## Rate +Chemical Change

## Q1.

Lithium carbonate reacts with dilute hydrochloric acid.
A group of students investigated the volume of gas produced.
This is the method used.

1. Place a known mass of lithium carbonate in a conical flask.
2. Measure $10 \mathrm{~cm}^{3}$ of dilute hydrochloric acid using a measuring cylinder.
3. Pour the acid into the conical flask.
4. Place a bung in the flask and collect the gas as shown in Figure 1.

Figure 1

(a) Figure 2 shows the measuring cylinder.

Figure 2


What volume of gas has been collected?
Volume $=$ $\qquad$ $\mathrm{cm}^{3}$
(b) The table below shows the students' results.

| Mass of lithium carbonate <br> in $\mathbf{g}$ | Volume of gas in $\mathbf{c m}^{\mathbf{3}}$ |
| :---: | :---: |
| 0.0 | 0 |
| 0.1 | 22 |
| 0.2 | 44 |
| 0.3 | 50 |
| 0.4 | 88 |
| 0.5 | 96 |
| 0.6 | 96 |
| 0.7 | 96 |

## On Figure 3:

- Plot these results on the grid.
- Complete the graph by drawing two straight lines of best fit.

Figure 3

(c) What are two possible reasons for the anomalous result?

Tick two boxes.
Too much lithium carbonate was added.


The bung was not pushed in firmly enough.


There was too much water in the trough.


The measuring cylinder was not completely over the delivery


The conical flask was too small.
(d) Describe the pattern the graph shows up to 0.4 g of lithium carbonate added.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(e) Lithium carbonate decomposes when heated.

The equation shows the decomposition of lithium carbonate.
$\mathrm{Li}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Li}_{2} \mathrm{O}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
Figure 4 shows the apparatus a student used to decompose lithium carbonate.
Figure 4


Why does the limewater bubble?
$\qquad$
$\qquad$
(f) The student repeated the experiment with potassium carbonate.

The limewater did not bubble.
Suggest why there were no bubbles in the limewater.
$\qquad$
$\qquad$

Q2.
The word equation shows the reaction between anhydrous cobalt chloride and water.
anhydrous

| cobalt |
| :---: |
| chloride |
| (blue) |

ander $\quad$| hydrated |
| :---: |
| cobalt |
| chloride |
| (pink) |

(a) Name the type of reaction shown by the sign $\qquad$
$\qquad$
(b) When the student added water to anhydrous cobalt chloride what happened?
(c) A student measured the temperature rise when anhydrous cobalt chloride was added to water.

The student's results are shown in the table below.

|  | Trial 1 | Trial 2 | Trial 3 |
| :--- | :---: | :---: | :---: |
| Temperature <br> rise in ${ }^{\circ} \mathrm{C}$ | 8.5 | 8.2 | 8.2 |

Calculate the mean temperature rise.
$\qquad$
Temperature $=\square{ }^{\circ} \mathrm{C}$
(d) When water was added to anhydrous cobalt chloride an exothermic reaction took place.

Name the type of reaction when hydrated cobalt chloride reacts to form anhydrous cobalt chloride and water.
$\qquad$
$\qquad$

Q3.
(a) Nitrogen and hydrogen are passed over iron to produce ammonia in the Haber Process.

Balance the equation for the reaction.

$$
\mathrm{N}_{2}+\mathrm{H}_{2} \rightarrow \quad \mathrm{NH}_{3}
$$

(b) What is iron used for in the Haber process?

Tick one box.
catalyst

fuel

monomer

reactant

(c) The figure below shows how the percentage yield of ammonia changes with pressure.


Describe the trend shown in the figure above.
$\qquad$
$\qquad$
(d) Use the figure above to determine the difference in percentage yield of ammonia at 150 atmospheres pressure and 250 atmospheres pressure.

Difference in percentage yield of ammonia $=$ $\qquad$ \%
(Total 5 marks)

Q4.
A student investigated the rate of reaction between marble chips and hydrochloric acid.
Figure 1 shows the apparatus the student used.
Figure 1

(a) What is $\mathbf{A}$ ?

Tick one box.
cotton wool
limestone
poly(ethene)
rubber bung
(b) Table 1 shows the student's results for one investigation.

Table 1

| Time <br> in s | Mass lost <br> in g |
| :---: | :---: |
| 0 | 0.0 |
| 20 | 1.6 |
| 40 | 2.6 |
| 60 | 2.9 |
| 80 | 3.7 |
| 100 | 4.0 |
| 120 | 4.0 |

## On Figure 2:

- Plot these results on the grid.
- Draw a line of best fit.

Figure 2

(c) Use Figure 2 to complete Table 2.

Table 2

| Mass lost after 0.5 minutes | g |
| :--- | :---: |
| Time taken to complete the <br> reaction | $-\quad \mathrm{s}$ |

(d) The equation for the reaction is:
$2 \mathrm{HCl}(\mathrm{aq})+\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})$
Explain why there is a loss in mass in this investigation.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(e) Another student investigated the rate of a different reaction.

Table 3 shows the results from the different reaction.

## Table 3

| Mass lost when the reaction was <br> complete | 9.85 g |
| :--- | :---: |
| Time taken to complete the reaction | 2 minutes 30 |

$\square$
Calculate the mean rate of the reaction using Table $\mathbf{3}$ and the equation:

$$
\text { mean rate of reaction }=\frac{\text { mass lost in } \mathrm{g}}{\text { time taken in } \mathrm{s}}
$$

Give your answer to two decimal places.
$\qquad$
$\qquad$
Mean rate of reaction = g/s
(f) The student measured the change in mass of the reactants.

Describe another method, other than measuring the change in mass of the reactions, that the student could have used to find the rate of the reaction between marble chips and hydrochloric acid.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(g) Another student planned to investigate the effect of temperature on the rate of reaction.
The student predicted that the rate of reaction would increase as the temperature was increased.

Give two reasons why the student's prediction is correct.
Tick two boxes.
The particles are more concentrated.


The particles have a greater mass.


The particles have a larger surface area.


The particles have more energy.


The particles move faster.


Q5.
Marble chips are mainly calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$.

A student investigated the rate of reaction between marble chips and hydrochloric acid (HCl).

Figure 1 shows the apparatus the student used.
Figure 1

(a) Complete and balance the equation for the reaction between marble chips and hydrochloric acid.
$\qquad$
(b) The table below shows the student's results.

| Time <br> in s | Volume of <br> gas <br> in dm |
| ---: | :---: |
| 0 | 0.000 |
| 30 | 0.030 |
| 60 | 0.046 |
| 90 | 0.052 |
| 120 | 0.065 |
| 150 | 0.070 |
| 180 | 0.076 |
| 210 | 0.079 |
| 240 | 0.080 |
| 270 | 0.080 |

## On Figure 2:

- Plot these results on the grid.
- Draw a line of best fit.

Figure 2


Time in $s$
(c) Sketch a line on the grid in Figure 2 to show the results you would expect if the experiment was repeated using 20 g of smaller marble chips.

Label this line $\mathbf{A}$.
(d) Explain, in terms of particles, how and why the rate of reaction changes during the reaction of calcium carbonate with hydrochloric acid.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(e) Another student investigated the rate of reaction by measuring the change in mass.

Figure 3 shows the graph plotted from this student's results.
Figure 3


Use Figure 3 to calculate the mean rate of the reaction up to the time the reaction is complete.

Give your answer to three significant figures.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
Mean rate of reaction $=$ $\mathrm{g} / \mathrm{s}$
(f) Use Figure 3 to determine the rate of reaction at 150 seconds.

Show your working on Figure 3.
Give your answer in standard form.
$\qquad$
$\qquad$

Rate of reaction at $150 \mathrm{~s}=$ $\qquad$ g/s

## Q6.

In industry ethanol is produced by the reaction of ethene and steam at $300^{\circ} \mathrm{C}$ and 60 atmospheres pressure using a catalyst.

The equation for the reaction is:

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{~g})
$$

The figure below shows a flow diagram of the process.

(a) Why does the mixture from the separator contain ethanol and water?
$\qquad$
$\qquad$
(b) The forward reaction is exothermic.

Use Le Chatelier's Principle to predict the effect of increasing temperature on the amount of ethanol produced at equilibrium.

Give a reason for your prediction.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(c) Explain how increasing the pressure of the reactants will affect the amount of ethanol produced at equilibrium.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Q7.

A student investigated the effect of temperature on the rate of a reaction.
Figure 1 shows an experiment.
Figure 1


The student:

- put $50 \mathrm{~cm}^{3}$ sodium thiosulfate solution into a conical flask
- heated the sodium thiosulfate solution to the required temperature
- put the flask on a cross drawn on a piece of paper
- added $5 \mathrm{~cm}^{3}$ dilute hydrochloric acid and started a stopclock
- stopped the stopclock when the cross could no longer be seen
- repeated the experiment at different temperatures.

The equation for the reaction is:
\(\underset{\substack{sodium <br>

thiosulfate}}{\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})}+\underset{\)|  hydrochloric  |
| :---: |
|  acid  |\(}{2 \mathrm{HCl}(\mathrm{aq})} \longrightarrow \underset{\substack{sodium <br>

chloride}}{2 \mathrm{NaCl}(\mathrm{aq})}+\underset{\mathrm{H}_{2} \mathrm{O}(\mathrm{l})}{water}+\underset{\substack{sulfur <br>
dioxide}}{\mathrm{SO}_{2}(\mathrm{~g})}+\underset{\mathrm{S}(\mathrm{s})}{sulfur}\)
(a) Which product is a gas?
(b) Figure 2 shows the results of this experiment at five different temperatures.

The circled result point is anomalous.
Figure 2

(i) Draw a line of best fit on Figure 2 to show how the reaction time varied with reaction temperature.
(ii) Give a possible reason for the anomalous result at $40^{\circ} \mathrm{C}$.
$\qquad$
$\qquad$
(iii) The reaction at $20^{\circ} \mathrm{C}$ produced 0.32 g of sulfur in 64 seconds.

