will contain the discrepance of carbon dioxide.		
perc	e biogas generator is not airtight, the biogas will co	ontain a mu	ch higher
perc	e biogas generator is not airtight, the biogas will co entage of carbon dioxide.	ontain a mu	ch higher
perc	e biogas generator is not airtight, the biogas will co entage of carbon dioxide.	ch sentence	ch higher e.
perc Drav	e biogas generator is not airtight, the biogas will corentage of carbon dioxide. w a ring around the correct answer to complete each	ch sentence	ch higher e. respiration. ic respiration.
perc Drav	e biogas generator is not airtight, the biogas will corentage of carbon dioxide. w a ring around the correct answer to complete each	aerobic i	ch higher e. respiration. ic respiration.
perc Drav	e biogas generator is not airtight, the biogas will corentage of carbon dioxide. w a ring around the correct answer to complete each	aerobic i	ch higher e. respiration. ic respiration.
perc Drav	e biogas generator is not airtight, the biogas will corentage of carbon dioxide. w a ring around the correct answer to complete each	aerobic i anaerob fermenta	ch higher e. respiration. ic respiration. ation.

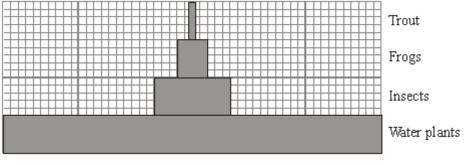
Q22.


The diagram shows one type of anaerobic digester. This is used to produce biogas.

1)	(i)	What does anaerobic mean?
	(ii)	The concentration of solids fed into this digester must be kept very low.
		Suggest one reason why.
	(iii)	This digester is more expensive to run than some other simpler designs of biogas generator.
		Suggest one reason why.

The graph shows how the composition of the biogas produced by the digester changed over the first 30 days after the digester was set up.

(b)


Use information from the graph to answer the following questions.

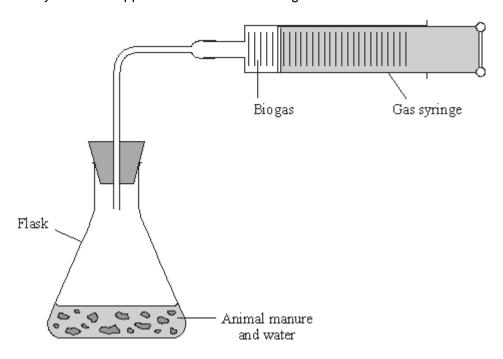
(i)	Describe how the percentage of carbon dioxide changed over the 30 days.
(ii)	On which day was the best quality biogas produced?
	r days after the digester was first set up, the biogas contained a high entage of carbon dioxide.
Sug	gest an explanation for this.

(Total 9 marks)

Q23.

The diagram shows a pyramid of biomass drawn to scale.

1.	: 1
Calculate the ratio of the biomass of insects to the biomass of frogs. Show clearly how you work out your answer. ratio = Give two reasons why the biomass of the frog population is smaller than the biomass of the insect population. 1 2	: 1
Show clearly how you work out your answer. ratio = Give two reasons why the biomass of the frog population is smaller than the biomass of the insect population. 1 2	: 1
ratio = Give two reasons why the biomass of the frog population is smaller than the biomass of the insect population. 1 2	: 1
ratio = Give two reasons why the biomass of the frog population is smaller than the biomass of the insect population. 1 2	: 1
Give two reasons why the biomass of the frog population is smaller than the biomass of the insect population. 1	
biomass of the insect population. 1	
Some insects die.	
Describe how the carbon in the dead insect bodies may be recycled.	


(Total 9 marks)

(4)

Q24.

Some students investigated the production of biogas from animal manure.

They used the apparatus shown in the diagram.

In their first investigation, the students collected the biogas in the gas syringe.

