RESPIRATION (2nd PART)

Q1.

The bar chart shows the amount of water lost from the body of a student on two different days.

The student ate the same amount of food and drank the same amount of liquid on the two days. The temperature of the surroundings was similar on the two days.

(a) The total volume of water lost on day 1 was $3250 \mathrm{~cm}^{3}$.

How much water was lost on day 2 ? Show all your working.
\qquad
\qquad cm^{3}
(b) The student did much more exercise on one of the days than on the other.

On which day did he do more exercise? Day \qquad
Give two reasons for your answer.

1. \qquad
2. \qquad
\qquad
(c) (i) Which one of these is a chemical reaction that produces water in the body? Put a tick (\checkmark^{\prime}) in the box next to your choice.

	\square
Breathing	\square
Osmosis	\square
Respiration	\square
Sweating	

(ii) How does sweating help the body?
\qquad
\qquad
(iii) If the body loses more water than it gains, it becomes dehydrated.

The concentration of the solution surrounding the body cells increases. This causes the cells to lose water.

By which process do cells lose water?
Put a tick (\checkmark^{\prime}) in the box next to your choice.

Q2.
The diagram shows the human breathing system.

(a) On the diagram, label structures \mathbf{B} and \mathbf{C}.

Choose your answers from the list in the box.

alveoli	diaphragm	rib	trachea

(b) (i) Which letter, A, B, C or D, shows the site of gas exchange?
(ii) Which one of the following gases has a higher concentration in exhaled air than in inhaled air?

Draw a circle around one answer.
carbon dioxide nitrogen oxygen

Q3.

The diagram represents the human blood circulation system.

Key: \longrightarrow Direction in which blood flows
(a) A, B, C and D are blood vessels.
(i) Give the letter of one blood vessel that is an artery. \qquad
(ii) Give the letter of one blood vessel that is a vein.
(b) A student pedalled an exercise cycle at constant speed for 5 minutes. The student's heart rate was recorded at one-minute intervals during the exercise. The results are shown in the graph.

(i) What was the student's heart rate before the exercise began?
\qquad
(ii) How long was it before the student's heart rate reached 124 beats per minute?
\qquad minutes
(c) Which of the following parts of the blood carries most oxygen?

Draw a circle around one answer.

```
plasma red blood cells white blood cells
```

(1)
(Total 5 marks)

Q4.
A student pedalled an exercise cycle at constant speed for 5 minutes. The student's heart rate was recorded at one-minute intervals during the exercise and also during recovery.

The results are shown in the graph.

(a) Describe, in as much detail as you can, the changes in heart rate between 0 and 14 minutes.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) How do arteries supplying the leg muscles alter the rate of blood flow through them during exercise?
\qquad
\qquad
(c) Explain how an increase in heart rate helped the student during exercise.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 8 marks)

Q5.

The table shows the amounts of energy used in running and in walking at different speeds by people of different body masses.

Activity	Energy used in kilojoules per hour			
	$\mathbf{3 4} \mathbf{~ k g}$ person	$\mathbf{5 0} \mathbf{~ k g}$ person	$\mathbf{7 0} \mathbf{~ k g}$ person	$\mathbf{9 0} \mathbf{~ k g}$ person
Running, 9 km per hour	1530	1850	2770	3700
Running, 11 km per hour	2140	2560	3860	5120
Running, 16 km per hour	2980	3570	5380	7140
Walking, 3 km per hour	530	670	1010	1340
Walking, 5 km per hour	740	880	1340	1760
Walking, 7 km per hour	1030	1240	1850	2480

(a) Describe two patterns you can see in the data.

1. \qquad
\qquad
2. \qquad
\qquad
(b) Our breathing rate is much higher when running than when walking.

Explain the advantage of this to the body.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q6.
The diagram shows a fermenter. This fermenter is used for growing the fungus Fusarium which is used to make mycoprotein.

(a) Bubbles of air enter the fermenter at \mathbf{A}.

Give two functions of the air bubbles.

1. \qquad
\qquad
2. \qquad
\qquad
(b) Glucose is added to the fermenter at \mathbf{B}.

Explain why glucose is added.
\qquad
\qquad
(c) The fermenter is prevented from overheating by the cold water flowing in through the heat exchanger coils at \mathbf{C}.

Explain what causes the fermenter to heat up.
\qquad
\qquad
(d) It is important to prevent microorganisms other than Fusarium from growing in the fermenter.
(i) Why is this important?
\qquad
\qquad
(ii) Suggest two ways in which contamination of the fermenter by microorganisms could be prevented.

