Photosynthesis

Q1.
Plants have adaptations to help defend themselves and to help them survive.
Figure 1 shows a nettle plant.
Figure 1

(a) Explain how the nettle is adapted for defence and protection.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Witch hazel is another plant adapted for defence.

Witch hazel produces oil with antiseptic properties. The oil prevents bacteria from attacking the plant.

A student investigated how effective three different plant oils were at preventing the
growth of bacteria.
Figure 2 shows the results.
Figure 2

Which plant oil is the most effective at preventing the growth of bacteria?
Give a reason for your answer.
Oil \qquad
Reason \qquad
\qquad
(c) The student tested tea tree oil using the same method.

The results showed tea tree oil was the most effective at preventing bacterial growth.

The student concluded that tea tree oil could be used to treat bacterial infections instead of antibiotics.

Give one reason why this is not a valid conclusion.
\qquad
\qquad

Q2.
To be healthy, plants need the right amount of mineral ions from the soil.
The diagram below shows four plants.
The plants were grown in four different growing conditions:

- sunny area, with nitrate and magnesium added to the soil
- sunny area, with magnesium but no nitrate added to the soil
- sunny area, with nitrate but no magnesium added to the soil
- dark area, with nitrate and magnesium added to the soil.

Plant A

Plant B

Plant C

Plant D
(a) Which plant was grown with no nitrate?

Tick one box.
A

B

C

D \square
(b) Which plant was grown with no magnesium?

Tick one box.
A

B

C

D \square
(c) Give one variable that was kept constant in this experiment.
\qquad
\qquad
(d) Plants need other minerals for healthy growth such as potassium ions and phosphate ions.

A farmer wanted to compare the percentage of minerals in two types of manure.

- Cow manure from her own farm.
- Chicken manure pellets she could buy.

The table below shows data for each type of manure.

	Phosphate ions in $\%$	Potassium ions in $\%$
Cow manure	0.4	0.5
Chicken manure pellets	2.5	2.3

Suggest one advantage and one disadvantage of using the chicken manure pellets compared to the cow manure.

Advantage \qquad

Disadvantage \qquad
\qquad

Q3.

Tobacco mosaic virus (TMV) is a disease affecting plants.
The diagram below shows a leaf infected with TMV.

(a) All tools should be washed in disinfectant after using them on plants infected with TMV.

Suggest why.
\qquad
\qquad
(b) Scientists produced a single plant that contained a TMV-resistant gene.

Suggest how scientists can use this plant to produce many plants with the TMV-resistant gene.
\qquad
\qquad
(c) Some plants produce fruits which contain glucose.

Describe how you would test for the presence of glucose in fruit.
\qquad
\qquad
\qquad
\qquad
(d) TMV can cause plants to produce less chlorophyll.

This causes leaf discoloration.
Explain why plants with TMV have stunted growth.
\qquad

Q4.
A gardener is looking at the plants in his greenhouse.
(a) Some of the plants have a disease.

Give two ways the gardener could identify the pathogen infecting the plants.

1. \qquad
\qquad
2. \qquad
\qquad
(b) Plants can become unhealthy if they do not have essential mineral ions.

Describe the appearance of plants with:

- nitrate deficiency
- magnesium deficiency.

Nitrate deficiency \qquad
\qquad
Magnesium deficiency \qquad
\qquad
(c) Plants need other mineral ions.

- Potassium ions are needed for healthy root growth.
- Phosphate ions are needed for healthy flowers and fruits.

The gardener makes his own garden compost.
The percentage (\%) of minerals in his compost was compared with two fertilisers he could buy.

The data are shown in the table below.

	Percentage (\%) mineral content			
	Nitrate ions	Phosphate ions	Potassium ions	Cost in £/ $\mathbf{k g}$
Garden compost	0.5	0.3	0.8	0.00
Fertiliser S	5.0	1.3	6.6	4.99
Fertiliser T	3.0	12.0	6.0	9.99

The gardener buys Fertiliser \mathbf{S}.
Explain why he chose Fertiliser \mathbf{S}.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 8 marks)

Q5.

Duckweed is a plant. Duckweed grows in ponds. The leaves of duckweed float on the surface of the water and its roots hang down in the water.

The drawing shows a duckweed plant.

(a) Duckweed roots absorb nitrate ions from the water.

The nitrate ions help the duckweed to grow.
Draw a ring around the correct answer to complete the sentence.

(b) Some students grew duckweed plants in three different solutions of mineral ions, A, B and C, and in distilled water (D).

Table 1 shows the concentrations of mineral ions in each of $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} at the start of the investigation.

Table 1

	Concentration of mineral ions in mg per dm ${ }^{3}$ at the start of the investigation			
Mineral ion				
	A	B	C	D

Nitrate	1000	4	4	0
Phosphate	300	0	0	0
Magnesium	200	84	24	0

The students counted the number of duckweed leaves in $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} at the start of the investigation and after 28 days.

Table 2 shows their results.
Table 2

	A	B	C	D
Number of leaves at start	4	4	4	4
Number of leaves after 28 days	50	27	14	6

(i) Using Table 1 and Table 2, describe the effect of magnesium ions on the growth of duckweed.
\qquad
\qquad
(ii) Solution \mathbf{A} contained the highest concentration of nitrate ions.

One student said, 'The results show that nitrate ions are needed for the growth of duckweed.'

What evidence in Table 2 supports what the student said?
\qquad
\qquad
(c) The students measured the growth of the duckweed by counting the number of leaves.
(i) Suggest a better method of measuring the growth of the duckweed.
\qquad
\qquad
(ii) Suggest why your method is better than the students' method.
\qquad
\qquad

Q6.
A student measured the concentration of carbon dioxide in the air around a potted plant on two different days.

The diagram shows the student's apparatus.

There was a plastic bag round the plant pot to stop microorganisms in the soil affecting the concentration of gases in the air inside the jar.

The apparatus was put near a window.
The graph shows the results.

(a) Day 1 was cloudier than Day 2.

What evidence from the graph shows that Day 1 was cloudier?
Explain your answer.
\qquad
\qquad
\qquad
\qquad
(b) A potted plant sometimes develops yellow leaves.

The development of yellow leaves could be due to the lack of a mineral ion.
Suggest the mineral ion that could be lacking.
\qquad

Q7.
People often grow pondweed in fishponds to oxygenate the water.
(a) Name the process that the pondweed uses to produce oxygen.
\qquad
(b) A student investigated oxygen production in three different pondweeds, Elodea, Cabomba and Egeria.