Calculate the rate of the reaction at $20^{\circ} \mathrm{C}$ using the equation:

$$
\text { Rate of reaction }=\frac{\text { mass of sulfur }}{\text { time }}
$$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
Rate of reaction = $\qquad$ grams per second
(iv) Give two reasons why the rate of the reaction increases as the temperature increases.

Tick ( $\boldsymbol{V}$ ) two boxes.
The particles move faster. $\square$

The particles collide less often.
All the particles have the same energy.


The particles collide with more energy.


The number of particles increases.

(v) Use the correct answer from the box to complete the sentence.

| activation | collision | exothermic |
| :---: | :---: | :---: |

The minimum amount of energy particles must have to react is called the $\qquad$ energy.

## Q8.

This question is about ammonia and fertilisers.
(a) Ammonia is produced by a reversible reaction.

The equation for the reaction is:

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}
$$

Complete the sentence.
The forward reaction is exothermic, so the reverse reaction
is $\qquad$
(b) Calculate the percentage by mass of nitrogen in ammonia $\left(\mathrm{NH}_{3}\right)$.

Relative atomic masses $\left(A_{r}\right)$ : $\mathrm{H}=1 ; \mathrm{N}=14$
You must show how you work out your answer.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
Percentage by mass of nitrogen $=$ $\qquad$ \%
(c) A neutral solution can be produced when ammonia reacts with an acid.
(i) Give the pH of a neutral solution.
pH $\qquad$
(ii) Which of these ionic equations shows a neutralisation reaction?

Tick ( $\boldsymbol{V}$ ) one box.

(iii) Name the salt produced when ammonia reacts with hydrochloric acid.
(d) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Farmers use ammonium nitrate as a fertiliser for crops.
Rainwater dissolves ammonium nitrate in the soil.
Some of the dissolved ammonium nitrate runs off into rivers and lakes.
The graphs $\mathbf{A}, \mathbf{B}$ and $\mathbf{C}$ below show information about the use of ammonium nitrate as a fertiliser. A hectare is a measurement of an area of land.

Graph A


Graph B


Graph C


Suggest how much ammonium nitrate farmers should use per hectare.
Give reasons for your answer.
Use information from graphs A, B and C.
$\qquad$

Q9.
This question is about atoms, molecules and nanoparticles.
(a) Different atoms have different numbers of sub-atomic particles.
(i) An oxygen atom can be represented as ${ }_{8}^{16} \mathrm{O}$

Explain why the mass number of this atom is 16 .
You should refer to the numbers of sub-atomic particles in the nucleus of the atom.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(ii) Explain why ${ }_{6}^{12} \mathrm{C}$ and ${ }_{6}^{14} \mathrm{C}$ are isotopes of carbon.

You should refer to the numbers of sub-atomic particles in the nucleus of each isotope.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(b) Hydrogen atoms and oxygen atoms chemically combine to produce water molecules.
(i) Complete the figure below to show the arrangement of the outer shell electrons of the hydrogen and oxygen atoms in a molecule of water.

Use dots (•) or crosses $(\times)$ to represent the electrons.

(ii) Name the type of bonding in a molecule of water.
$\qquad$
(iii) Why does pure water not conduct electricity?
$\qquad$
$\qquad$
(c) Nanoparticles of cobalt oxide can be used as catalysts in the production of hydrogen from water.
(i) How does the size of a nanoparticle compare with the size of an atom?
$\qquad$
$\qquad$
(ii) Suggest one reason why 1 g of cobalt oxide nanoparticles is a better catalyst than 1 g of cobalt oxide powder.
$\qquad$
$\qquad$

Q10.
A student investigated the effect of temperature on the rate of a reaction. The picture below shows an experiment.


The student:

- put sodium thiosulfate solution into a conical flask
- heated the sodium thiosulfate solution to the required temperature
- put the flask on a cross drawn on a piece of paper
- added dilute hydrochloric acid and started a stopclock
- stopped the stopclock when the cross could no longer be seen
- repeated the experiment at different temperatures.

The equation for the reaction is:

(a) Explain why the solution goes cloudy.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(b) Give two variables the student must control to make the investigation a fair test.

1. $\qquad$
2. $\qquad$
(c) State the effect that increasing the temperature of the sodium thiosulfate solution has on the rate of the reaction.
Explain this effect in terms of particles and collisions.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(d) Suggest how the student should change the method to investigate the rate of reaction at $5^{\circ} \mathrm{C}$.
$\qquad$
$\qquad$

Q11.
This question is about the Haber process.
The diagram below shows a flow diagram for the Haber process.

(a) (i) Nitrogen gas and hydrogen gas are obtained from different sources.

Draw one line from each gas to its source.

Gas


## Hydrogen

Source
Air

Iron ore

Limestone

Natural gas
(ii) Explain why iron is used in the reactor for the Haber process.
$\qquad$
$\qquad$
$\qquad$
(iii) Describe how the ammonia is separated from the other gases.
$\qquad$
$\qquad$
$\qquad$
(iv) What happens to the mixture of unreacted gases (nitrogen and hydrogen)?
$\qquad$
$\qquad$
$\qquad$
(b) The reaction to produce ammonia is reversible.

Complete the word equation for this reaction.
nitrogen + $\qquad$

Q12.
A student investigated the rate of reaction between sodium thiosulfate solution and dilute hydrochloric acid, as shown in Figure 1.

Figure 1


The reaction produced a precipitate, which made the mixture turn cloudy.
The student timed how long it took until she could no longer see the cross.
She calculated the rate of the reaction.
(a) The equation for the reaction is:

$$
\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{S}(\mathrm{~s})+\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Name the product that made the mixture go cloudy.
(b) The student investigated the effect of changing the temperature of the sodium thiosulfate solution on the rate of reaction.

She plotted her results on a graph, as shown in Figure 2.

Figure 2


Describe the trends shown in the student's results.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(c) The student then investigated the effect of changing the concentration of sodium thiosulfate solution on the rate of the reaction.
(i) Suggest two variables the student would need to control to make sure that her results were valid.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(ii) From this investigation the student correctly concluded:
'As the concentration of sodium thiosulfate solution doubles, the rate of
reaction doubles.'
Explain the student's conclusion in terms of particles.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Q13.
This question is about ethanol.
(a) Ethanol can be made by fermentation of sugars from plants.
(i) What is a suitable temperature for fermentation?

Draw a ring around the correct answer.
$0^{\circ} \mathrm{C}$
$25^{\circ} \mathrm{C}$
$450{ }^{\circ} \mathrm{C}$
(ii) Fermentation produces a dilute solution of ethanol in water.

Name the process used to obtain ethanol from this dilute solution.
$\qquad$
(b) Ethanol made by fermentation can be used as a biofuel.
(i) Explain why increasing the use of biofuels may cause food shortages.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(ii) Explain why burning biofuels contributes less to climate change than burning fossil fuels.
$\qquad$
$\qquad$
$\qquad$
(c) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Ethanol can also be made by reacting ethene with steam in the presence of a catalyst.

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{~g})
$$

Figure 1 shows how the percentage yield of ethanol changes as the pressure is changed at three different temperatures.

Figure 1


Figure 2 shows how the rate of reaction changes as the temperature changes at three different pressures.

Figure 2


In one process for the reaction of ethene with steam the conditions are:

- $\quad 300^{\circ} \mathrm{C}$
- 65 atmospheres
- a catalyst.

Use the information in Figure 1 and Figure 2, and your own knowledge, to justify this choice of conditions.
$\qquad$
(Total 12 marks)

Q14.
A student investigated the rate of reaction between calcium carbonate (marble chips) and hydrochloric acid.

The student used the apparatus shown in Figure 1.

Figure 1


The student:

- recorded the volume of gas collected every 5 seconds
- repeated the experiment using hydrochloric acid at different temperatures.

The equation for the reaction is:
$\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})$
(a) The student plotted results for the hydrochloric acid at $20^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ on a graph.

Figure 2 shows the student's graph.
Figure 2


Use information from Figure 2 to answer these questions.
(i) State one conclusion the student could make about the effect of temperature on the rate of the reaction.
$\qquad$
$\qquad$
(ii) Give one reason why the student could make this conclusion.
$\qquad$
$\qquad$
(iii) For the hydrochloric acid at $60^{\circ} \mathrm{C}$ the student had collected $30 \mathrm{~cm}^{3}$ after 15 seconds.

Calculate the average rate of reaction from 0 to 15 seconds.
$\qquad$
$\qquad$
Rate of reaction $=$ $\qquad$ $\mathrm{cm}^{3}$ per second
(b) The student then investigated how the surface area of marble chips affected the rate of reaction.
(i) Which two variables should the student keep constant?

Tick ( $\checkmark$ ) two boxes.

(ii) Explain, in terms of particles and collisions, the effect that increasing the surface area of the marble chips has on the rate of reaction.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(c) Calcium carbonate is a catalyst for the industrial production of biodiesel.

Give one reason why using a catalyst reduces costs.

## Q15.

A flow diagram of the Haber process is shown below.
The Haber process produces ammonia from nitrogen and hydrogen.

(a) Use the correct answer from the box to complete the sentence.

| air | limestone | natural gas |
| :---: | :--- | :--- |

Hydrogen is obtained from $\qquad$ .
(b) In the reactor, nitrogen and hydrogen at a high pressure are heated and passed over a catalyst.
(i) Use the correct answer from the box to complete the sentence.
$25 \quad 100 \quad 450$

The temperature in the reactor is $\qquad$ ${ }^{\circ} \mathrm{C}$
(ii) Use the correct answer from the box to complete the sentence.

| copper | iron | nickel |
| :--- | :--- | :--- |

The catalyst used in the reactor is $\qquad$ .
(iii) How does a catalyst speed up a reaction?

Tick ( $\checkmark$ ) one box.

The catalyst lowers the activation energy.

The catalyst gives the reactants extra energy.


The catalyst increases the pressure in the reactor.