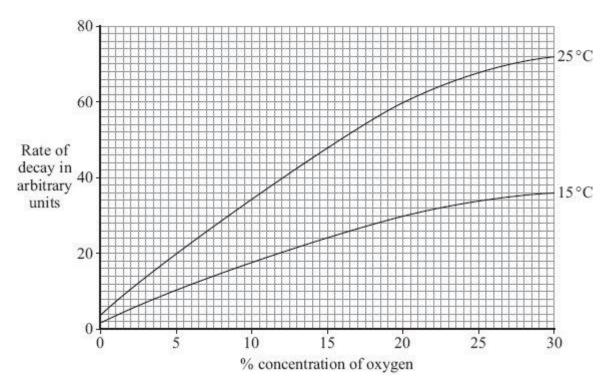
The table shows the percentage composition of the biogas.

Gas	Percentage composition
Methane	55
Carbon dioxide	40
Water vapour	5

(a) To make the biogas a more efficient fuel, the percentages of two of the gases in the table should be reduced.

Which two gases should these be?

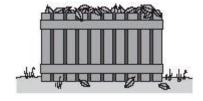
1. _____


(b)	The students then used the apparatus for a second investigation.
	They bubbled oxygen through some fresh manure and water for one hour. They then set up the apparatus again and collected a second sample of biogas in the gas syringe.
	Predict the effect of this procedure on the composition of the second sample of biogas.
	Explain your answer.
	(4

(Total 5 marks)

Q25.

Gardeners often put waste materials onto compost heaps.


The graph shows how the conditions in a compost heap affect how quickly waste materials in the heap decay.

(a)	(i)	Describe the effect of increasing the temperature from 15 °C to 25 °C on the
. ,		rate of decay at 20 % oxygen concentration.

(ii) Gardeners are advised to put waste materials into special compost bins. These bins have holes in their sides.

Holes in the sides of the compost bin help the waste materials to decay faster. Explain why.

(2)

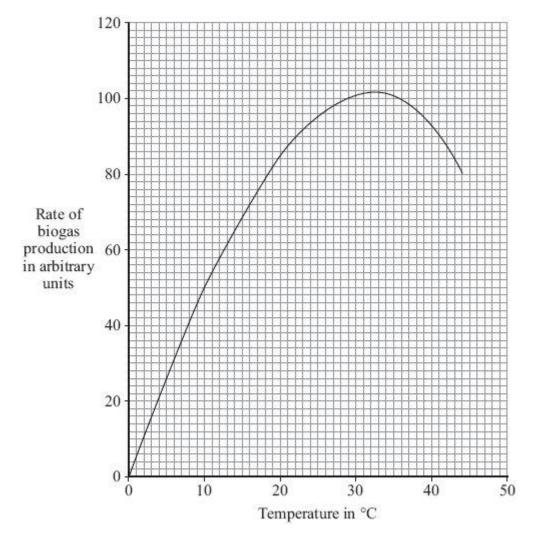
1	b)	A gardener noticed	that como	of his nle	ante word	arowina	noorly
l	U)	A gardener nouced	ı ınaı some	OI HIS PIG	anio were g	growing	poonly.

He put some decayed compost onto the soil, around the plants. Six months later the plants were growing well.

	1 - 1	why.
– vn	מומו	\A/D\/

(1) (Total 5 marks)

(1)

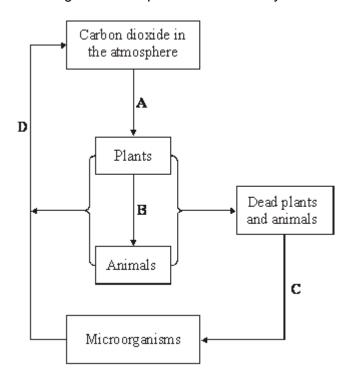

Q26.

(a) Name the fuel gas present in biogas.

(1)

(b) Name the process that produces biogas.

(c) The graph shows the effect of temperature on the rate of biogas production.