The student:

- cut a piece of pondweed from an Elodea plant
- put the pondweed into a tube of water
- counted the bubbles given off in one minute
- did the experiment again using a piece of pondweed from a Cabomba plant
- did the experiment a third time using a piece of pondweed from an Egeria plant.

The diagram shows the student's investigation.

The table shows the results.

Pondweed	Number of bubbles produced in 1 minute
Elodea	17
Cabomba	28

Egeria	8

(i) The student said:
"I suggest that people grow Cabomba in garden ponds to oxygenate the water fastest."

Give three variables the student should have controlled to make sure his conclusion was valid.

Use information from the student's method and the diagram.

1. \qquad
\qquad
2. \qquad
3. \qquad
\qquad
(ii) The three pondweeds all cost about the same.

Suggest one other factor that people with fishponds might think about before deciding which type of pondweed to use.
\qquad
(c) A person grows Cabomba in his pond.

The Cabomba plants develop yellow leaves.
Which mineral ion would stop the leaves turning yellow?
\qquad

Q8.
Plants need mineral ions for healthy growth.
(a) Which part of a plant takes in mineral ions?

Tick (\checkmark) one box.

Flower \square

Leaf \square

Root \square
(b) Leaves are usually green.
(i) What is the green substance in leaves?

Draw a ring around your answer.
chlorophyll glucose starch
(ii) The green substance in leaves is important to plants.

Explain why.
\qquad
\qquad
\qquad
\qquad
(c) A shortage of mineral ions can affect a plant.

Draw one line from each mineral ion to the effect of its shortage.

Mineral ion

Effect of its shortage

Q9.
The graph below shows the area of forest lost in Madagascar from 2009 to 2012.

(a) The area of forest lost each year in Madagascar increased between 2009 and 2012.

Determine the total area of forest lost from the start of 2009 to the end of 2012.
\qquad
\qquad
Total area of forest lost = \qquad thousand hectares
(b) What are the possible reasons for the change in the area of forest lost per year between 2009 and 2012?

Tick two boxes.
The local people stop growing rice
Fewer new houses are needed for the population

The local people decided to farm cattle

More trees have been planted
A company starts growing plants for biofuels

(c) More forest was lost in 2012 than in 2009.

Use words from the box to complete the sentences.

carbon dioxide	excretion	nitrogen
oxygen	photosynthesis	respiration

The increase in the area of forest lost has caused an increase in the gas

The increase of this gas has been caused because less of the gas is being absorbed by plants for the process of \qquad .
(d) Deforestation can have negative effects on our ecosystems.

What are the negative effects of deforestation?
Tick two boxes.
Animals and birds migrate because there is less food

More habitats are destroyed
There is less acid rain

There is more biodiversity
The global temperature decreases
(e) Scientists try to reduce the negative effects of human activity on our ecosystems.

One way is to protect rare habitats.
Give one other way of reducing the negative effects of human activity on our ecosystems.
\qquad
\qquad

Q10.
A gardener wants to add compost to the soil to increase his yield of strawberries.
The gardener wants to make his own compost.
(a) An airtight compost heap causes anaerobic decay.

Explain why the gardener might be against producing compost using this method.
\qquad
\qquad
\qquad
\qquad
(b) The gardener finds this research on the Internet:

' A carbon to nitrogen ratio of $\mathbf{2 5 : 1}$ will produce fertile compost.'

Look at the table below.

Type of material to compost	Mass of carbon in sample in \mathbf{g}	Mass of nitrogen in sample in \mathbf{g}	Carbon:nitrogen ratio
Chicken manure	8.75	1.25	$7: 1$
Horse manure	10.00	0.50	$20: 1$
Peat moss	9.80	0.20	\mathbf{X}

Determine the ratio \mathbf{X} in the table above.
\qquad
Ratio \qquad
(c) Which type of material in the table above would be best for the gardener to use to make his compost?

Justify your answer.
\qquad
\qquad
(d) Some of the leaves from the gardener's strawberry plant die.

The dead leaves fall off the strawberry plant onto the ground.
The carbon in the dead leaves is recycled through the carbon cycle.
Explain how the carbon is recycled into the growth of new leaves.
\qquad
(e) The diagram below shows two strawberries.

- Both strawberries were picked from the same strawberry plant.
- Both strawberries were picked 3 days ago.
- The strawberries were stored in different conditions.

Strawberry B

A © sarahdoow/Stock/Thinkstock, B © Mariusz Vlack/iStock/Thinkstock
Give three possible reasons that may have caused strawberry \mathbf{A} to decay.

1. \qquad
\qquad
2. \qquad
\qquad
3. \qquad
\qquad
(Total 13 marks)

Q11.
Figure 1 shows how energy and biomass pass along a food chain.
Figure 1

(a) The parsley shown in Figure 1 carries out photosynthesis.
\qquad
\qquad
\qquad
\qquad
(b) Which diagram shows the pyramid of biomass for the food chain in Figure 1?

Why is photosynthesis important in the food chain?
Tick (\boldsymbol{V}) one box.

(c) Figure 2 shows the ways a swallowtail caterpillar transfers 20 J of energy from food.

Figure 2

What percentage of the energy in the caterpillar's food is used for growth?
\qquad
\qquad
Percentage $=$ \qquad
(d) The organisms in the food chain are adapted for survival.
(i) Figure 3 shows a swallowtail caterpillar seen from the back.

Figure 3

Suggest how the swallowtail caterpillar shown in Figure 3 is adapted to reduce the chance of being eaten by blue tits.
\qquad
\qquad
\qquad
\qquad
(ii) Figure 4 shows a hawk.

Figure 4

Suggest two ways that the hawk is adapted to catch and kill blue tits.

1. \qquad
\qquad
2. \qquad
\qquad

Q12.

Over millions of years:

- new groups of organisms have evolved
- other groups of organisms have become extinct.
(a) If an asteroid collided with the Earth, large amounts of dust and water vapour would be thrown up into the air. This would mean less light and heat would reach the Earth's surface from the Sun.
(i) A reduced amount of light and heat could have caused the extinction of plants.

Suggest how.
\qquad
\qquad
(ii) How could the extinction of plants have caused the extinction of some animals?
\qquad
\qquad
(iii) Give two reasons, other than collision with an asteroid, why groups of animals may become extinct.

1. \qquad
\qquad
2. \qquad
\qquad
(b) The graph shows how the rate of extinction of groups of animals has varied over the past 300 million years.