(c) A mixture of gases leaves the reactor.

The mixture contains ammonia, nitrogen and hydrogen.
Describe what happens to this mixture of gases in the condenser.
Use the flow diagram to help you.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Q16.
This question is about reversible reactions and chemical equilibrium.
(a) Reversible reactions can reach equilibrium in a closed system.
(i) What is meant by a closed system?
$\qquad$
$\qquad$
(ii) Explain why, when a reversible reaction reaches equilibrium, the reaction appears to have stopped.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(b) In the Haber process, the reaction of nitrogen with hydrogen to produce ammonia is reversible.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

(i) Name a natural resource from which hydrogen is produced.
$\qquad$
(ii) The Haber process uses a catalyst to speed up the reaction.

Explain how a catalyst speeds up a reaction.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(iii) What happens to the amount of ammonia produced at equilibrium if the pressure is increased?

Give a reason for your answer.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(c) The decomposition of hydrogen iodide into hydrogen and iodine is reversible.

$$
2 \mathrm{HI}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})
$$

The forward reaction is endothermic.
The energy level diagram shown below is for the forward reaction.

(i) Draw an arrow to show the activation energy on the diagram.
(ii) How does the diagram show that the reaction is endothermic?
$\qquad$
$\qquad$
(iii) Suggest what effect, if any, increasing the temperature will have on the amount of hydrogen iodide at equilibrium.

Give a reason for your answer.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(Total 12 marks)

## Q17.

Hydrogen gas is produced by the reaction of methane and steam.
(a) The diagram represents a molecule of hydrogen.

(i) What type of bond joins the atoms of hydrogen?

Tick ( $\boldsymbol{V}$ ) one box.
Covalent $\square$

Metallic


Ionic

(ii) A catalyst is used in the reaction.

Draw a ring around the correct answer to complete the sentence.

A catalyst | increases the rate of reaction. |
| :--- | :--- |
| increases the temperature. |
| increases the yield of a reaction. |

(b) The equation for the reaction of methane and steam is:

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

(i) What is meant by the symbol $\rightleftharpoons$ ?
$\qquad$
(ii) Lowering the pressure reduces the rate of reaction.

Explain why, in terms of particles.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(iii) The graph shows the yield of hydrogen at different temperatures.


The forward reaction is endothermic.
How does the graph show that the forward reaction is endothermic?
$\qquad$
$\qquad$
(iv) Why is a higher yield produced if the reaction is repeated at a lower pressure?
$\qquad$
$\qquad$
(c) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Car engines are being developed that use hydrogen gas as a fuel instead of petrol.
The table compares the two fuels.

|  | Hydrogen | Petrol |
| :--- | :--- | :--- |
| Energy | 5700 kJ per litre | 34000 kJ per litre |
| State | Gas | Liquid |
| Equation for <br> combustion | $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ | $2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+$ <br> $18 \mathrm{H}_{2} \mathrm{O}$ |
| How the fuel is <br> obtained | Most hydrogen is produced <br> from coal, oil or natural gas. <br> Hydrogen can be produced <br> by the electrolysis of water <br> or the solar decomposition <br> of water. | Fractional distillation of crude <br> oil. |

Use the information in the table and your knowledge of fuels to evaluate the use of hydrogen instead of petrol as a fuel.

You should describe the advantages and disadvantages of using hydrogen instead of petrol.
$\qquad$
Extra space $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Q18.
A student investigated the rate of reaction of magnesium and hydrochloric acid.

$$
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

The student studied the effect of changing the concentration of the hydrochloric acid.
She measured the time for the magnesium to stop reacting.

0.5

Concentration of hydrochloric acid in moles per dm ${ }^{3}$

1.0
1.5

(a) The student changed the concentration of the hydrochloric acid.

Give two variables that the student should control.

1. $\qquad$
2. $\qquad$
(b) (i) The rate of reaction increased as the concentration of hydrochloric acid increased.

Explain why.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(ii) Explain why increasing the temperature would increase the rate of reaction.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(c) (i) The student had a solution of sodium hydroxide with a concentration of 0.100 moles per $\mathrm{dm}^{3}$.

She wanted to check the concentration of a solution of hydrochloric acid.
She used a pipette to transfer $5.00 \mathrm{~cm}^{3}$ of the hydrochloric acid into a conical flask.

She filled a burette with the 0.100 moles per $\mathrm{dm}^{3}$ sodium hydroxide solution. Describe how she should use titration to obtain accurate results.
$\qquad$
(ii) Sodium hydroxide neutralises hydrochloric acid as shown in the equation:

$$
\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The student found that $27.20 \mathrm{~cm}^{3}$ of 0.100 moles per $\mathrm{dm}^{3}$ sodium hydroxide neutralised $5.00 \mathrm{~cm}^{3}$ of hydrochloric acid.

Calculate the concentration of the hydrochloric acid in moles per $\mathrm{dm}^{3}$.
Give your answer to three significant figures.

Concentration of hydrochloric acid $=$ $\qquad$ moles per $\mathrm{dm}^{3}$

Q19.
Some students were investigating the rate at which carbon dioxide gas is produced when metal carbonates react with an acid.

One student reacted 1.00 g of calcium carbonate with $50 \mathrm{~cm}^{3}$, an excess, of dilute hydrochloric acid.

The apparatus used is shown in Diagram 1.

## Diagram 1


(a) Complete the two labels for the apparatus on the diagram.
(b) The student measured the volume of gas collected every 30 seconds.

The table shows the student's results.

| Time in <br> seconds | Volume of carbon <br> dioxide <br> collected in cm |
| :---: | :---: |
| 30 | 104 |
| 60 | 198 |
| 90 | 221 |
| 120 | 232 |
| 150 | 238 |
| 180 |  |


| 210 | 240 |
| :--- | :--- |
| 240 | 240 |

(i) Diagram 2 shows what the student saw at 60 seconds.

## Diagram 2



What is the volume of gas collected?
Volume of gas = $\qquad$ $\mathrm{cm}^{3}$
(ii) Why did the volume of gas stop changing after 210 seconds?
$\qquad$
$\qquad$
(c) Another student placed a conical flask containing 1.00 g of a Group 1 carbonate $\left(\mathrm{M}_{2} \mathrm{CO}_{3}\right)$ on a balance.

He then added $50 \mathrm{~cm}^{3}$, an excess, of dilute hydrochloric acid to the flask and measured the mass of carbon dioxide given off.

The equation for the reaction is:

$$
\mathrm{M}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \longrightarrow 2 \mathrm{MCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

The final mass of carbon dioxide given off was 0.32 g .
(i) Calculate the amount, in moles, of carbon dioxide in 0.32 g carbon dioxide.

Relative atomic masses $\left(A_{r}\right): C=12 ; O=16$
$\qquad$
$\qquad$
$\qquad$
$\qquad$ moles
(ii) How many moles of the metal carbonate are needed to make this number of moles of carbon dioxide?
$\qquad$
$\qquad$
Moles of metal carbonate $=$ $\qquad$ moles
(iii) The mass of metal carbonate used was 1.00 g .

Use this information, and your answer to part (c) (ii), to calculate the relative formula mass $\left(M_{r}\right)$ of the metal carbonate.

If you could not answer part (c) (ii), use 0.00943 as the number of moles of metal carbonate. This is not the answer to part (c) (ii).
$\qquad$
$\qquad$
Relative formula mass $\left(M_{r}\right)$ of metal carbonate $=$ $\qquad$
(iv) Use your answer to part (c) (iii) to calculate the relative atomic mass $\left(A_{r}\right)$ of the metal in the metal carbonate $\left(\mathrm{M}_{2} \mathrm{CO}_{3}\right)$ and so identify the Group 1 metal in the metal carbonate.

If you could not answer part (c) (iii), use 230 as the relative formula mass of the metal carbonate. This is not the answer to part (c) (iii).

To gain full marks, you must show your working.
$\qquad$
$\qquad$
$\qquad$

Relative atomic mass of metal is $\qquad$
Identity of metal $\qquad$
(d) Two other students repeated the experiment in part (c).
(i) When the first student did the experiment some acid sprayed out of the flask as the metal carbonate reacted.

Explain the effect this mistake would have on the calculated relative atomic mass of the metal.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(ii) The second student used $100 \mathrm{~cm}^{3}$ of dilute hydrochloric acid instead of 50 $\mathrm{cm}^{3}$.

Explain the effect, if any, this mistake would have on the calculated relative atomic mass of the metal.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(Total 17 marks)
Q20.
Lead nitrate solution reacts with potassium iodide solution.
The reaction produces a solid.
Figure 1 shows the reaction occurring.
Figure 1


Lead lodide By Der Kreole (own work) (CC-BY-3.0) via Wikimedia Commons
(a) (i) Give the name of this type of reaction.

Tick ( $\checkmark$ ) one box.
Combustion $\quad \square$

Neutralisation $\square$

Precipitation $\square$
(ii) Write the missing state symbols in the chemical equation.

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{KI}\left(\_\right) \longrightarrow \mathrm{PbI}_{2}\left(\_\right)+2 \mathrm{KNO}_{3}(\mathrm{aq})
$$

(iii) Complete the word equation for the reaction.
lead nitrate + $\qquad$ $\longrightarrow$ lead iodide + $\qquad$
(iv) How is solid lead iodide separated from the solution?

Draw a ring around the correct answer.
Distillation Electrolysis Filtration
(b) A group of students investigated the movement of particles.

The students filled a container with water.
The students added a crystal of lead nitrate at position $\mathbf{X}$ and a crystal of potassium iodide at position $\mathbf{Y}$, as shown in Figure 2.

Figure 2 - view from above


After 3 minutes solid lead iodide started to form at the position shown in Figure 3.
Figure 3 - view from above

(i) Tick $(\checkmark)$ the correct box to complete the sentence.

Lead ions and iodide ions move through the water by diffusion.

evaporation.

neutralisation.

(ii) What conclusion can you make about the speed of movement of lead ions compared with iodide ions?