(i) What is the best temperature for biogas production? _____

(Total 7 marks)

	Here Self-anne Com from the month to accomment when
	Use information from the graph to suggest why.
	nperatures at the UK sewage works vary between 0 °C and 25 °C. UK biogas generator has concrete walls, 60 cm thick.
he	
he Hov	UK biogas generator has concrete walls, 60 cm thick.
he Hov	UK biogas generator has concrete walls, 60 cm thick. v does the thickness of the walls affect the rate of biogas production?
he Hov	UK biogas generator has concrete walls, 60 cm thick. v does the thickness of the walls affect the rate of biogas production?
he Hov	UK biogas generator has concrete walls, 60 cm thick. v does the thickness of the walls affect the rate of biogas production?

Q27.

The diagram shows part of the carbon cycle.

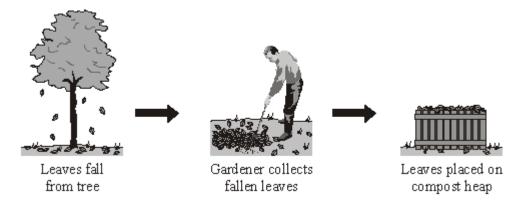
(a) Which letter, **A**, **B**, **C** or **D**, represents:

	(i)	respiration	(1)
	(ii)	photosynthesis?	(1)
b)		al authorities are encouraging people to recycle vegetable waste by converting it compost.	
	Com	spost is made by mixing the vegetable waste with soil in a large container.	
	(i)	Decay occurs more quickly if the container has holes in the sides.	
		Explain why.	
			(2)
	(ii)	Spreading compost on the soil between plants leads to better growth of the plants.	(2)
		Explain why.	
			(4)
		(Total 5 ma	(1) arks)
5			
		passage below about biogas production in Sri Lanka, which is a country with a	
mucr	n wari	mer climate than the UK.	

Q28

Mr Ratnayake is a farmer. Using nothing more than cow dung, he has enough power to cook and provide heat and light for his home without using a single piece of wood. He collects the manure from his cows in their cattle shed. He then mixes the manure with water and leaves it to ferment in a large concrete pit. The gas produced is collected in a simple storage tank and is piped into his house for

The dried manure left after this biogas is generated is richer than ordinary manure. It makes a good organic fertiliser for Mr Ratnayake's crops. He can then sell his crops at a higher price as they are organic produce.


http://www.i-sis.org.uk

(a)	(1)	What is the fuel gas present in biogas?

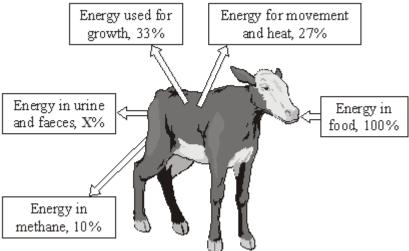
(ii)	Name the process which produces biogas.
(i)	Give two ways in which Mr Ratnayake benefits from making biogas as described in the passage. 1
	2
(ii)	This design of biogas generator works well in Sri Lanka. It would not work so well in the UK. Explain why.
	(Total 6

Q29.

Gardeners often collect fallen leaves in autumn and place them on compost heaps.

(a) Over the next year the leaves decay.

Which living things cause leaves to decay?


(b) The leaves decay more quickly in summer than in winter.

(1)

	Give one reason why	/.	
(c)	The compost heap h	as holes in its sides to allow gases to enter.	(-)
	Which gas is needed	for decay?	
	Put a tick (🗸) in the b	pox next to your choice.	
	Carbon dioxide		
	Nitrogen		
	Oxygen		
			(1)

Q30.

The diagram shows what happens to the energy in the food that a calf eats.

V •	
Calculate the % energy lost as urine and faeces (X). Show clearly how you work out your answer.	
Energy lost as urine and faeces	%
	Show clearly how you work out your answer.