(i) If more than 10 groups of animals become extinct in a 1 million year period, scientists call this a 'mass extinction'.

How many mass extinctions occurred over the past 300 million years?
(ii) How do we know what types of animals lived hundreds of millions of years ago?
(c) Use information from the graph to answer part (i) and (ii).
(i) How many years ago did the most recent mass extinction of animals occur?

Tick (\boldsymbol{V}) one box.

50 million years ago	\square
65 million years ago	\square
250 million years ago	\square

(ii) What was the mean number of groups of animals becoming extinct per million years in the most recent mass extinction?
groups per million years
(iii) Why are scientists not sure how many groups of animals became extinct in the most recent mass extinction?
\qquad
\qquad
(Total 9 marks)

Q13.

In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Light intensity, carbon dioxide concentration and temperature are three factors that affect the rate of photosynthesis.

How would you investigate the effect of light intensity on the rate of photosynthesis?
The image below shows some of the apparatus you might use.

Not to scale

You should include details of:

- how you would set up the apparatus and the materials you would use
- the measurements you would make
- how you could make this a fair test.
\qquad

Q14.
Photosynthesis needs light.
(a) Complete the balanced symbol equation for photosynthesis.

(b) A green chemical indicator shows changes in the concentration of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ in a solution.

The indicator solution is green when the concentration of CO_{2} is normal.
The indicator solution turns yellow when the concentration of CO_{2} is high.
The indicator solution turns blue when the concentration of CO_{2} is very low or when there is no CO_{2}.

The indicator solution does not harm aquatic organisms.
Students investigated the balance of respiration and photosynthesis using an aquatic snail and some pondweed.

The students set up four tubes, A, B, C and D, as shown in the table below.
The colour change in each tube, after 24 hours in the light, is recorded.
$\left.\begin{array}{|c|c|c|c|}\hline \text { Tube A } & \text { Tube B } & \text { Tube C } & \text { Tube D } \\ \text { Indicator solution } \\ \text { only }\end{array} \quad \begin{array}{c}\text { Indicator solution } \\ \text { + pondweed }\end{array} \quad \begin{array}{c}\text { Indicator solution } \\ \text { + snail }\end{array} \quad \begin{array}{c}\text { Indicator solution } \\ \text { + pondweed } \\ \text { + snail }\end{array}\right]$
(i) What is the purpose of Tube A?
\qquad
\qquad
(ii) Explain why the indicator solution in Tube \mathbf{C} turns yellow.
\qquad
\qquad
\qquad
\qquad
(iii) Predict the result for Tube \mathbf{D} if it had been placed in the dark for 24 hours and not in the light.

Explain your prediction.
Prediction \qquad

Explanation \qquad
\qquad
\qquad
\qquad

Q15.

Photosynthesis uses carbon dioxide to make glucose.
(a) (i) Complete the equation for photosynthesis.

(ii) What type of energy does a plant use in photosynthesis?
\qquad
(iii) Which part of a plant cell absorbs the energy needed for photosynthesis?
\qquad
(b) The graph shows the effect of the concentration of carbon dioxide on the rate of photosynthesis in tomato plants at $20^{\circ} \mathrm{C}$.

Rate of photosynthesis in arbitrary units

(i) What is the maximum rate of photosynthesis of the tomato plants shown in the graph?
\qquad arbitrary units
(ii) At point \mathbf{X}, carbon dioxide is not a limiting factor of photosynthesis.

Suggest one factor that is limiting the rate of photosynthesis at point \mathbf{X}.
\qquad
(c) A farmer plans to grow tomatoes in a large greenhouse.

The concentration of carbon dioxide in the atmosphere is 0.04%.
The farmer adds carbon dioxide to the greenhouse so that its concentration is 0.08\%.
(i) Why does the farmer use 0.08% carbon dioxide?

Tick (\checkmark) one box.

To increase the rate of growth of the tomato plants

To increase the rate of respiration of the tomato plants

To increase water uptake by the tomato plants

(ii) Why does the farmer not use a concentration of carbon dioxide higher than 0.08\%?

Tick (\checkmark) two boxes.

Because it would cost more money than using 0.08\%

Because it would decrease the temperature of the greenhouse

Because it would not increase the rate of photosynthesis of the tomato plants any further

Because it would increase water loss from the tomato plants

(2)

Q16.

Green plants can make glucose.
(a) Plants need energy to make glucose.

How do plants get this energy?
(b) Plants can use the glucose they have made to supply them with energy.

Give four other ways in which plants use the glucose they have made.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q17.

(a) Complete the equation for photosynthesis. Draw a ring around each correct answer.

Some students investigated the effect of light intensity on the rate of photosynthesis in pondweed.

The diagram shows the apparatus the students used.

The closer the lamp is to the pondweed, the more light the pondweed receives.
The students placed the lamp at different distances, \mathbf{d}, from the pondweed.
They counted the number of bubbles of gas released from the pondweed in 1 minute for each distance.
(b) A thermometer was placed in the glass beaker.

Why was it important to use a thermometer in this investigation?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) The students counted the bubbles four times at each distance and calculated the correct mean value of their results.

The table shows the students' results.

Distance d in cm	Number of bubbles per minute				
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	Mean
10	52	52	54	54	53
20	49	51	48	52	50
30	32	30	27	31	30
40	30	10	9	11	

(i) Calculate the mean number of bubbles released per minute when the lamp was 40 cm from the pondweed.
\qquad
\qquad
Mean number of bubbles at $40 \mathrm{~cm}=$ \qquad
(ii) On the graph paper below, draw a graph to show the students' results:

- add a label to the vertical axis
- plot the mean values of the number of bubbles
- draw a line of best fit.

Distance \mathbf{d} in cm
(iii) One student concluded that the rate of photosynthesis was inversely proportional to the distance of the lamp from the plant.

Does the data support this conclusion?
Explain your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Light intensity, temperature and concentration of carbon dioxide are factors that affect the rate of photosynthesis.

Scientists investigated the effects of these three factors on the rate of photosynthesis in tomato plants growing in a greenhouse.

The graph below shows the scientists' results.

A farmer in the UK wants to grow tomatoes commercially in a greenhouse.
The farmer read about the scientists' investigation.
During the growing season for tomatoes in the UK, natural daylight has an intensity higher than 30000 lux.

The farmer therefore decided to use the following conditions in his greenhouse during the day:

- $20^{\circ} \mathrm{C}$
- $0.1 \% \mathrm{CO}_{2}$
- no extra lighting.