Give a reason for your answer.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(iii) The students repeated the experiment at a higher temperature.

The solid lead iodide formed after a shorter period of time.
Explain why, in terms of particles.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Q21.
A company manufactures ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$.

The reaction for the process is:

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{~g}) \quad \Delta H=-45 \mathrm{~kJ} \text { per mole }
$$

The temperature and pressure can be changed to increase the yield of ethanol at equilibrium.
(a) Explain what is meant by equilibrium.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(b) (i) How would increasing the temperature change the yield of ethanol at equilibrium?

Give a reason for your answer.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(ii) How would increasing the pressure change the yield of ethanol at equilibrium?

Give a reason for your answer.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(c) A catalyst is added to increase the rate of the reaction.

Explain how adding a catalyst increases the rate of a chemical reaction.
$\qquad$
$\qquad$
$\qquad$

## Q22.

Iron will rust in damp air.
(a) Iron reacts with water and oxygen to produce rust.
(i) As iron rusts there is a colour change.

Draw a ring around the correct answer to complete the sentence.
During the reaction iron changes from grey to
blue brown green
(ii) Rust is hydrated iron oxide.

Write a word equation for the reaction of iron with oxygen and water.
$\qquad$
(b) A student set up the apparatus shown in Figure 1.

Figure 1


The student left the apparatus for a few days.
The water level in the burette slowly went up and then stopped rising.
Figure 2 shows the water level in the burette at the start of the experiment and after a few days.

Figure 2

(i) Complete the table below to show the reading on the burette after a few days.

| Burette reading at start | $24.7 \mathrm{~cm}^{3}$ |
| :--- | :---: |
| Burette reading after a few <br> days |  |

(ii) Calculate the volume of oxygen used up in the reaction.

Volume $=$ $\qquad$ $\mathrm{cm}^{3}$
(iii) The percentage of air that is oxygen can be calculated using the equation:
percentage of air that is oxygen $=\frac{\text { volume of oxygen used up }}{\text { volume of air at start }} \times 100$

The student cannot use his results to calculate the correct percentage of air that is oxygen.

Explain why.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(c) A student investigated the rusting of an iron nail at different temperatures.

This is the method the student used:

- measure the mass of a nail
- $\quad$ set up apparatus as shown in Figure 3
- leave for 3 days
- measure the mass of the rusted nail.

Figure 3


The student repeated the experiment at different temperatures using a new, identical, nail each time.

The student's results are shown on the graph in Figure 4.
Figure 4

(i) Why does the mass of the nail increase when it rusts?
$\qquad$
$\qquad$
(ii) Use the graph to describe the relationship between the temperature and the increase in mass of the nail.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(iii) The increase in mass of the nail after 3 days is a measure of the rate of rusting.

The student's graph does not correctly show how increasing the temperature above $42^{\circ} \mathrm{C}$ changes the rate of rusting.

How could the experiment be changed to show the effect of temperatures above $42^{\circ} \mathrm{C}$ on the rate of rusting?

Give a reason for your answer.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(Total 12 marks)

Q23.
(a) The figure below represents the reaction of sulfur dioxide with oxygen.

(i) Complete the word equation for the reaction of sulfur dioxide with oxygen.
sulfur
$\qquad$
(ii) Draw a ring around the correct answer to complete the sentence.

(b) The reactants are gases.

When the pressure of the gases is increased, the reaction gets faster.
Complete the sentence.

When the pressure of the gases is increased,
the frequency of the collisions $\qquad$ .
(c) The particles need energy to react.

Complete the sentence.
The minimum amount of energy that particles need to react is called the $\qquad$ energy.
(d) Give one way of increasing the rate of the reaction other than changing the pressure.
$\qquad$
$\qquad$

## Q24.

Some students investigated reactions to produce magnesium.
(a) The students used electrolysis to produce magnesium from magnesium chloride, as shown in the figure below.

(i) Magnesium chloride contains magnesium ions and chloride ions.

Why does solid magnesium chloride not conduct electricity?
$\qquad$
$\qquad$
(ii) One of the products of the electrolysis of molten magnesium chloride is magnesium.

Name the other product.
(iii) Why do magnesium ions $\left(\mathrm{Mg}^{2+}\right)$ move to the negative electrode?
$\qquad$
$\qquad$
(iv) At the negative electrode, the magnesium ions $\left(\mathrm{Mg}^{2+}\right)$ gain electrons to become magnesium atoms.

How many electrons does each magnesium ion gain?
(b) The students did the experiment four times and weighed the magnesium produced.

The table below shows their results.

| Experiment | Mass of magnesium <br> produced in grams |
| :---: | :---: |
| 1 | 1.13 |
| 2 | 0.63 |
| 3 | 1.11 |
| 4 | 1.09 |

(i) There is an anomalous result.

Suggest one possible reason for the anomalous result.
$\qquad$
$\qquad$
(ii) Calculate the mean mass of magnesium produced, taking account of the anomalous result.
$\qquad$
$\qquad$
$\qquad$
Mean mass $=\ldots g$
(c) The formula of magnesium chloride is $\mathrm{MgCl}_{2}$

The relative formula mass of magnesium chloride is 95 .
The relative atomic mass of magnesium is 24 .
(i) Use the equation to calculate the percentage mass of magnesium in magnesium chloride.

$\qquad$
$\qquad$
$\qquad$
Percentage mass of magnesium in magnesium chloride $=$ $\qquad$ \%
(ii) Draw a ring around the relative mass of chlorine in $\mathrm{MgCl}_{2}$
71
95
119
(d) Magnesium is also produced from the reaction of magnesium oxide with silicon.
(i) The equation for the reaction is:

$$
2 \mathrm{MgO}(\mathrm{~s})+\mathrm{Si}(\mathrm{~s}) \rightleftharpoons \mathrm{SiO}_{2}(\mathrm{~s})+2 \mathrm{Mg}(\mathrm{~s})
$$

What is the meaning of this symbol $\rightleftharpoons$ ?
Draw a ring around the correct answer.
(ii) The forward reaction is endothermic.

Draw a ring around the correct answer to complete the sentence.

In an endothermic reaction the temperature of the surroundings $\quad$| decreases. |
| :--- | :--- |
| increases. |
| stays the same. |

## Q25.

Figure 1 represents a reaction in the production of sulfuric acid.
Figure 1

(a) Complete and balance the equation for the reaction.
$\qquad$ $\mathrm{SO}_{2}(\mathrm{~g})$ $\qquad$ (g) $\rightleftharpoons$
(b) The conditions can affect the rate of the reaction.
(i) The pressure of the reacting gases was increased.

State the effect of increasing the pressure on the rate of reaction.
Explain your answer in terms of particles.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(ii) A catalyst is used for the reaction.

The gases pass through a layer containing pieces of the catalyst.
Figure 2 shows the shapes of pieces of catalyst.
Figure 2
A
B



Suggest and explain why shape B is more effective as a catalyst than shape A.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(c) The reaction is carried out at a high temperature to provide the reactants with the activation energy.

What is meant by the activation energy?
$\qquad$
$\qquad$
$\qquad$
(d) Sulfuric acid reacts with metals to produce salts.
(i) A student concluded that potassium would not be a suitable metal to react with sulfuric acid.

Explain why.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(ii) A student reacted zinc metal with sulfuric acid to produce a salt and another product.

Complete the equation for this reaction.
$\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow+\longrightarrow$
(iii) The student wanted to increase the rate of the reaction between the zinc and sulfuric acid.

State one way, other than using a catalyst, that the student could increase the rate of the reaction.
$\qquad$
$\qquad$

Q26.
In 1909 Fritz Haber invented a process to produce ammonia from nitrogen and hydrogen.
(a) Complete the word equation, showing that the reaction is reversible.
nitrogen + hydrogen $\qquad$
(b) Figure 1 shows how the yield of ammonia at $300^{\circ} \mathrm{C}$ changes with pressure.

Figure 1


Describe how the yield of ammonia changes as the pressure increases.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(c) Figure 2 represents the Haber process.

Figure 2


Ammonia
How does the Haber process avoid wasting nitrogen and hydrogen?
$\qquad$
$\qquad$
(d) Before the Haber process, nitrates had been mined in South America. Nitrates are used for making fertilisers.

The Haber process allowed nitrates to be produced on a large scale, anywhere in the world.
(i) Suggest what effect the Haber process had on the miners in South America.
$\qquad$
$\qquad$
(ii) Suggest one advantage of producing nitrates on a large scale.
$\qquad$
$\qquad$

Q27.
In 1909 Fritz Haber invented a process to produce ammonia from nitrogen and hydrogen.
(a) Complete and balance the chemical equation for the production of ammonia from nitrogen and hydrogen.

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons
$$

(b) The figure below shows how the equilibrium yield of ammonia changes with pressure at different temperatures.

(i) Use the information in given in the figure to complete the sentence.

The temperature on the graph that gives the highest yield of ammonia is
$\qquad$ ${ }^{\circ} \mathrm{C}$.
(ii) The temperature used in the Haber process for the production of ammonia is $450{ }^{\circ} \mathrm{C}$.

Why is a temperature much lower than $450^{\circ} \mathrm{C}$ not used for the Haber process?
$\qquad$
$\qquad$
(iii) Use the information in the figure to answer this question.

Draw a ring around the pressure that gives the highest yield of ammonia. 100200300
(iv) The pressure used in the Haber process for the production of ammonia is 200 atmospheres.

Why is a pressure lower than 200 atmospheres not used for the Haber process?
$\qquad$
$\qquad$
(c) Explain how ammonia is separated from unreacted nitrogen and hydrogen in the Haber process.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(Total 8 marks)

## Q28.

Carbon dioxide is produced when copper carbonate is heated.
A student investigated heating copper carbonate.
The student used the apparatus to measure how long it took for carbon dioxide to be produced.
The student also noted what happened during each minute for three minutes.

(a) The student used changes to the limewater to measure how long it took for carbon dioxide to be produced.