(Total 3 marks)

	Energy used for gro	owth	_ megajoule:
Whi	ch process in the body transforms ene	rgy in food into heat?	
The	pictures show two methods of raising	calves indoors.	
Met	hod 2 is now banned.		
	Method 1	Method	2
(i)	Calves raised indoors grow faster that	an calves raised outdoors.	
	Suggest one reason why.		
(ii)	Method 2 was banned after public ca	ampaigns.	
	Suggest one reason why people cam	paigned against this metho	d of rearing

Q31.

The diagram shows one design of biogas generator used on a large dairy farm in the USA.

What is the main, useful gas in biogas? (a)

(i)

	carbon dioxide	hydrogen	methane	(1)
(b)	The insulation is installed	so that biogas is pro	oduced at a faster rate.	
	Why is biogas produced a	t a faster rate?		
				(1)

(c) The table shows costs and income for this generator.

Item	Yearly costs in dollars	Yearly income in dollars
Electricity generated from biogas		22 800
Heating from burning biogas		4 200
Sale of fibre after biogas production		8 000
Operation and maintenance costs	10 000	

Calculate the yearly profit from the biogas generator.
Show your working.

	(ii)	It cost 200 000 dollars to build the generator. Use your answer to part (c)(i) to calculate how many years it would take to pay back this cost.	
		(Total 6 mark	(2) ks)
2.			
Red s	s in 'la	els live in trees. They eat seeds from the cones of conifer trees. Squirrels store arders' on the ground. These larders provide food through the winter. Each red ikes and defends one larder.	
one i	nvesti	monitor squirrel numbers to find the best habitats for the squirrel's survival. In gation, scientists estimated the numbers of squirrels in different types of Each woodland contains a different species of conifer tree.	
Here	is the	ir method.	
•	Ten	woods of each type of woodland were surveyed.	
•		ach wood scientists measured out two transects (strips), each 600 m long and wide.	
•		entist walked slowly down the centre of each transect, recording the number of rel larders he could see.	
		Wood Transects	
(a)	(i)	How many transects all together did the scientists survey in each type of woodland?	
		Number of transects	<i>(</i>
	(ii)	What was the total area surveyed in one wood?	(1)

 $Area ___ m^2$

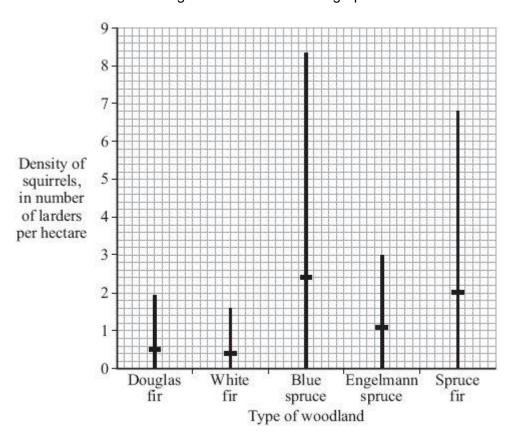
Q32.

(b) Name **one** variable that was controlled in this investigation.

(c) (i) The scientists recorded the number of larders instead of the number of squirrels they saw.

Explain how this could have increased the accuracy of the investigation.

(1)


(ii) This method of counting the number of larders could have led to an inaccurate estimate of the number of squirrels.

Explain how.

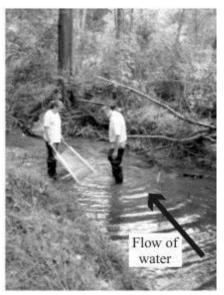
(d) The results of the investigation are shown in the graph.

(2)

The horizontal mark on each bar represents the mean number of larders per hectare of woodland.

The range of the number of larders observed for Douglas fir woodland was 0 to 1.9 per hectare.

(i)	What was the range of the number of larders per hectare in the Spruce fir woodland?		
(ii)	The highest mean number of larders per hectare was found in Blue spruce woodland.	- (1)	
	Suggest one explanation for this.		


(Total 8 marks)

(1)

Q33.