Suggest why the farmer decided to use these conditions for growing the tomatoes.
You should use information from the scientists' graph in your answer.
\qquad

Q18.
The diagram below shows a single-celled alga which lives in fresh water.

(a) Which part of the cell labelled above:
(i) traps light for photosynthesis
\qquad
(ii) is made of cellulose?
\qquad
(b) In the freshwater environment water enters the algal cell.
(i) What is the name of the process by which water moves into cells?
\qquad
(ii) Give the reason why the algal cell does not burst.
\qquad
\qquad
(c) (i) The alga can photosynthesise.

Complete the word equation for photosynthesis.

(ii) The flagellum helps the cell to move through water. Scientists think that the flagellum and the light-sensitive spot work together to increase photosynthesis.

Suggest how this might happen.
\qquad
\qquad
\qquad
\qquad
(d) Multicellular organisms often have complex structures, such as lungs, for gas exchange.

Explain why single-celled organisms, like algae, do not need complex structures for gas exchange.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q19.
(a) Dodder is an unusual flowering plant. It is a parasite.

The dodder plant:

- has no chlorophyll
- has no roots
- has no leaves
- grows attached to the stem of a host plant.

The image below shows dodder attached to its host plant.

© yogesh_more/iStock/Thinkstock
(i) Dodder has no chlorophyll. Most plants have leaves containing chlorophyll.

What is the function of chlorophyll in most plants?
\qquad
\qquad
\qquad
\qquad
(ii) Parts of the dodder stem grow into the host stem and attach to the host's phloem tissue.

Suggest why it is helpful to the dodder plant to be attached to the host's phloem tissue.
\qquad
\qquad
(iii) Suggest why the dodder will have a harmful effect on the host plant.
\qquad
\qquad
(b) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

The tapeworm is another parasite.
The image below shows part of a tapeworm.

© Science Photo Library
The tapeworm lives inside the small intestine of a mammal.
Describe and explain how the tapeworm is adapted for living inside the small intestine of its host.
\qquad
Extra space \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q20.

A student investigated growth in plants.
The student:

- planted a seed in damp soil in a plant pot
- put the plant pot in a dark cupboard.

The image below shows the result after 5 days.

(a) Draw a ring around the correct answer to complete each sentence.
(i) After the 5 days, the root had grown
away from water.
in the direction of the force of gravity.
towards light.
against the force of gravity.
(ii) After the 5 days, the shoot had grown
away from light.
towards water.
(b) After the plant had grown, the student put the plant pot by a window with lots of light.

The illustration below shows this.

(i) Complete the diagram below to show the appearance of the student's plant after 20 days by the window.

(ii) Explain the advantage to the plant of growing in the way that you have drawn in part (b)(i).
\qquad
\qquad
\qquad
\qquad

Q21.
(a) A student carried out the following investigation using a plant with variegated leaves. A variegated leaf has green and white stripes.

The student:

- left the plant in the dark for 3 days to remove the starch
- fixed two pieces of card to a leaf on the plant
- left the plant in the light for 2 days
- removed the leaf from the plant
- tested the leaf for starch.

Figure 1 shows how the two pieces of card were attached to the leaf.
Figure 1

Leaf without card

Leaf with card

Key
White parts of leaf
Green parts of leaf

Figure 2 shows the same leaf after 2 days in the light.

The leaf has been tested for starch.

Figure 2

Give two conclusions from this investigation.
Tick (\checkmark) two boxes.
Carbon dioxide is needed for photosynthesis. \square

Chlorophyll is needed for photosynthesis. \square

Light is needed for photosynthesis.

Water is needed for photosynthesis. \square
(b) Scientists investigated the effect of light intensity on the rate of photosynthesis.

Figure 3 shows the scientists' results.
Figure 3

Describe the effect of increasing light intensity on the rate of photosynthesis. You should include numbers from Figure 3 in your description.
\qquad
\qquad
\qquad
\qquad
(c) At a light intensity of 250 arbitrary units, light is not a limiting factor of photosynthesis.
(i) What is the evidence for this in Figure 3?
\qquad
\qquad
(ii) Give two factors that could be limiting the rate of photosynthesis at a light intensity of 250 arbitrary units.

1. \qquad
2. \qquad
(Total 8 marks)

Q22.
In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Deforestation affects the environment.
Deforestation is causing a change in the amounts of different gases in the atmosphere. This change causes global warming and climate change.

The image below shows an area of deforestation.

© Nivellen77/iStock/Thinkstock
Give the reasons why deforestation is taking place.
Describe how deforestation is causing the change in the amounts of different gases in the atmosphere.
\qquad
Extra space \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 6 marks)

Q23.
Some students investigated the effect of light intensity on the rate of photosynthesis.
They used the apparatus shown in Diagram 1.
Diagram 1

The students:

- placed the lamp 10 cm from the pondweed
- counted the number of bubbles of gas released from the pondweed in 1 minute
- repeated this for different distances between the lamp and the pondweed.
(a) The lamp gives out heat as well as light.

What could the students do to make sure that heat from the lamp did not affect the rate of photosynthesis?
\qquad
\qquad
(b) The table shows the students' results.

Distance in cm	Number of bubbles per minute
10	84
15	84
20	76
40	52
50	26

(i) At distances between 15 cm and 50 cm , light was a limiting factor for photosynthesis.

What evidence is there for this in the table?
\qquad
\qquad
(ii) Give one factor that could have limited the rate of photosynthesis when the distance was between 10 cm and 15 cm .
\qquad
(c) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Diagram 2 shows a section through a plant leaf.

Diagram 2

Describe the structure of the leaf and the functions of the tissues in the leaf.
You should use the names of the tissues in your answer.
\qquad

Q24.
Some students studied bluebell plants growing in two different habitats.
Habitat A was a sunny field next to woodland.
Habitat B was a shady, moist woodland.
A bluebell plant can have several flowers on one flower stalk. The students counted the number of flowers on each of 40 bluebell flower stalks growing in each habitat.
The bar charts show the results.
Habitat A: Sunny field next to woodland

Habitat B: Shady, moist woodland

(a) The students wanted to collect valid data.

Describe how the students should have sampled the bluebell plants at each habitat to collect valid data.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) (i) The students used the bar charts to find the mode for the number of flowers per stalk in the two habitats.

The mode for the number of flowers per stalk in habitat \mathbf{A} was 11 .
What was the mode for the number of flowers per stalk in habitat \mathbf{B} ?
Mode =
\qquad
(ii) The students suggested the following hypothesis:
'The difference in the modes is due to the plants receiving different amounts of sunlight.'