Describe how.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(b) The student wrote down her observations.

| Time interval <br> in minutes | Observations |
| :---: | :--- |
| Between 0 and 1 | A slow release of gas bubbles. <br> The limewater did not change. <br> The solid in the test tube was green. |
| Between 1 and 2 | A fast release of gas bubbles. <br> The limewater changed at 1 minute 10 seconds. |
| Between 2 and 3 | No release of gas bubbles. <br> The solid in the test tube was black. |

(i) Suggest the reason for the student's observations between 0 and 1 minute.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(ii) Explain the student's observations between 1 and 2 minutes.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(iii) Explain the student's observations between 2 and 3 minutes.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Q29.
Thermosoftening polymers can be used to make plastic bottles and food packaging.
(a) Why are thermosoftening polymers not suitable for storing very hot food?
$\qquad$
$\qquad$
(b) The reaction to produce the polymers uses a catalyst.

Why are catalysts used in chemical reactions?
$\qquad$
$\qquad$
(c) Compounds from food packaging must not get into food.

Gas chromatography can be used to separate compounds in food.
The output from the gas chromatography column can be linked to an instrument which can identify the compounds.
(i) Name the instrument used to identify the compounds.
$\qquad$
$\qquad$
(ii) Give one reason why instrumental methods of analysis are used to identify the compounds.
$\qquad$
$\qquad$
(d) Poly(ethene) is a thermosoftening polymer.

Poly(ethene) can be made with different properties. The properties depend on the conditions used when poly(ethene) is made.

Suggest two conditions which could be changed when poly(ethene) is made.
$\qquad$
$\qquad$

Q30.
A student investigated the rate of reaction between sodium thiosulfate and dilute hydrochloric acid.

The student placed a conical flask over a cross on a piece of paper.
The student mixed the solutions in the flask.
The solution slowly went cloudy.
The student timed how long it took until the cross could not be seen.


The equation for the reaction is:

$$
\begin{gathered}
\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H} 2 \mathrm{O}(\mathrm{l})+\mathrm{SO}(\mathrm{~g})+ \\
\text { sodium thiosulfate }+\begin{array}{c}
\text { hydrochloric } \\
\text { acid }
\end{array} \rightarrow \begin{array}{c}
\text { sodium } \\
\text { chloride }
\end{array}+\text { water }
\end{gathered}+\begin{gathered}
\text { sulfur } \\
\text { dioxide }
\end{gathered}+\begin{aligned}
& \text { sulfur }
\end{aligned}
$$

(a) Explain why the solution goes cloudy.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(b) The student repeated the experiment with different concentrations of sodium thiosulfate.

| Concentration of sodium thiosulfate in moles per $\mathrm{dm}^{3}$ | Time taken until the cross could not be seen in seconds |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Trial 1 | Trial 2 | Trial 3 | Mean |
| 0.040 | 71 | 67 | 69 | 69 |
| 0.060 | 42 | 45 | 45 | 44 |
| 0.080 | 31 | 41 | 33 |  |

(i) Calculate the mean time for 0.080 moles per $\mathrm{dm}^{3}$ of sodium thiosulfate.
$\qquad$
$\qquad$
$\qquad$
Mean $=$ $\qquad$ seconds
(ii) Describe and explain, in terms of particles and collisions, the effect that increasing the concentration of sodium thiosulfate has on the rate of the reaction.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Q31.
Ammonium salts, such as ammonium sulfate, are used to help farmers grow crops.

© Artur Synenko/iStock
(a) Use the correct word from the box to complete the sentence.

| fertilisers | insecticides | pesticides |
| :--- | :--- | :--- |

Ammonium salts contain nitrogen and are used by farmers as
$\qquad$ to replace the nitrogen lost from the soil.
(b) Ammonia is made by reacting nitrogen with hydrogen.

Which raw material provides nitrogen?
Draw a ring around your answer.
(c) Methane and water react together to form hydrogen.


How does the catalyst help this reaction?
(d) The reaction between nitrogen and hydrogen to make ammonia can be represented by this equation.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \rightleftharpoons \quad 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

What is the meaning of this symbol $\rightleftharpoons$ ?
Draw a ring around your answer.
endothermic reaction precipitation reaction reversible reaction
(e) A solution of ammonia in water is alkaline.
(i) Which one of these values could be the pH of a solution of ammonia?

Draw a ring around your answer.
4
7
(ii) Ammonium sulfate can be made by reacting ammonia solution with sulfuric acid.

Use the correct answer from the box to complete the sentence.

| ammonium <br> sulfate | hydrogen | sulfuric | water |
| :---: | :---: | :---: | :---: |

During the reaction the hydrogen ions $\left(\mathrm{H}^{+}\right)$from the acid react with hydroxide ions
$\left(\mathrm{OH}^{-}\right)$from the alkali to make $\qquad$

Q32.
The following steps show how to use a type of glue.
Step 1 Measure out equal amounts of the liquids from tubes $\mathbf{A}$ and $\mathbf{B}$.


Step 2 Mix the liquids to make the glue.
Put a thin layer of the glue onto each of the surfaces to be joined.


Step 3 Put the pieces together and hold them with tape.


Step 4 Leave the glue to set.
(a) When liquids $\mathbf{A}$ and $\mathbf{B}$ are mixed a chemical reaction takes place.

This reaction is exothermic.
What does exothermic mean?
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(b) The time taken for the glue to set at different temperatures is given in the table below.

| Temperature in ${ }^{\circ} \mathrm{C}$ | Time taken for the glue to set |
| :---: | :---: |
| 20 | 3 days |
| 60 | 6 hours |


| 90 | 1 hour |
| :---: | :---: |

(i) Use the correct answer from the box to complete each sentence.

| decreases | increases | stays the same |
| :---: | :---: | :---: |

When the temperature is increased the time taken for the glue to set

When the temperature is increased the rate of the setting reaction
(ii) Tick ( $\checkmark$ ) two reasons why an increase in temperature affects the rate of reaction.

| Reason | Tick ( $\checkmark$ ) |
| :--- | :--- |
| It gives the particles more energy |  |
| It increases the concentration of the particles |  |
| It increases the surface area of the particles |  |
| It makes the particles move faster |  |

## Q33.

Sodium thiosulfate solution reacts with hydrochloric acid. As the reaction takes place the solution slowly turns cloudy.

The diagram shows a method of measuring the rate of this reaction.


A student used this method to study how changing the concentration of the sodium thiosulfate solution alters the rate of this reaction.

The student used different concentrations of sodium thiosulfate solution. All the other
variables were kept the same.
The results of the experiments are shown on the graph below.
(a) (i) Draw a line of best fit on the graph.
(ii) Suggest two reasons why all of the points do not lie on the line of best fit.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

(b) (i) In a conclusion to the experiment the student stated that:
'The rate of this reaction is directly proportional to the concentration of the sodium thiosulfate.'

How does the graph support this conclusion?
$\qquad$
$\qquad$
(ii) Explain, in terms of particles, why the rate of reaction increases when the concentration of sodium thiosulfate is increased.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Q34.
Ammonium sulfate and urea are made from ammonia. These compounds are used by farmers.

The flow diagram shows the stages to make ammonium sulfate and urea.

(a) Give two examples from the flow diagram of the efficient use of energy and raw materials.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(b) The equation for the reaction in Stage 4 is shown below.

$$
\mathrm{N}_{2}(\mathrm{~g}) \quad+\quad 3 \mathrm{H}_{2}(\mathrm{~g}) \quad \rightleftharpoons \quad 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

The forward reaction is exothermic.
State and explain:
(i) how a decrease in temperature would affect the yield of ammonia at equilibrium
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(ii) how an increase in pressure would affect the yield of ammonia at equilibrium.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(c) The equation for the reaction in Stage $\mathbf{7}$ is shown below.
$\underset{\text { ammonia }}{2 \mathrm{NH}_{3}}+\mathrm{CO}_{2} \rightleftharpoons \underset{\text { urea }}{\mathrm{NH}_{2} \mathrm{CONH}_{2}}+\quad+\mathrm{H}_{2} \mathrm{O}$

The table gives the relative formula masses $\left(M_{r}\right)$ of the reactants and the products for this reaction.

| Formula of reactant or product | Relative formula masses $\left(\boldsymbol{M}_{\mathbf{r}}\right)$ |
| :--- | :---: |
| $\mathrm{NH}_{3}$ | 17 |
| $\mathrm{CO}_{2}$ | 44 |
| $\mathrm{NH}_{2} \mathrm{CONH}_{2}$ | 60 |


| $\mathrm{H}_{2} \mathrm{O}$ | 18 |
| :--- | :---: |

Percentage atom economy can be calculated using:
Percentage atom economy $=\frac{M_{\mathrm{r}} \text { of useful product }}{\text { total } M_{\mathrm{r}} \text { of all reactants added together }} \times 100 \%$
Calculate the percentage atom economy for the reaction in Stage 7.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
Percentage atom economy = $\qquad$ \%

## Q35.

Nanoparticles have many uses.
(a) (i) Tick ( $\boldsymbol{V}$ ) one use of nanoparticles. In the extraction of iron $\square$ In suntan creams
 In the test for oxygen $\square$
(ii) How is the size of nanoparticles different from normal-sized particles?

Draw a ring around the correct answer.
much smaller same size much larger
(b) Very small amounts of cerium oxide nanoparticles can be added to diesel fuel.

The cerium oxide is a catalyst.
(i) Draw a ring around the correct answer to complete the sentence.

Only a very small amount of cerium oxide nanoparticles is needed because

the nanoparticles \begin{tabular}{l|l|}

\& | are elements. |
| :--- |
| are very reactive. |
| have a high surface area to volume ratio. | <br>

\hline
\end{tabular}

(ii) Explain how a catalyst increases the rate of a reaction.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Q36.
(a) Complete the dot and cross diagram to show the electrons in the outer energy levels of ammonia $\left(\mathrm{NH}_{3}\right)$.

You may use the periodic table to help you.