/i\

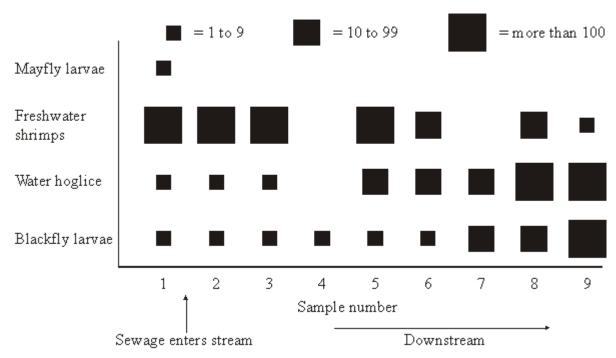
Invertebrate animals are used to monitor pollution in streams. The photograph shows scientists collecting a sample of invertebrates from a stream.

Reproduced with the permission of John Graham

This is the method that they use.

- A 1 m² area of the bed of the stream is marked out.
- A net 1m wide is held by one person on the downstream side of the marked-out
- The other person uses their boots to gently move stones in this area of the stream bed. They do this for three minutes. This dislodges invertebrates which are then caught in the net.
- The invertebrates are then identified and counted.
- (a) Name two control variables (variables which must be kept the same) in this

	-1:	ation.
mves	SH(1)	411()[]
٧	Juqu	<i>a</i> (1011.


- 1. ______
- 2. _____
- (b) Suggest **two** reasons why the results from a sample might not be accurate.
 - 1. _____
 - 2. _____

The technique described above was used to investigate the effect of sewage on stream invertebrates.

- Sample 1 was taken upstream of the point where the sewage entered the stream.
- Samples 2–9 were taken at regular intervals downstream of the sewage inflow.

The graph shows the results.

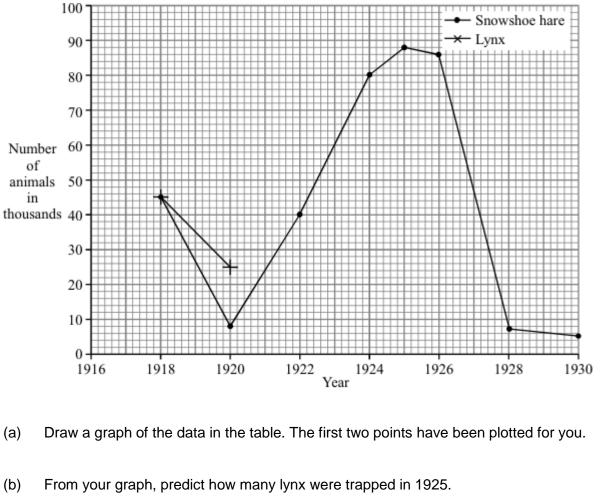
INDIVIDUALS PER 3-MINUTE KICK SAMPLE

- (c) What was the range of the number of blackfly larvae that could be found in sample 7?
- (d) Describe, as fully as you can, how the number of water hoglice changed downstream from where sewage entered the stream.

(1)

(2)

(2)

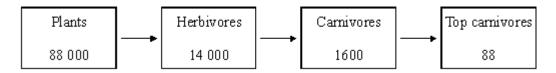

	_
	_
Which of the four invertebrates is the best indicator species for water which is not polluted by sewage?	
Give the reason for your answer.	_
	_
(Total 9	– n

Q34.

The lynx is a wild cat which lives in Canada. The table shows the number of lynx trapped in a part of Canada in certain years.

Year	Number of lynx in thousands
1918	45
1920	25
1922	10
1924	20
1926	40
1928	50

The snowshoe hare is another wild animal found in Canada. The graph shows the number of snowshoe hares trapped in the same years. The lynx eats the snowshoe hare.