Suggest why.
\qquad
\qquad
\qquad
\qquad
(iii) Suggest how the students could test their hypothesis for the two habitats.
\qquad
\qquad
\qquad
\qquad
(c) Suggest how receiving more sunlight could result in the plants producing more flowers per stalk.
\qquad
\qquad
\qquad
\qquad

Q25.
The diagrams show four types of cell, A, B, C and \mathbf{D}.
Two of the cells are plant cells and two are animal cells.

(a) (i) Which two of the cells are plant cells?

Tick (\checkmark) one box.

A and B

A and D

C and D

(ii) Give one reason for your answer.
\qquad
\qquad
(b) (i) Which cell, A, B, C or \mathbf{D}, is adapted for swimming?

(ii) Which cell, A, B, C or D, can produce glucose by photosynthesis?

(c) Cells $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} all use oxygen.

For what process do cells use oxygen?
Draw a ring around one answer.

Q26.
This question is about photosynthesis.
(a) Plants make glucose during photosynthesis. Some of the glucose is changed into insoluble starch.

What happens to this starch?
Tick (\checkmark) one box.

The starch is converted into oxygen.

The starch is stored for use later.

The starch is used to make the leaf green.

(b) A student investigated the effect of temperature on the rate of photosynthesis in pondweed.

The diagram shows the way the experiment was set up.

(i) The student needed to control some variables to make the investigation fair.

State two variables the student needed to control in this investigation.

1. \qquad
2. \qquad
(ii) The bubbles of gas are only produced while photosynthesis is taking place.

What two measurements would the student make to calculate the rate of photosynthesis?

1. \qquad
2. \qquad
(c) The graph shows the effect of temperature on the rate of photosynthesis in the pondweed.

(i) Name the factor that limits the rate of photosynthesis between the points labelled \mathbf{A} and \mathbf{B} on the graph.
\qquad
(ii) Suggest which factor, carbon dioxide, oxygen or water, might limit the rate of photosynthesis between the points labelled \mathbf{C} and \mathbf{D} on the graph.
\qquad
(Total 7 marks)

Q27.

(a) Complete the word equation for photosynthesis.

(b) Draw a ring around the correct answer to complete each sentence.

(i) The energy needed for photosynthesis comes from	light.
osmosis.	
respiration.	

(ii) Energy is absorbed by a green pigment called chloride.
chloroplast.
chlorophyll.
(1)

(iii) If the temperature is decreased the rate of photosynthesis will | | decrease. |
| :--- | :--- |
| increase. | |
| stay the same. | |

(c) Give three ways in which plants use the glucose made in photosynthesis.

1. \qquad
\qquad
2. \qquad
\qquad
3. \qquad
\qquad
(Total 7 marks)

Q28.

Infections by antibiotic resistant bacteria cause many deaths.
The bar chart below shows information about the number of deaths per year in England from Methicillin-resistant Staphylococcus aureus (MRSA) and from Clostridium difficile (C.difficile) over 4 years.

(a) (i) Describe the trend for deaths caused by C.difficile.
\qquad
\qquad
\qquad
\qquad
(ii) Suggest a reason for the trend you have described in part (a)(i).

Explain your answer.
\qquad
\qquad
\qquad
\qquad
(iii) Calculate the percentage change in deaths caused by MRSA from 2009 to 2010.
\qquad
\qquad
\qquad
Percentage change in deaths caused by MRSA = \qquad \%
(iv) Numbers have not yet been published for 2011.

When the numbers are published, scientists do not expect to see such a large percentage change from 2010 to 2011 as the one you have calculated for 2009 to 2010.

Suggest one reason why.
\qquad
\qquad
(b) Before 2007 there was a rapid increase in the number of deaths caused by MRSA.

Describe how the overuse of the antibiotic methicillin led to this increase.
\qquad
\qquad
\qquad
\qquad

Q29.

The diagram shows a section through a plant leaf.

(a) Use words from the box to name two tissues in the leaf that transport substances around the plant.

epidermis	mesophyll	phloem	xylem

\qquad and \qquad
(b) Gases diffuse between the leaf and the surrounding air.
(i) What is diffusion?
\qquad
\qquad
\qquad
\qquad
(ii) Name one gas that will diffuse from point \mathbf{A} to point \mathbf{B} on the diagram on a sunny day.

Q30.
(a) Complete the equation for photosynthesis.

(b) The rate of photosynthesis in a plant depends on several factors in the environment.
These factors include light intensity and the availability of water.
Describe and explain the effects of two other factors that affect the rate of photosynthesis.

You may include one or more sketch graphs in your answer.
\qquad

Q31.
(a) Complete the word equation for photosynthesis.

Use words from the box.

chlorophyll	minerals	oxygen	water
carbon dioxide $+\ldots \rightarrow$ glucose $+\square$			

(b) Plants may grow faster if they have more carbon dioxide.

Indigestion tablets dissolve in water to form a solution.
This solution slowly gives off carbon dioxide.
A student set up an investigation to see what concentration of carbon dioxide is best for increasing the growth of geranium plants.

The student:

- put a geranium plant in a clear plastic bag
- put a dish containing water and one tablet in the bag
- sealed the top of the bag.

The student:

- set up 5 more experiments each with water and a different number of tablets
- left all the plants in a well-lit place for four weeks.

The student used a clear plastic bag, not a black plastic bag.
Explain why.
\qquad
\qquad
\qquad
\qquad
(c) After four weeks, the student counted the number of new leaves on each plant.

The graph shows his results.

Describe the effect of increasing the number of tablets dissolved in water on the number of new leaves that grew in four weeks.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 7 marks)

Q32.
Green plants are found at the start of all food chains.
(a) Complete the sentences.
(i) The source of energy for green plants is radiation from the \qquad
(ii) Green plants absorb some of the light energy that reaches them for a process called \qquad
(b) Draw a ring around the correct answer to complete each sentence.

(i) This process transfers light energy into | chemical | |
| :--- | :--- |
| sound | energy. |

(ii) The process uses the gas carbon dioxide. oxygen.
water.
(iii) The process produces carbon-containing compounds called
carbohydrates. minerals. salts
(c) The amount of living material (biomass) at each stage in a food chain is less than at the previous stage.

The diagram shows a food chain.

Give two ways in which biomass is lost in this food chain.
Tick (\checkmark) two boxes.