(b) Ammonia can be used to make ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$.
(i) Draw a ring around the correct answer to complete the sentence.

(ii) State one use of ammonium nitrate.
(iii) Calculate the relative formula mass $\left(M_{r}\right)$ of ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$.

Relative atomic masses: $\mathrm{H}=1 ; \mathrm{N}=14 ; \mathrm{O}=16$.
$\qquad$
$\qquad$
Relative formula mass $\left(M_{\mathrm{r}}\right)=$ $\qquad$
(iv) Calculate the percentage by mass of nitrogen in ammonium nitrate.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
Percentage by mass of nitrogen $=$ $\qquad$ \%
(c) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Ammonia is manufactured from nitrogen and hydrogen by the Haber process:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
The forward reaction is exothermic.
The conditions used in the Haber process are:

- 200 atmospheres pressure
- $\quad 450{ }^{\circ} \mathrm{C}$
- iron catalyst.

Use the equation and your knowledge of reversible reactions to explain why these conditions are used in the Haber process.

To get full marks you must consider both yield and rate of reaction in your answer.
$\qquad$

Q37.
A student investigated the reaction between magnesium metal and dilute hydrochloric acid.

The student placed $25 \mathrm{~cm}^{3}$ of dilute hydrochloric acid in a conical flask and set up the apparatus as shown in the diagram.


The student:

- took the bung out of the flask and added a single piece of magnesium ribbon 8 cm long
- put the bung back in the flask and started a stopwatch
- recorded the volume of gas collected after 1 minute
- repeated the experiment using different temperatures of acid.

The student plotted his results on a graph.

(a) Write the correct state symbols in the equation.

Choose from (s) for solid, (I) for liquid, (g) for gas and (aq) for aqueous.

$$
\mathrm{Mg}(\ldots)+2 \mathrm{HCl}(\ldots) \quad \longrightarrow \operatorname{MgCl}_{2}(\ldots)+\mathrm{H}_{2}(\ldots)
$$

(b) The diagram shows a gas syringe after 1 minute.

(i) What volume of gas has been collected in the gas syringe after 1 minute?

Volume $=$ $\qquad$ $\mathrm{cm}^{3}$
(ii) Use the graph to determine the temperature of the acid used in this experiment.

Temperature $=$ $\qquad$ ${ }^{\circ} \mathrm{C}$
(iii) Calculate the average rate of reaction, in $\mathrm{cm}^{3}$ of hydrogen made per second $\left(\mathrm{cm}^{3} / \mathrm{s}\right)$, for this experiment.
$\qquad$
$\qquad$
Rate of reaction = $\qquad$ $\mathrm{cm}^{3} / \mathrm{s}$
(c) The student's graph has been reprinted to help you answer this question.


One of the results on the graph is anomalous.
(i) Draw a circle on the graph around the anomalous point.
(ii) Suggest what may have happened to cause this anomalous result.

Explain your answer.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(d) Explain how the student could improve the accuracy of the volume of gas recorded at each temperature.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(e) The student then used the same apparatus to measure the volume of gas produced every 10 seconds at $40^{\circ} \mathrm{C}$.

The student's results are shown on the graph.


The rate at which the gas was produced got faster over the first 60 seconds.
The student's teacher gave two possible explanations of why the reaction got faster.

## Explanation 1

There was a layer of magnesium oxide on the surface of the magnesium.
The layer of magnesium oxide prevented the magnesium reacting with the acid.
As the magnesium oxide reacted slowly with the acid, the magnesium was exposed to the acid and hydrogen gas was produced.

## Explanation 2

The reaction is exothermic, and so the temperature of the acid increased during the reaction.
(i) Describe further experimental work the student could do to see if Explanation 1 is correct.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(ii) Describe further experimental work the student could do to see if Explanation 2 is correct.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Q38.
A student investigated the reaction between magnesium and hydrochloric acid.


The equation for the reaction is:

(a) Give two observations the student could make during the reaction.

1. $\qquad$
$\qquad$
2. $\qquad$
$\qquad$
(b) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

The student investigated how the rate of this reaction changed when the concentration of hydrochloric acid was changed.

Write a plan the student could use.
In your plan you should:

- describe how you would carry out the investigation and make it a fair test
- describe the measurements you would make.
$\qquad$

Q39.
The flow diagram shows the Haber process. In the Haber process ammonia is produced from nitrogen and hydrogen.

(a) The word equation for the production of ammonia is:

$$
\text { nitrogen } \quad+\quad \text { hydrogen } \rightleftharpoons \text { ammonia }
$$

Draw a ring around the correct answer to complete the sentence.
(b) The reactor contains iron.

Complete the sentence.
The iron speeds up the reaction because it is a $\qquad$
(c) What happens to the unreacted nitrogen and hydrogen?
$\qquad$
$\qquad$
(d) The sentences describe how ammonia is produced in the Haber process.

The sentences are in the wrong order.
P Ammonia is separated as a liquid.
Q Nitrogen and hydrogen are mixed together.
R A mixture of gases enters the condenser.
S Nitrogen and hydrogen react to produce ammonia.
Complete the boxes below to show the correct order of the sentences.
The first box has been done for you.


Q40.
Read the information and then answer the questions.


The paper contains anhydrous cobalt chloride.
The jar containing the papers must be kept closed when not being used.

The equation shows the reaction between anhydrous cobalt chloride and water.
$\mathrm{CoCl}_{2}$
$+$
$6 \mathrm{H}_{2} \mathrm{O}$
$\rightleftharpoons$
$\mathrm{CoCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$
anhydrous cobalt chloride
(blue)
hydrated cobalt chloride
(pink)
(a) Choose one word from the box to complete the sentence.


The symbol $\rightleftharpoons$ means that the reaction is $\qquad$
(b) Describe the colour change when water is added to the cobalt chloride paper.
$\qquad$
$\qquad$
(c) Suggest why the jar containing the unused cobalt chloride papers must be kept closed.
$\qquad$
$\qquad$
(Total 3 marks)

## Q41.

(a) Ammonia solution is used in cleaning products to remove grease from kitchen surfaces.


Ammonia solution is alkaline.
(i) Draw a ring around the number most likely to be the pH of ammonia solution.
1
3
7
10
(ii) Draw a ring around the ion in ammonia solution which makes it alkaline.
$\mathrm{Cl}^{-}$
$\mathbf{H}^{+}$
$\mathrm{Na}^{+}$
$\mathrm{OH}^{-}$
(b) Ammonia is made using the Haber process.

(i) Where does the nitrogen used in the Haber process come from?

Draw a ring around your answer.
(ii) A high temperature of $450^{\circ} \mathrm{C}$ is used in the reactor.

Tick $(\checkmark)$ two reasons in the table which explain why high temperatures make reactions faster.

| Reasons | Tick <br> $(\checkmark)$ |
| :--- | :--- |
| Particles move faster |  |
| Particles are closer together |  |
| Particles collide more often |  |
| Particles have less energy |  |

(iii) The iron in the reactor speeds up the reaction but is not used up.

What is the name given to substances that speed up the chemical reaction but which are not used up during the reaction?
(c) Complete the sentence.

The condenser separates the ammonia from the unreacted nitrogen and hydrogen by turning the ammonia into a $\qquad$

Q42.
(a) The symbol equation for the decomposition of hydrogen peroxide is:

$$
2 \mathrm{H}_{2} \mathrm{O}_{2} \quad \rightarrow \quad 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}
$$

Complete the word equation for the decomposition of hydrogen peroxide.
Hydrogen peroxide $\rightarrow$ $\qquad$ $+$ $\qquad$
(b) A student did an experiment to see how quickly hydrogen peroxide decomposes. The student used the apparatus shown below to measure the volume of oxygen.

(i) Draw a straight line of best fit to complete the graph.

(ii) Draw a circle around the anomalous point on the graph.
(iii) What is the volume of oxygen given off after 15 seconds?
$\qquad$ $\mathrm{cm}^{3}$
(iv) How did the volume of oxygen change between 0 and 25 seconds?
$\qquad$
(c) The student wanted to make the reaction faster.

Draw a ring around the correct answer to complete each sentence.
(i) To make the reaction faster, the temperature should be
lower.
the
same.

(d) The diagram represents the bonding in oxygen.

$$
\mathrm{O}=\mathrm{O}
$$

Draw a ring around the correct answer to complete each sentence.

(i) When two oxygen atoms bond, the | share |
| :--- |
| atoms |
| transfer |
| delocalise | electrons.

(ii) The oxygen atoms are joined by | ionic |
| :--- |
| metallic |
| covalent | bonds.

(iii) Oxygen is made of
simple
molecules.
a giant lattice.
macromolecules.
(e) When hydrogen peroxide decomposes water is produced.

Which two statements in the table explain why water is a liquid at room temperature?

Tick $(\checkmark)$ the two statements.

| Statement | Tick $(\sqrt{ })$ |
| :---: | :---: |
| Water has a boiling point of $100^{\circ} \mathrm{C}$. |  |


| Water is made of ions. |  |
| :--- | :--- |
| Water has a melting point lower than room <br> temperature. |  |
| Water has a giant covalent structure. |  |

## Q43.

Hand warmers use chemical reactions.

(a) The table shows temperature changes for chemical reactions $\mathbf{A}, \mathbf{B}$ and $\mathbf{C}$.

| Reaction | Starting <br> temperature in ${ }^{\circ} \mathbf{C}$ | Final temperature <br> in ${ }^{\circ} \mathbf{C}$ | Change in <br> temperature in ${ }^{\circ} \mathbf{C}$ |
| :---: | :---: | :---: | :---: |
| A | 18 | 25 | +7 |
| B | 17 |  | +5 |
| C | 18 | 27 | +9 |

What is the final temperature for reaction $\mathbf{B}$ ? Write your answer in the table.
(b) (i) What name is given to reactions that heat the surroundings?
$\qquad$
(ii) Which reaction, $\mathbf{A}, \mathbf{B}$ or $\mathbf{C}$, would be best to use in a hand warmer?
Reaction $\square$

Give a reason why you chose this reaction.
$\qquad$
$\qquad$
(c) A student added water to some anhydrous copper sulfate.