				·	•	(2)
(b)	Fror	m your graph,	predict how man	y lynx were trapped in 1925.		
					thousand	(1)
(c)	Use	the informatio	n to answer the	following.		
	(i)		you expect to ha	ppen to the number of lynx trapped ver.	l in 1930?	
		rise	fall	stay the same		(1)
	(ii)	Give a reaso	on for your answe	er to part (c)(i).		
						(1)
(d)	The	lynx is a pred	ator. What is a p	redator?		

(1) (Total 6 marks)

Q35.

The diagram shows a food chain in a pond. The figures show the amounts of energy in each type of organism, in kilojoules per m² of pond per year.

(a)	Calculate the percentage of the energy in the plants that is passed to the top carnivores. Show clearly how you work out your final answer.			
	Answer	%		

(b) In the space below, draw a pyramid of biomass for this food chain. Label your drawing with the names of the organisms.

(c)	If humans ate organisms from this food chain, it would be more efficient to eat plants than to eat herbivores. Why is this?	

(Total 5 marks)

(2)

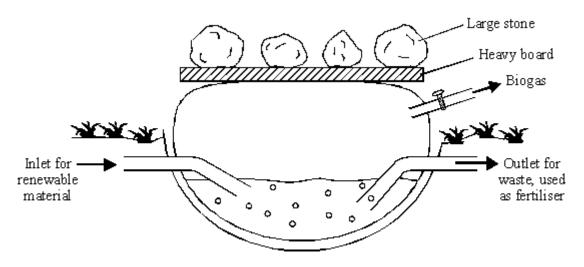
(2)

(1)

Q36.

The table shows the sources of some of the energy used in India between 1960 and 1970.

Source of energy in millions of tonnes


	Non-renewable fuels		Renewa	able fuels
Year	Coal	Oil	Cow dung	Vegetable waste
1960	47	7	101	31
1965	64	10	112	34
1970	71	15	123	38

(a)	The change in the use of renewable fuels differs from that of non-renewable fuels.
	Calculate the percentage of renewable fuels used in 1960 and in 1970. Show clearly
	how you work out your final answer.

1960 _	 	
1970 _	 	

(b) The Indian government suggested that villagers should make better use of renewable resources.

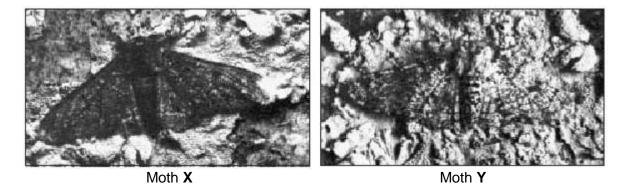
They introduced biogas generators. The diagram shows one type of biogas generator.

The table shows the economic costs and benefits of using this type of generator.

Feature	Cost or profit in £s
Cost of generator and fitting	250
Annual maintenance costs	40
Annual profit from gas produced	30
Annual profit from fertiliser produced	40

(3)

The table s	shows how temperature	affects	the rat	te of bio	ogas pr	oductio	n in the)
Tempera	ture in °C	10	15	20	25	30	35	40
Volume o	of biogas produced in m³	0.50	0.55	1.50	1.70	3.00	3.45	3.30
h				_	L	I		
	the grid to draw a graphas production.	n to sho	w how	temper	ature a	ffects t	he rate	of
		to sho	w how	temper	ature a	ffects t	he rate	of
		n to sho	w how	temper	ature a	ffects t	he rate	of
		n to sho	w how	temper	ature a	ffects t	he rate	of
		n to sho	w how	temper	ature a	ffects t	he rate	of
bioga Volume		n to sho	w how	temper	ature a	ffects t	he rate	of
Volume of biogas produced		n to sho	w how	temper	ature a	ffects t	he rate	of
bioga Volume of biogas		n to sho	w how	temper	ature a	ffects to	he rate	of
Volume of biogas produced		n to sho	w how	temper	ature a	ffects t	he rate	of
Volume of biogas produced		n to sho	w how	temper	ature a	ffects t	he rate	of
Volume of biogas produced		n to sho	w how	temper	ature a	ffects to	he rate	of
Volume of biogas produced		n to sho	w how	temper	ature a	ffects to	he rate	of
Volume of biogas produced		n to sho	w how	temper	ature a	ffects to	he rate	of
Volume of biogas produced				temper		ffects to	he rate	of