As carbon dioxide from the caterpillar

As food eaten by the hawk

As oxygen from the oak tree

As faeces (droppings) from the blue-tit

Q33.
(a) Complete the equation for photosynthesis.
\qquad
light
Carbon dioxide +

(b) A farmer grew tomato plants in a greenhouse.

The graph shows the effect of light intensity on the rate of photosynthesis in the tomato plants growing in the greenhouse.

(i) At which light intensity was light a limiting factor for photosynthesis?

Tick (\checkmark) one box.

1 arbitrary unit

4 arbitrary units

10 arbitrary units \square
(ii) What was the highest rate of photosynthesis?
\qquad arbitrary units
(iii) The farmer wants to increase the rate of photosynthesis in his tomato plants.

Apart from light intensity, name one factor that the farmer could change to increase the rate of photosynthesis in his tomato plants.

Q34.
(a) Complete the equation for photosynthesis.
\qquad
(b) Scientists investigated how temperature affects the rate of photosynthesis.

The scientists grew some orange trees in a greenhouse.
They used discs cut from the leaves of the young orange trees.
The scientists used the rate of oxygen production by the leaf discs to show the rate of photosynthesis.
(i) The leaf discs did not produce any oxygen in the dark.

Why?
\qquad
\qquad
(ii) The leaf discs took in oxygen in the dark.

Explain why.
\qquad
\qquad
\qquad
\qquad
(c) In their investigation, the scientists measured the rate of oxygen release by the leaf discs in the light. The scientists then measured the rate of oxygen uptake by the leaf discs in the dark.

The graph shows the effect of temperature on

- oxygen production in the light
- oxygen production in the light added to oxygen uptake in the dark.

Use the information from the graph to answer each of the following questions.
(i) Describe the effect of temperature on oxygen production in the light.
\qquad
\qquad
\qquad
\qquad
(ii) Explain the effect of temperature on oxygen production in the light when the temperature is increased:
from $25^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$
\qquad
\qquad
\qquad
from $40^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
\qquad
\qquad
\qquad
(d) A farmer in the UK wants to grow orange trees in a greenhouse. He wants to sell the oranges he produces at a local market. He decides to heat the greenhouse to $35^{\circ} \mathrm{C}$.

Explain why he should not heat the greenhouse to a temperature higher than $35^{\circ} \mathrm{C}$. Use information from the graph in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 12 marks)

Q35.

The graph shows the uptake of carbon dioxide and the release of carbon dioxide by a bean plant on a hot summer's day.

(a) At which two times in the day did the rate of photosynthesis exactly match the rate of respiration in the bean plant?

1. \qquad
(b) The bean plant respires at the same rate all through the 24 hour period.
(i) How much carbon dioxide is released each hour during respiration?
\qquad arbitrary units
(ii) How much carbon dioxide is used by photosynthesis in the hour beginning at 3 pm ?
\qquad
\qquad
Answer = \qquad arbitrary units
(c) Over the 24 hour period, the total amount of carbon dioxide taken in by the bean plant was greater than the total amount of carbon dioxide given out by the bean plant.

Explain, in detail, why this was important for the bean plant.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q36.
The amount of carbon dioxide in the atmosphere is increasing.
The table shows the estimated mass of carbon dioxide exchanged with the atmosphere in one year.

	Mass of carbon dioxide exchanged with the atmosphere in millions of tonnes	
Plants	Passed out into the atmosphere	Taken in from the atmosphere
	30	64

Animals	10	0
Microorganisms	24	0
Combustion	6	0

(a) (i) Calculate the total mass of carbon dioxide passed out into the atmosphere in one year.

Show clearly how you work out your answer.
\qquad
\qquad
Answer \qquad million tonnes
(ii) Calculate the increase in the mass of carbon dioxide in the atmosphere in one year.

You should use your answer to part (a)(i) in your calculation.
Show clearly how you work out your answer.
\qquad
\qquad
Answer \qquad million tonnes
(b) Draw a ring around the correct answer to complete the sentence.

Plants use carbon dioxide in the process of \quad| decomposition. |
| :--- |
| photosynthesis. |
| respiration. |

Q37.
A group of pupils investigated the way in which the colour of light affects photosynthesis.
The pupils:

- put a piece of pondweed into a test tube of water
- shone light from a lamp with a red light bulb onto the pondweed
- counted the bubbles of gas produced by the pondweed every minute for three minutes.

The diagram shows the experiment.

The pupils repeated their experiment using a yellow light bulb, a green light bulb and a blue light bulb.
(a) (i) What was the independent variable in the investigation?
\qquad
(ii) To make the investigation fair the pupils needed to control some variables.

Suggest one variable that the pupils should have controlled during their investigation.
\qquad
(iii) It is better to count the bubbles every minute for three minutes than to count all the bubbles in three minutes.

Why?
\qquad
\qquad
(b) The table shows the pupils' results.

Colour of bulb	Number of bubbles produced in one minute			
	1st minute	2nd minute	3rd minute	Mean
	24	19	21	21
Yellow	18	14	15	16
Green	6	4	3	4
Blue	32	34	32	33

Algae are tiny organisms that photosynthesise.
In natural light algae grow very quickly on the sides of a fish tank.
The algae make it difficult to see the fish.
(i) What would be the best colour of light bulb to illuminate the fish tank to reduce the growth of algae?

Use the results in the table to help you to decide.
Draw a ring around one answer.
red
yellow
green
blue
(ii) Explain why the colour you have chosen is the best.
\qquad
\qquad
\qquad
\qquad

Q38.
A gardener grows tomato plants.
The tomato plants develop yellow leaves.
(a) What would be the best way of improving the growth of these plants?

Tick (\checkmark) one box.

Add mineral ions to the soil

Water the plants more

Add glucose to the soil

(b) Most tomatoes are grown in greenhouses.

By Giancarlo Dessì (Own work) [GFDL or CC-BY-SA-3.0-2.5-2.0-1.0], via Wikimedia Commons
Tomato growers alter the conditions in greenhouses to make tomato plants grow faster.

Which changes in conditions will make tomato plants grow faster?
Tick (\checkmark) two boxes.

Increasing the temperature \square

Increasing the oxygen concentration in the air

Increasing the nitrogen concentration in the air

Turning lights on at night

Q39.

Tomatoes are grown in greenhouses in the UK and outdoors in the UK and the Canary Islands.

The chart shows in which months these tomatoes can be bought in shops in the UK.