1. \qquad
\qquad
2. \qquad
\qquad
(e) Human cells cannot make some of the amino acids which we need. We must obtain these amino acids from our diet.

The table shows the amounts of four of these amino acids present in mycoprotein, in beef and in wheat.

Name of amino acid	Amount of amino acid per $\mathbf{1 0 0} \mathbf{g}$ in $\mathbf{~ m g}$			Daily amount needed by a 70 kg human in mg
	Mycoprotei n	Beef	Wheat	840
Methionine	910	1600	300	910
Phenylalanine	540	500	220	980
Threonine	610	840	370	490

A diet book states that mycoprotein is the best source of amino acids for the human diet.

Evaluate this statement.
Remember to include a conclusion in your evaluation.
\qquad
\qquad
\qquad
\qquad

Q7.

A runner might drink a special 'sports drink' at intervals during a marathon race. The table shows the substances present in a sports drink.

Substance	Percentage
Water	
Sugar	5.0
lons	0.2

(a) Complete the table to show the percentage of water in the sports drink.
(b) The runner sweats and also breathes heavily during the race.
(i) Why does the runner need to sweat?
\qquad
(ii) Which two substances in the table are lost from the body in sweat?
\qquad
(iii) Which substance in the table is lost from the body during breathing?
\qquad
(c) How does the sugar in the sports drink help the athlete during the marathon?
\qquad
\qquad

Q8.
Complete the table by writing the correct process next to its description.

Choose your answers from the list in the box

breathing	diffusion	digestion	osmosis	respiration

Description	Process
Moving air in and out of the lungs	
The movement of particles of a substance from high to low concentration	
The release of energy from glucose	

(Total 3 marks)
Q9.
Paula is training for a marathon. When she runs, her heart beats faster than it does when she is resting.

Complete the sentences, using words from the box.

blood	breathe	carbon dioxide	glucose	
	heat	nitrogen	oxygen	respire

When she is running, Paula's muscle activity increases. To do this, her muscle cells
\qquad at a faster rate to give her more energy. Her muscles need to be supplied with \qquad and \qquad more quickly. Her heart beats faster to increase the flow of \qquad which carries the products \qquad and
\qquad away from her muscles.

Q10.
A student's breathing was monitored before and after vigorous exercise. The student breathed in and out through a special apparatus. The graphs show the changes in the volume of air inside the apparatus. Each time the student breathed in, the line on the graph dropped. Each time the student breathed out, the line went up.

After exercise

(a) How many times did the student breathe in per minute:
before exercise; \qquad
after exercise? \qquad
(b) On each graph, the line $\mathbf{A}-\mathbf{B}$ shows how much oxygen was used. The rate of oxygen use before exercise was $0.5 \mathrm{dm}^{3}$ per minute. Calculate the rate of oxygen use after exercise.
\qquad
\qquad
\qquad
Rate of oxygen use after exercise $=$ \qquad dm^{3} per minute
(c) The breathing rate and the amount of oxygen used were still higher after exercise, even though the student sat down to rest. Why were they still higher?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q11.

Regular exercise is important, as it helps to maintain an efficient supply of blood to the muscles, the heart and the lungs. This is helped by an increase in the heart rate during exercise.

Explain why it is necessary for the heart rate to increase during exercise.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q12.

A person did five different activities in turn. These activities needed increasing amounts of energy. For each activity two measurements were made. These were the rate of contraction of the left ventricle and its stroke volume (the volume of blood pumped at each beat). From these measurements the cardiac volume was calculated.

Some of these results are shown in the table and the bar chart.

Activity	Rate of contraction of left ventricle in beats per minute	Cardiac output in $\mathbf{c m}^{\mathbf{3}}$ per minute
Sitting upright	68	5500
Slow walking		8000
Moderate walking	98	12000
Fast walking	130	17500
Running	150	19000

(a) (i) Describe how a person can count the rate of beating of the left ventricle.
\qquad
\qquad
(ii) Calculate the rate of ventricle contraction in beats per minute when the person was walking slowly. Show clearly how you work out your final answer.