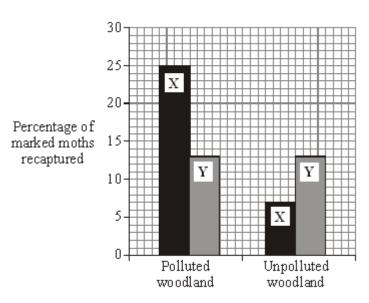

		(Total 12 r
37.		
This	is a s	imple food chain.
Lett	tuce p	$lant \rightarrow Slug \rightarrow Frog \rightarrow Heron$
The	diagr	ram shows a pyramid of biomass for this food chain.
(a) (b)	nvra	mid of biomass.
(b)	(i)	The slug obtains its energy from the lettuce plant. What is the source of energy for the lettuce plant?
(b)		The slug obtains its energy from the lettuce plant. What is the source of
(b)	(i)	The slug obtains its energy from the lettuce plant. What is the source of energy for the lettuce plant?
(b)	(i) (ii)	The slug obtains its energy from the lettuce plant. What is the source of energy for the lettuce plant? What is the function of chlorophyll in a lettuce plant? The slugs ate some lettuce plants which contained 1620 kJ of energy. Only 10 per cent of this energy is used by the slugs for growth. Use the formula to calculate how much energy can be used by the slugs for growth. Show clearly
(b)	(i) (ii)	The slug obtains its energy from the lettuce plant. What is the source of energy for the lettuce plant? What is the function of chlorophyll in a lettuce plant? The slugs ate some lettuce plants which contained 1620 kJ of energy. Only 10 per cent of this energy is used by the slugs for growth. Use the formula to calculate how much energy can be used by the slugs for growth. Show clearly how you work out your final answer.
(b)	(i) (ii)	The slug obtains its energy from the lettuce plant. What is the source of energy for the lettuce plant? What is the function of chlorophyll in a lettuce plant? The slugs ate some lettuce plants which contained 1620 kJ of energy. Only 10 per cent of this energy is used by the slugs for growth. Use the formula to calculate how much energy can be used by the slugs for growth. Show clearly how you work out your final answer. (Percentag e of energy used by slugs) × (Amount of energy in lettuce)

(Total 5 marks)

Q38.

The photographs show two varieties of moths, **X**and **Y**. The moths belong to the same species.

The moths are resting on a tree trunk in open countryside.


(a) Which variety of moth, **X** or **Y**, is more likely to be killed by insect-eating birds? Give a reason for your answer.

Variety of moth: _	 	 	 _
Reason	 	 	

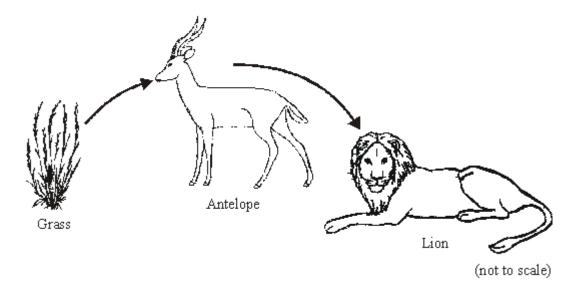
- (b) In an experiment, large numbers of each variety of moth were caught in a trap.
 - They were marked with a spot of paint on the underside of one wing and then released.
 - A few days later, moths were again trapped and the number of marked moths was counted.
 - The experiment was carried out in a woodland polluted by smoke and soot, and also in an unpolluted woodland.

The results are shown in the bar graph.