The equation for the reaction is shown.
anhydrous copper sulfate + water $\rightleftharpoons$ hydrated copper sulfate
$\mathrm{CuSO}_{4}+5 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
The student measured the temperature before and after the reaction.
(i) The measurements showed that this reaction can be used for a hand warmer.

Draw a ring around the correct answer to complete the sentence.
When water is added to anhydrous copper sulfate the temperature

of the mixture | increases. |
| :--- |
| decreases. |
| stays the same. |

(ii) Anhydrous copper sulfate is white.

What colour is seen after water is added to the anhydrous copper sulfate?
$\qquad$
(iii) What does the symbol $\rightleftharpoons$ mean?
$\qquad$
(iv) The student heated a tube containing hydrated copper sulfate.

Name the solid substance produced.
$\qquad$

Q44.
The symbol equation for the decomposition of hydrogen peroxide is:

$$
2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}
$$

(a) This reaction is exothermic.

What is an exothermic reaction?
$\qquad$
$\qquad$
(b) A student measured the volume of oxygen produced by $50 \mathrm{~cm}^{3}$ of hydrogen peroxide.


The graph shows the results.

(i) Use the graph to describe the changes in the rate of the reaction from 0 to 35 seconds.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(ii) What was the total volume of oxygen gas collected?
$\qquad$
(iii) The student had calculated that the hydrogen peroxide used should produce $25 \mathrm{~cm}^{3}$ of oxygen.

Calculate the percentage yield of oxygen.
$\qquad$
$\qquad$
$\qquad$
Answer $=$
(c) An increase in the temperature of the hydrogen peroxide increases the rate of the reaction.

Use your knowledge of particles to explain why.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Q45.
This question is about gold (Au).
(a) An atom of gold is represented as:

197


79

How many neutrons are in this atom of gold? $\qquad$
(b) Gold ions are used as a catalyst.

How does a gold atom $(\mathrm{Au})$ become a gold ion $\left(\mathrm{Au}^{3+}\right)$ ?
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(c) A gold catalyst can be used when carbon monoxide reacts with oxygen to make carbon dioxide.
(i) Complete and balance the equation for this reaction.
$\ldots \mathrm{CO}+\quad \rightarrow \quad \mathrm{CO}_{2}$
(ii) Carbon dioxide has a very low boiling point.

Explain why.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(d) Gold is used as a catalyst in industrial processes. Gold is rare and increasingly expensive.

Suggest three reasons why gold is still used in industrial processes.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Q46.
A student investigated the reaction of magnesium with hydrochloric acid.
(a) A piece of magnesium was dropped into the hydrochloric acid.


Bubbles of gas were produced and the magnesium disappeared.
The reaction is exothermic.
(i) What measurements would the student make to show that the reaction is exothermic?
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(ii) How would these measurements show that the reaction is exothermic?
$\qquad$

The student investigated how changing the concentration of the hydrochloric acid affects this reaction.

Each test tube contained a different concentration of hydrochloric acid.
The diagrams show the results of this experiment.


Test tube A


Test tube B


Test tube C


Test tube D
(b) Suggest one control variable in this investigation.
$\qquad$
$\qquad$
(c) (i) Which test tube, A, B, C or D, contained the greatest concentration of hydrochloric acid?

(ii) Why did you choose this test tube?
$\qquad$
$\qquad$
(d) The student predicted that if the temperature of the acid was increased the reaction would take place faster.

Tick $(\checkmark)$ two statements in the table which explain why.

| Statement | Tick ( $\sqrt{ }$ ) |
| :--- | :--- |
| The particles move faster |  |
| The particles collide with less energy |  |
| The particles collide more often |  |
| The particles are bigger |  |

## Q47.

Stage smoke is used for special effects at pop concerts.


By Sam Cockman [CC BY 2.0], via Flickr
Ammonium chloride can be used to make stage smoke.
Ammonium chloride is a white solid.
When heated, ammonium chloride produces white smoke which can be blown onto the stage.

The equation shows what happens when ammonium chloride is heated and cooled.

ammonium chloride (white)
ammonia
(colourless)
hydrogen chloride (colourless)
(a) The sentences explain how the smoke is made.

Draw a ring around the correct answer in each box to complete each sentence.
Use the information and the equation to help you.

When heated, ammonium chloride makes two colourless
solids.
liquids.
gases.

| colourless <br> black <br> white | solid. <br> liquid. <br> gas. |
| :--- | :--- |

which is | ammonia. |
| :--- |
| ammonium chloride. |
| hydrogen chloride. |

(b) Complete the sentence.

The symbol $\rightleftharpoons$ means that the reaction is $\qquad$

Q48.
Ammonia is made using the Haber process.

(a) How is ammonia separated from unreacted nitrogen and hydrogen in the separator?
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(b) The equation shows the reaction which takes place in the reactor:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

(i) Why does the yield of ammonia at equilibrium increase as the temperature is decreased?
$\qquad$
$\qquad$
(ii) A temperature of $450^{\circ} \mathrm{C}$ is used in the reactor to make the reaction take place quickly.

Explain, in terms of particles, why increasing the temperature makes a reaction go faster.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(iii) Why does the yield of ammonia at equilibrium increase as the pressure is increased?
$\qquad$
$\qquad$
(iv) The pressure used in the reactor is 200 atmospheres.

Suggest why a much higher pressure is not used.
$\qquad$
$\qquad$
(c) Use the equation for the reaction in the reactor to help you to answer these questions.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

(i) It is important to mix the correct amounts of hydrogen and nitrogen in the reactor.
$20 \mathrm{~m}^{3}$ of nitrogen is reacted with hydrogen.
What volume of hydrogen (measured at the same temperature and pressure as the nitrogen) is needed to have the correct number of molecules to react with the nitrogen?

Volume of hydrogen needed $=$ $\qquad$ $\mathrm{m}^{3}$
(ii) Calculate the maximum mass of ammonia that can be made from 2 g of nitrogen.

Relative atomic masses: $\mathrm{H}=1 ; \mathrm{N}=14$.

Maximum mass of ammonia $=$ $\qquad$ g
(d) The expected maximum mass of ammonia produced by the Haber process can be calculated.
(i) In one process, the maximum mass of ammonia should be 80 kg .

The actual mass of ammonia obtained was 12 kg .
Calculate the percentage yield of ammonia in this process.
$\qquad$
$\qquad$
Percentage yield of ammonia $=$ $\qquad$ \%
(ii) Give two reasons why it does not matter that the percentage yield of ammonia is low.
Use the flow diagram at the start of this question to help you.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Q49.

The flow diagram shows how ammonia is made.

(a) What effect, if any, does the pump have on the pressure of the nitrogen and hydrogen?

Draw a ring around the correct answer to complete the sentence.

The pump | $\begin{array}{l}\text { decreases } \\ \text { has no effect on } \\ \text { increases }\end{array}$ |
| :--- | the pressure.

(b) The word equation for making ammonia is:

$$
\text { nitrogen }+ \text { hydrogen } \rightleftharpoons \text { ammonia }
$$

In the reactor only a small amount of the nitrogen and hydrogen is changed into ammonia.

Tick $(\checkmark)$ the reason why.

| Reason why | Tick ( $\sqrt{ }$ ) |
| :--- | :--- |
| Ammonia is formed from two elements. |  |
| Nitrogen and hydrogen are gases. |  |

The reaction is reversible.
(c) In the cooler the mixture of gases is cooled.

Draw a ring around the correct answer to complete the sentence.

(d) What happens to the unreacted nitrogen and hydrogen from the reactor?
$\qquad$
$\qquad$

## Q50.

Read the information about car engines.

Burning petrol in air is an exothermic reaction. This reaction is used in car engines.
When petrol burns it produces harmful substances such as nitrogen oxides and carbon monoxide.

A catalytic converter stops these harmful substances being released into the air.


Catalytic converter
(a) Draw a ring around the correct answer to complete each sentence.
(i) The exothermic reaction makes the temperature

of the engine $\quad$| decrease. |
| :--- |
| increase. |
| stay the same. |

(ii) This is because during

exothermic reactions | energy is taken in from the surroundings. |
| :--- | :--- |
| energy is given out to the surroundings. |
| there is no energy change. |

(b) The diagram shows a catalytic converter which removes harmful substances. The catalytic converter has two parts, A and B, which contain different catalysts.

(i) The equation for the reaction that takes place in part $\mathbf{A}$ is:

$$
2 \mathrm{NO} \rightarrow \mathrm{~N}_{2}+\mathrm{O}_{2}
$$

Which one of the substances shown in the equation is a compound?
Give the formula of this compound.
$\qquad$
(ii) The equation for the reaction that takes place in part $\mathbf{B}$ is:

$$
2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}
$$

Why is it important to stop carbon monoxide (CO) from being released into the air?
$\qquad$
$\qquad$
(c) The table lists some statements about catalysts. Only two statements are correct.

Tick $(\checkmark)$ the two correct statements.

| Statement | Tick ( $\checkmark$ ) |
| :---: | :--- |
| A catalyst can speed up a chemical reaction. |  |


| A catalyst is used up in a chemical reaction. |  |
| :--- | :--- |
| Different reactions need different catalysts. |  |
| A catalyst does not change the rate of a chemical <br> reaction. |  |

(d) Modern catalytic converters contain nanosized particles of catalyst. Less catalyst is needed when nanosized catalyst particles are used.
(i) Complete the sentence.

The size of nanosized particles is $\qquad$ than normal sized particles.
(ii) The catalysts contain platinum.

Suggest why a manufacturer of catalytic converters would want to use less catalyst.
$\qquad$
$\qquad$

Q51.
Read the information about car engines.

Burning petrol in air is an exothermic reaction. This reaction is used in car engines.
When petrol burns it produces harmful substances such as nitrogen oxides and carbon monoxide.