The Canary Islands are about 3000 km from the UK.
Some people prefer to buy tomatoes grown in the UK.
What are the advantages and disadvantages of buying tomatoes grown in the UK, instead of buying tomatoes grown in the Canary Islands?

Advantages of buying tomatoes grown in the UK
\qquad
\qquad
\qquad
\qquad
Disadvantages of buying tomatoes grown in the UK
\qquad
\qquad
\qquad
\qquad
(Total 3 marks)

Q40.
Students investigated the effect of changing the carbon dioxide concentration on the rate of photosynthesis in pieces of leaf.

Diagram 1 shows the type of leaf used by the students.

Diagram 1

The students:

- cut pieces of leaf from the green region
- put the pieces into tubes
- added different concentrations of carbon dioxide to each tube
- shone lights on the tubes with either high or low light intensity
- recorded the concentration of oxygen in the tubes after 5 hours.

Diagram 2 shows how each experiment was set up.

Diagram 2

The graph shows the results of the investigation.

(a) (i) Describe the effect of increasing carbon dioxide concentration on the rate of photosynthesis at low light intensity.
\qquad
\qquad
(ii) Explain the effect that you have described.

In your answer you should refer to limiting factors.
(b) What would have been the effect on oxygen concentration over the five-hour period if a white region of the leaf had been used, instead of a green region?

Effect \qquad
Explain your answer.
Explanation \qquad
\qquad
\qquad
(c) Some people keep indoor plants which have variegated leaves (leaves with green and white regions).

If plants with variegated leaves are kept in dim light conditions the white areas of the leaves start to turn green.

This is an advantage to the plant.
Suggest why.
\qquad
\qquad
\qquad
\qquad
(Total 7 marks)
Q41.
The diagram shows where three seaweeds live on a seashore.
As the tide moves in and out, these seaweeds are covered with seawater for different lengths of time.

Some students investigated the rate of photosynthesis in these seaweeds.

- They cut ten small discs from one seaweed.
- They dropped the discs into seawater in a beaker.
- They recorded the time taken for the fifth disc to float to the surface.
- They repeated this experiment with the other two seaweeds.

(a) (i) Suggest why the discs floated to the surface.
\qquad
\qquad
(ii) Suggest the advantage of recording the time taken for the fifth disc to reach the surface, rather than for the tenth disc.
\qquad
\qquad
(b) The students carried out their experiments at different light intensities. The graph shows the results they collected.

(i) Compare the rate of photosynthesis for flat wrack with the rate for saw wrack at different light intensities.
(ii) Seawater absorbs light.

The growth rate of saw wrack is less than the growth rate of bladder wrack.
Suggest why.
\qquad
\qquad
\qquad
\qquad

Q42.

This question is about photosynthesis.
(a) Plants make glucose during photosynthesis. Some of the glucose is changed into insoluble starch.

What happens to this starch?
Tick (\checkmark) one box.

The starch is converted into oxygen.

The starch is stored for later use.

The starch is used to make the leaf green.

(b) A student investigated the effect of temperature on the rate of photosynthesis in pondweed.

The diagram shows the way the experiment was set up.

(i) The student needed to control some variables to make the investigation fair.

State two of these variables.

1. \qquad
2. \qquad
(ii) The bubbles of gas are produced only while photosynthesis is taking place.

What two measurements would the student make to calculate the rate of photosynthesis?

1. \qquad
2. \qquad
(c) The graph shows the effect of temperature on the rate of photosynthesis.

(i) Name the factor that limits the rate of photosynthesis between the points labelled \mathbf{A} and \mathbf{B} on the graph.
\qquad
(ii) Suggest which factor, carbon dioxide, oxygen or water, might limit the rate of photosynthesis between the points labelled \mathbf{C} and \mathbf{D} on the graph.
\qquad

Q43.

A gardener grows tomatoes.
He wants to find out how to get the biggest mass of tomatoes.
He plants different varieties of tomato against different walls in his garden.

Use these results to answer the questions.
(a) The gardener wants his test to be fair.

Name one condition which he should keep the same for all his tomato plants.
\qquad
\qquad
(b) The table shows the gardener's results.

Variety of tomato plant	Sungold	Sungold	Sungold	Sungold	Nugget	Champion
Wall they were planted	North	West	South	East	East	East

against						
Mean mass of tomatoes produced in kilograms per plant	3.5	3.0	1.2	2.5	3.2	2.7

(i) To obtain the biggest mass of tomatoes, against which wall is it best to grow the tomato plants?

Tick (\checkmark^{\prime}) one box.

North wall \square

South wall \square

East wall \square

West wall \square
(ii) To obtain the biggest mass of tomatoes, which variety of tomato plant would it be best to grow?
\qquad
(c) From the information in the table, the gardener's test was not fair.

Give one way in which the test was not fair.
\qquad
\qquad

Q44.
(a) (i) Complete the word equation for photosynthesis.
carbon dioxide + \qquad (+ light energy) \rightarrow glucose + \qquad
(ii) Most of the carbon dioxide that a plant uses during photosynthesis is absorbed from the air.

Give one other source of carbon dioxide for a plant.

Draw a ring around your answer.
the soil respiration in the plant osmosis in the plant water

A student investigated the conditions that plants need for photosynthesis. The leaves of the plant he used had green and white parts.

Diagram 1 shows how part of one leaf was covered in black (opaque) card.
The plant was placed in a warm, sunny area and was watered well.
Eight hours later the leaf was removed from the plant and was tested for starch.
The results of the test are shown in Diagram 2, the shaded parts show where starch was present.

(b) Name the two independent variables in this investigation.

1. \qquad
\qquad
2. \qquad
\qquad
(c) Why was no starch found in:
(i) the part of the leaf labelled \mathbf{A}
\qquad
\qquad
(ii) the part of the leaf labelled \mathbf{B} ?
\qquad
\qquad

The diagram shows bushes in a hedge growing near to a house.
The bushes were the same species and the same age.

(a) (i) The student said, "I have noticed that the short bushes grow next to the house. I think that the more light the bushes get, the faster they will grow."

Draw lines to match each of the student's statements to the correct term.
Draw only two lines.

(ii) Complete the word equation for photosynthesis.
\qquad + water (+ light energy) \rightarrow \qquad + oxygen
(b) The student decided to investigate the effect of light intensity on the rate of photosynthesis.

She used the apparatus shown in the diagram.

She measured the rate of photosynthesis by counting the number of gas bubbles given off each minute.
(i) Suggest how the student varied the intensity of the light received by the pondweed.
\qquad
\qquad
(ii) The student's results are shown on the graph.