(1)

-				
	What percentage of moths of ty	pe X wa	ıs recaptuı	red in:
	he polluted woodland;			
t	the unpolluted woodland?			
	In each woodland, only a small were recaptured. Suggest one			d moths of both varieties
-				
	The colour of the moths is contoroduced by a mutation in the g		/ a gene. ∃	Γhe dark form was first
	What chemical, found in a gene around your answer.	e, is chai	nged by a	mutation? Draw a ring
	carbohydrate [ONA	fat	protein
	Some of the offspring from the caused this?	original (dark moth	were also dark. What

(Total 7 marks)


(c)

	scribe how carbon compounds in the leaves can be recycled so that they can be d again by the trees.
	gain full marks in this question you should write your ideas in good English. Put m into a sensible order and use the correct scientific words.
	re two environmental conditions which speed up the processes that you have cribed in part (a).
1	

Q40.

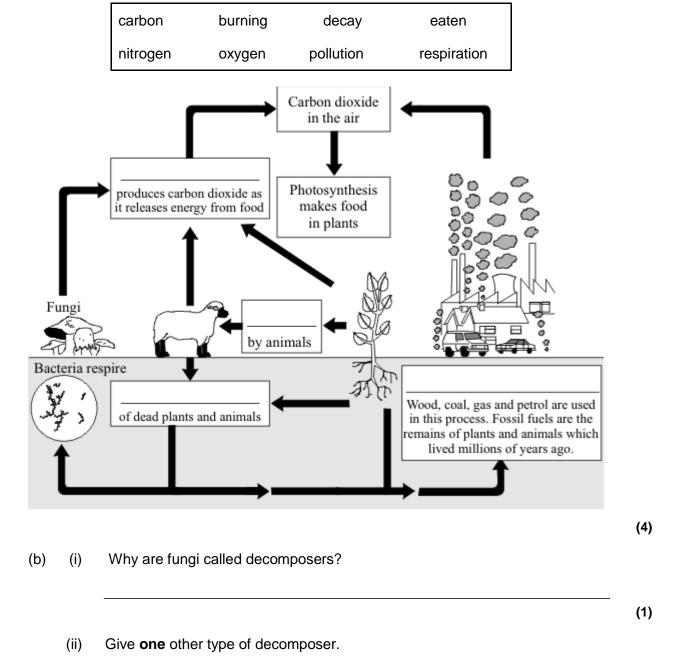
Figure 1 shows a food chain containing three organisms.

Each autumn, many trees lose their leaves.

		Figure 1		
(i)	In this food chain, na	ame:		
	the predator;			
	the prey			
(ii)	What is the source of	f energy for the g	rass?	
	Draw a ring around c	one answer.		
	carbon dioxide	light	nitrates	water
(iii)	-		s for the organisms in the correct lines in Fi	gure 2.
	Figure 2	2		
Wa	ste materials, like faece	es from the anima	ıls, will decay,	
(i)	What sort of organism	ms cause decay?		
(ii)	Three of the following	a conditions halo	decay to occur rapidl	V
,	THIEC OF THE TOHOWITE	g conditions neip	uccay to occur rapidi	у.

Which conditions do this?

aerobic anaerobic cold dry moist warm (3) (iii) The list below gives four substances. Two of these substances are produced by decay and can be used by the grass. Which two substances are these? Tick (**√**) **two** boxes. Carbon dioxide Mineral salts Oxygen **Protein** (2) (Total 10 marks) Q41. The diagram shows the flow of energy through a forest. The figures are in kilojoules of energy per square metre per year. 400 1600 Trees Herbivores Carnivores 24 000 What percentage of the energy in the trees is passed on as food for the carnivores? (a) Show clearly how you work out your final answer. per cent (2) Give three reasons why so little of the energy in the trees is passed on to the (b) carnivores. 2. _____


Draw a ring around each of the three answers.

(1)

(Total 6 marks)

Q42.

(a) Use the words in the box to fill in the gaps in the diagram. You may use each word once or not at all.