A catalytic converter stops these harmful substances being released into the air.
Car engine

(a) The reaction is exothermic. What is the meaning of exothermic?
(b) The catalytic converter has two parts shown as $\mathbf{A}$ and $\mathbf{B}$ in the diagram.


Part A contains a catalyst made from platinum and rhodium.
Part B contains a catalyst made from platinum and palladium.
(i) Why are catalysts used in chemical reactions?
$\qquad$
$\qquad$
(ii) One reaction in part $\mathbf{A}$ is shown by this equation.

$$
2 \mathrm{NO} \rightarrow \mathrm{~N}_{2}+\mathrm{O}_{2}
$$

Suggest why this reaction helps the environment.
$\qquad$
$\qquad$
(iii) The equation for one of the reactions in part $\mathbf{B}$ is shown below.

Balance this equation.

(iv) The catalytic converter works for many years without replacing the catalyst. Explain why the catalyst does not need to be replaced.
$\qquad$
$\qquad$
(v) Suggest why different catalysts are used in parts A and B.
(c) Modern catalytic converters contain nanosized particles of catalyst. Using nanosized particles reduces the cost of the catalytic converter.

Suggest and explain why the use of nanosized catalyst particles reduces the cost of the catalytic converter.

Your answer should include information about the size and surface area of the particles.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Q52.
The picture shows a lump of phosphate rock.


Rob Lavinsky, iRocks.com - CC-BY-SA-3.0 [CC-BY-SA-3.0], via Wikimedia Commons
Phosphoric acid is made by reacting phosphate rock with sulfuric acid.
Only three of the methods shown below will increase the rate of this reaction.
Put a tick $(\checkmark)$ next to each of the three methods that will increase the rate of this reaction.

| Method | Tick <br> $(\checkmark)$ |
| :--- | :---: |
| Use a more concentrated solution of sulfuric acid |  |


| Use larger lumps of phosphate rock |  |
| :--- | :--- |
| Cool the mixture of phosphate rock and sulfuric acid |  |
| Grind the phosphate rock into a powder before adding the acid |  |
| Increase the temperature of the sulfuric acid |  |
| Dilute the sulfuric acid solution with water |  |

Q53.
The picture shows a lump of phosphate rock.


Rob Lavinsky, iRocks.com - CC-BY-SA-3.0 [CC-BY-SA-3.0], via Wikimedia Commons
Phosphoric acid is made by adding sulfuric acid to phosphate rock.
(a) The rate of reaction between sulfuric acid and phosphate rock can be increased if the mixture is heated to a higher temperature.

Explain, in terms of particles, why an increase in temperature increases the rate of reaction.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(b) State one other way in which the rate of reaction between sulfuric acid and phosphate rock can be increased.

## Q54.

Humberstone was a town in the desert of Northern Chile in South America. It was built for the people who worked in the nearby sodium nitrate mines.

The sodium nitrate was used as a fertiliser.
The sodium nitrate was exported by ship to countries all around the world.
Today the mines have closed and nobody lives in Humberstone.
One of the reasons for the mines closing was the invention of the Haber process.


By Sznegra (Own work) [CC-BY-SA-3.0], via Wikimedia Commons
(a) The Haber process is used to make ammonia $\left(\mathrm{NH}_{3}\right)$.

$$
\mathrm{N}_{2}(\mathrm{~g}) \quad+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

The forward reaction is exothermic.
(i) Name the raw materials that are used to supply the nitrogen and hydrogen.

Nitrogen $\qquad$
Hydrogen $\qquad$
(ii) The Haber process uses a temperature of $450^{\circ} \mathrm{C}$.

Explain, as fully as you can, why a temperature of $450^{\circ} \mathrm{C}$ is used rather than a much higher temperature or a much lower temperature.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(iii) Ammonia can be converted to ammonium nitrate by adding an acid.

Name this acid.
$\qquad$
(b) Suggest and explain why the invention of the Haber process caused the closure of the Humberstone mines in Chile.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Q55.

Hydrogen peroxide decomposes slowly to give water and oxygen.
The reaction is exothermic.

$$
2 \mathrm{H}_{2} \mathrm{O}_{2} \quad \rightarrow \quad 2 \mathrm{H}_{2} \mathrm{O} \quad+\quad \mathrm{O}_{2}
$$

(a) In an exothermic reaction, energy is given out.

Draw a ring around the correct answer to complete the sentence.

In an exothermic reaction, the temperature |  | goes down. |
| :--- | :--- |
| goes up. |  |
| stays the same. |  |

(b) The energy level diagram for this reaction is shown below.


The energy changes, $\mathbf{A}, \mathbf{B}$ and $\mathbf{C}$, are shown on the diagram.
Use the diagram to help you answer these questions.
(i) Which energy change, $\mathbf{A}, \mathbf{B}$ or $\mathbf{C}$, is the activation energy? $\square$
(ii) Which energy change, $\mathbf{A}, \mathbf{B}$ or $\mathbf{C}$, shows that this reaction is exothermic? $\square$
(iii) Hydrogen peroxide decomposes quickly when a small amount of manganese(IV) oxide is added.

Draw a ring around the correct answer to complete each sentence.
Hydrogen peroxide decomposes quickly because

manganese(IV) oxide is | a catalyst. |
| :--- | :--- |
| an element. |
| a solid. |

The manganese(IV) oxide has lowered the | activation energy. |
| :--- | :--- |
| boiling point. |
| temperature. |.

(c) A student did an experiment to find the amount of energy produced when hydrogen peroxide solution is decomposed using manganese(IV) oxide.

The apparatus the student used is shown in the diagram.


The student first measured the temperature of the hydrogen peroxide. Then the student added the manganese(IV) oxide, stirred the mixture and recorded the highest temperature.
(i) Suggest why the student stirred the mixture before recording the highest temperature.
$\qquad$
$\qquad$
(ii) The biggest error in this experiment is heat loss.

Suggest how the student could change the apparatus so that less heat is lost.
$\qquad$
$\qquad$

## Q56.

Hydrogen peroxide decomposes to give water and oxygen.

$$
2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \quad 2 \mathrm{H}_{2} \mathrm{O} \quad+\quad \mathrm{O}_{2}
$$

The reaction is exothermic.
(a) Explain, in terms of bond breaking and bond making, why the decomposition of hydrogen peroxide is exothermic.
$\qquad$
$\qquad$
$\qquad$
(b) The energy level diagram for this reaction is shown below.


The energy changes, $\mathbf{A}, \mathbf{B}$ and $\mathbf{C}$, are shown on the diagram.
Use the diagram to help you answer these questions.
(i) How do you know that this reaction is exothermic?
$\qquad$
$\qquad$
$\qquad$
(ii) The decomposition of hydrogen peroxide is slow.

What does this suggest about energy change $\mathbf{B}$ ?
$\qquad$
$\qquad$
$\qquad$
(iii) Hydrogen peroxide decomposes quickly when a small amount of manganese(IV) oxide is added.

Explain why.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(c) A student did an experiment to find the amount of energy produced when hydrogen peroxide solution is decomposed using manganese(IV) oxide.

The apparatus the student used is shown in the diagram.


The student first measured the temperature of the hydrogen peroxide. Then the student added the manganese(IV) oxide and recorded the highest temperature.

The temperature rise was smaller than expected.
Suggest why.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Q57.

Hydrogen fluoride is used to make hydrofluoric acid.
(a) A company makes hydrogen fluoride by reacting solid calcium fluoride with sulfuric acid. The reaction takes place in a rotating kiln.
calcium fluoride + sulfuric acid $\rightarrow$ calcium sulfate + hydrogen fluoride
The company want this reaction to take place quickly.
(i) Rotating the kiln makes the reaction take place faster.

Suggest why.
$\qquad$
$\qquad$
(ii) Draw a ring around the correct word in each box.

To make the reaction take place faster:

the temperature should be | higher |  |
| :--- | :--- |
|  | so that the particles have |
|  | less |
|  |  |
|  |  |
|  |  |


between the particles each second.
(b) The diagram represents a molecule of hydrogen fluoride.


The hydrogen and fluorine atoms are joined by a covalent bond.
Use the correct word from the box to complete the sentence.

| electrons | neutrons | protons |
| :---: | :--- | :--- |

In a covalent bond the atoms share $\qquad$ .
(c) Hydrogen fluoride is dissolved in water to make an acidic solution of hydrofluoric acid.

Draw a ring around the symbol of the ion that makes the solution acidic.
$\mathrm{H}^{+}$
$\mathrm{OH}^{-}$
$F^{-}$

Q58.
A student investigated the effect of temperature on the decomposition of hydrogen peroxide.
Hydrogen peroxide decomposes to oxygen and water when a manganese(IV) oxide catalyst is added.

The student measured the time taken to collect $5 \mathrm{~cm}^{3}$ of oxygen gas.
The apparatus shown below was used for the investigation. The reaction was started by shaking the flask so that the manganese(IV) oxide and hydrogen peroxide were mixed.


The student did the investigation at two different temperatures. All the other variables were kept constant.

The student's results are shown in the table.

| Temperature of the <br> hydrogen peroxide <br> solution in ${ }^{\circ} \mathbf{C}$ | Volume of oxygen <br> collected in $\mathbf{c m}^{3}$ | Time taken to <br> collect the oxygen <br> in seconds | Rate of reaction in <br> $\mathbf{c m}^{3}$ per second |
| :---: | :---: | :---: | :---: |
| 20 | 5 | 40 | 0.125 |
| 25 | 5 | 25 |  |

(a) (i) Calculate the rate of reaction at $25^{\circ} \mathrm{C}$.

Rate of reaction = $\qquad$ $\mathrm{cm}^{3}$ per second
(ii) The teacher said that the student should repeat the investigation to get more results.

Suggest why.
$\qquad$
$\qquad$
(b) The student concluded that:
'the rate of reaction increases when the temperature is increased'.
Explain, in terms of particles, why the rate of reaction increases.