Rate of ventricle contraction \qquad beats per minute.
(iii) The pattern of results for stroke volume shows an anomalous result when the person is running. In what way is it anomalous?
\qquad
\qquad
(iv) There was a change in cardiac output when the person's movement changed from fast walking to running. How did the heart produce this change?
\qquad
\qquad
(b) Over a period of time, regular exercise can strengthen the heart muscle. This change in the heart muscle enables a person to run for longer before lactic acid build up occurs. Explain the reason for this.
\qquad
\qquad
\qquad
\qquad

Q13.
(a) The volume of blood pumped out of the left ventricle at each beat was measured for a person during six different activities. These activities showed an increasing energy demand, with rest requiring the least energy and rowing a boat the most. The results of these measurements are shown on the bar chart.

(i) The pulse rate was also measured for the person during the same activities. The table shows the results that were obtained.

Activity	Pulse rate in beats per minute
Rest	70
Writing	85
Cleaning the floor	100
Wallpapering	120
Walking fast	132
Rowing a boat	153

On the graph paper below draw a bar chart of the results obtained for the measurements of the pulse rate.

(ii) Undertaking activities with increasing energy demand has an effect on the volume of blood pumped from the left ventricle (per beat) and on the pulse rate. What do the bar charts show these effects to be? Use only information shown in the bar charts in your answer.
\qquad
\qquad
\qquad
(b) The pulse rate changed when the activity changed. Explain the reason for this.
\qquad
\qquad
\qquad
(Total 6 marks)

Q14.

The diagram shows an enlargement of structure \mathbf{D}.

The arrows show the direction of the gases exchanged in this structure. Name gas \mathbf{X} and gas \mathbf{Y}.

X \qquad
Y \qquad
(Total 2 marks)

Q15.

Person A and Person B measured their pulse rates over a period of five minutes. For one minute of this time they exercised by stepping on and off a box. At other times they sat still. The graph shows the results for Person A.

(i) What does the graph tell you about the changes in the pulse rate of Person A within the five minute period?
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) What was the pulse rate of Person \mathbf{A} at the end of the five minute period?
\qquad
(iii) The table shows the results obtained for Person B.

Time in minutes	Pulse rate per minute
0	68
1	68
2	110
3	96
4	80
5	68

Plot these results on the graph.

Q16.

(a) During respiration, sugar is oxidised to release energy. Complete the equation for respiration.

Sugar + \qquad $=$ \qquad $+$ \qquad + energy
(b) The photograph below shows an athlete using an exercise machine. The machine can be adjusted to vary the rate at which the athlete is required to work.

The athlete's heart rate and breathing rate were measured at different work rates.
The table below shows the results which were obtained.

WORK RATE (J/s)	HEART RATE (beats/min.)	BREATHING RATE (breaths/min.)
0	86	9.6
60	106	10.0
80	112	10.4
100	122	10.4
120	143	11.4
140	156	15.5
160	174	30.5
200		

Plot the data on the graph paper below.
en
Breathing Rate
(breathsimin)
Heart Rate
(beats/min)

(3)
(c) Explain, as fully as you can, the advantages to the body in the change in breathing and heart rates.
\qquad
\square
\qquad
\qquad
\square
\qquad
(d) This increase in the rate of heart-beat is a response to a stimulus. For this response suggest:
(i) the stimulus;
(ii) the co-ordinator; \qquad
(iii) the effector.
(Total 15 marks)

Q17.

The diagram below shows the mass of carbon involved each year in some of the processes in the carbon cycle.

(a) Complete the equation for plant respiration.

(b) (i) Calculate the mass of carbon removed from the atmosphere each year. (Show your working.)

Answer \qquad billion tonnes
(ii) Calculate the percentage of this total which is removed by the photosynthesis of land plants. (Show your working.)

Answer \qquad \%
(iii) Calculate the net gain of carbon by the atmosphere in one year. (Show your working.)

Answer \qquad billion tonnes

Q18.

Marathon runners are recommended to have a high carbohydrate diet prior to a race. Three athletes tried out three dietary regimes prior to a marathon race.

These three dietry regimes were as follows.

Athlete A	Up to 7 days before the race	-	Normal mixed diet
	7 days before the race		Prolonged extreme physical activity
	6-3 days before the race carbohydrate	-	Protein and fat diet; no
	2 and 1 days before the race	-	Large carbohydrate intake
Athlete B	Up to 5 days before race		Normal mixed diet
	5 days before the race	-	Prolonged extreme physical activity
	4-1 days before the race	-	Large carbohydrate intake
Athlete C	Up to 4 days before the race	-	Normal mixed diet
	4-1 days before the race	-	Large carbohydrate intake

The graph below shows the effect of each of these dietary regimes on glycogen levels in the athletes' muscles

(a) (i) What is the immediate effect of extreme physical activity on the glycogen content of muscles?
\qquad
\qquad
(ii) Describe how this effect occurs.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) (i) Evaluate the three regimes as preparation for a marathon race.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Suggest a possible explanation for the different effects of the three regimes.
\qquad
\qquad
\qquad

Q19.