Describe the pattern shown on the graph.
\qquad
\qquad
\qquad
\qquad
(iii) This is what the student wrote for her conclusion.
"Increasing the light intensity increases the rate of photosynthesis of the pondweed."

Why was her conclusion incomplete?
\qquad
\qquad

Q46.

Green plants are able to make their own food.
Complete each sentence by drawing a ring around the correct answer in the box.

(a) Green plants make their own food during the process of	diffusion
photosynthesis	
respiration	

(b) This process can be summarised by the equation:

carbon dioxide + water \rightarrow glucose +| mineral salts |
| :--- |
| light |
| oxygen |

(c) The energy needed for this process is trapped for the plant by	chlorophyll
glucose	
light	$\quad \begin{aligned} & \text { lat }\end{aligned}$

Changing the conditions in which plants grow affects how fast they grow.
The diagram shows a propagator in which scientists can control temperature, light intensity and carbon dioxide concentration.

The graph shows the effects of changing the temperature, light intensity and carbon dioxide concentration on the growth of lettuce plants.

Light intensity in arbitrary units
(a) Describe and explain the effect of increasing light intensity on the mean mass of lettuce plants at 4% carbon dioxide and $15^{\circ} \mathrm{C}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Growers wish to make maximum profits from their lettuces.

What do they need to consider before making decisions about the growing conditions for their lettuces?
\qquad
\qquad
\qquad
\qquad
(c) The nutrient solution contains nitrate ions and magnesium ions.

Complete the table to show the functions of these ions in plants and their deficiency symptoms.

Ion	Function in plants	Deficiency symptoms
Nitrate	-	
Magnesium	\square	

(Total 9 marks)

Q48.
(a) The equation describes the process of photosynthesis.
carbon dioxide + \qquad + light energy \longrightarrow glucose + \qquad
(i) Write in the names of the two missing substances.
(ii) Name the green substance which absorbs the light energy.
\qquad
(b) (i) In bright sunlight, the concentration of carbon dioxide in the air can limit the rate of photosynthesis. Explain what this means.
\qquad
\qquad
\qquad
(ii) Give one environmental factor, other than light intensity and carbon dioxide concentration, which can limit the rate of photosynthesis.
\qquad
(Total 6 marks)

Q49.

The table shows the effects that two different concentrations of sulphur dioxide in the air had on the growth of rye grass plants.

Sulphur dioxide concentration in the air in micrograms per $\mathbf{m}^{\mathbf{3}}$	$\mathbf{9 . 0}$	$\mathbf{1 9 1 . 0}$
Number of leaves per plant	85.6	47.3
Total leaf area in cm^{2}	417.2	203.6
Dry mass of stubble in grams	0.48	0.22

(a) What human activity releases sulphur dioxide into the air?
\qquad
(b) (i) What effect does sulphur dioxide have on rainwater?
\qquad
\qquad
(ii) Use information from the table to describe one effect of sulphur dioxide on the leaves of the grass plants.
\qquad
\qquad
(c) The stubble consists of the bases of the stems of the plants and the roots left in the soil after harvesting.

Use your answer to part (b) to explain why the dry mass of the stubble was less at the higher concentration of sulphur dioxide.
\qquad
\qquad
\qquad

Q50.

Photosynthesis takes place in green plants.
(a) Name the substance that combines with water in photosynthesis.
\qquad
(b) Where does water enter the plant?
\qquad
(c) Name two products of photosynthesis.
\qquad
(d) Variegated leaves have areas that are green and areas that are white. Some students used variegated leaves to investigate photosynthesis.

- They covered a variegated leaf with a black paper shape.
- The leaf was left in a sunny place.
- They tested the leaf for starch.
- The results were compared with a leaf that was not covered.

Area of the leaf tested	Start present after test	
	covered	uncovered
Green area	no	yes
White area	no	no

Explain why starch was present in only one of the tests.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q51.

(a) Complete the following sentences.

Green plants produce their own food by a process called photosynthesis. In this process the raw materials are \qquad and carbon
dioxide. Glucose and \qquad are produced.
\qquad energy is absorbed by the green substance called \qquad .
(b) Name two things that can happen in the plant to the glucose produced in photosynthesis.

1. \qquad
2. \qquad
(c) Plants need mineral salts.
(i) Through which part do mineral salts get into the plant?
\qquad
(ii) Explain why water is important in this process.
\qquad
\qquad
\qquad
\qquad

Some students set up water cultures to find out how plants use nitrates.
They had two sets of nutrient solutions.

A full solution provided the plant with all the required nutrients.
The results table shows the average mass of the seedlings after 28 days of growth.

Culture solution	Average mass of seedling in g
distilled water	0.14
full solution with no nitrates	0.29
full solution	0.43

(d) (i) Give a conclusion you could make from these results.
\qquad
\qquad
(ii) Calculate the difference in average mass caused by the addition of nitrates to the culture solution.
\qquad
(iii) What are nitrates used for in the seedling?
\qquad
(iv) Some factors need to be controlled to keep this test fair. Name two of them.

1. \qquad
2. \qquad
(v) Suggest one way you could improve the experiment.
\qquad

Q52.
(a) Plants make their own food by photosynthesis.

Use the following words to fill in the gaps. You can use each word once or not at all.

| carbonchlorophyll | cytoplasm | light | nitrogen |
| :---: | :---: | :---: | :---: | :---: |
| oxygen | sound | starch | water |

During photosynthesis \qquad dioxide and \qquad are converted into glucose and \qquad . The energy needed to do this is \qquad energy which is trapped by a green pigment called
\qquad .

The plant can change the glucose into \qquad which is insoluble so it can be stored.
(b) Which part of a plant is adapted for photosynthesis?
\qquad
(c) How do the two raw materials for photosynthesis get into the plant?

1. \qquad
\qquad
2. \qquad
\qquad
(d) Describe one way you could speed up photosynthesis.
\qquad
\qquad

Q53.
(a) Photosynthesis is a process that takes place in green plants.
(i) What type of energy is needed for this process?
\qquad
(ii) What substance in the plant absorbs this energy?
\qquad
(iii) In which part of the plant cell does photosynthesis take place?
\qquad
(iv) Write a balanced chemical equation for photosynthesis.
\qquad
(b) Describe two ways you could speed up photosynthesis.
\qquad
\qquad
\qquad
(c) The diagram shows the outline of a cross-section of a leaf. Name cells $\mathbf{1}$ and 2 and describe how they are involved in photosynthesis.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