A student breathed out into an empty breathing bag five times.

After breathing out five times the volume of air in the bag was measured.
The volume was $3000 \mathrm{~cm}^{3}$.
(a) Complete the following sentences.

The air the student breathed in would contain more \qquad than the air the student breathed out.

The air the student breathed out would contain more \qquad than the air the student breathed in.
(b) The student then did some exercise for two minutes. The volume breathed out in five breaths was again measured. This time there was $9000 \mathrm{~cm}^{3}$ of air in the bag.

What does this tell you about the effect of exercise on breathing?
\qquad
\qquad
(c) (i) Name the chemical process that releases energy when it takes place in the cells of the body.
(ii) Name the substances produced by this process.
\qquad and \qquad
(iii) Explain as fully as you can why this process has to take place more rapidly during exercise.
\qquad
\qquad
\qquad
\qquad

Q20.
(a) Explain, as fully as you can, why respiration has to take place more rapidly during exercise.
\qquad
\qquad
\qquad
(b) During exercise the process of respiration produces excess heat. Explain how the body prevents this heat from causing a rise in the core (deep) body temperature.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q21.
In an investigation four groups of athletes were studied. The maximum rate of oxygen consumption for each athlete was measured and the mean for each group was calculated. The athletes then ran 10 mile races and the mean of the best times was calculated for
each group. The results are shown in the table below.

GROUP OF ATHLETES	MAXIMUM RATE OF OXYGEN CONSUMPTION $\left(\mathrm{cm}^{3}\right.$ per kg per min)	BEST TIME IN 10 MILE RACE (minutes)
A	78.6	48.9
B	67.5	55.1
C	63.0	58.7
D	57.4	64.6

(i) What is the relationship between maximum rate of oxygen consumption and time for a 10 mile race?
\qquad
\qquad
(ii) Suggest an explanation for this relationship.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 4 marks)

Q22.
The graph shows the effect of increasing the carbon dioxide content of the inhaled air on:

- the number of breaths per minute;
- the total volume of air breathed per minute.

-O- Total volume of air breathed per minute (litres)
$-\square-$ Number of breaths per minute
(i) Describe the effect of increasing the percentage of carbon dioxide in the inhaled air on the total volume of air breathed.
\qquad
\qquad
\qquad
\qquad
(ii) Suggest why the total volume of inhaled air is not directly proportional to the number of breaths per minute.
\qquad
\qquad
\qquad
\qquad

Q23.

The diagram shows part of the breathing system in a human.

(a) Use words from the list to label the parts on the drawing.
alveoli bronchiole bronchus diaphragm trachea (windpipe)
(b) Where in the lungs does oxygen enter the blood?
\qquad
(c) Which process in cells produces carbon dioxide?
\qquad

Q24.
Read the passage.

Glutton up a gum tree

Along the banks of the Cygnet River on Kangaroo Island, the branches of the dying gum trees stretch out like accusing fingers. They have no leaves. Birds search in vain for nectar-bearing flowers.

The scene, repeated mile upon mile, is an ecological nightmare. But, for once, the culprit is not human. Instead, it is one of the most appealing mammals on the planet - the koala. If the trees are to survive and provide a food source for the wildlife such as koalas that depend on
them, more than 2000 koalas must die. If they are not removed the island's entire koala population will vanish.

Illegal killing has already started. Worried about soil erosion on the island, some farmers have gone for their guns. Why not catch 2000 koalas and take them to the mainland? "Almost impossible," says farmer Andrew Kelly. "Four rangers tried to catch some and in two days they got just six, and these fought, bit and scratched like fury."

The diagram shows the flow of energy through a koala.
The numbers show units of energy.

(i) Calculate the percentage of the food intake which is converted into new tissues for growth. Show your working.
\qquad
(ii) Give three different ways in which the koala uses the energy released in respiration.

1. \qquad
2. \qquad
\qquad
3. \qquad
\qquad

Fermentation of sugar by yeast produces carbon dioxide.
The graph shows the effect of temperature on the production of carbon dioxide by fermentation.

Volume of carbon dioxide collected in 10 minutes in cm^{3}

(a) By how much did the volume of carbon dioxide collected change when the temperature was raised from $30^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$?
\qquad cm^{3}
(b) Complete the sentences to explain the shape of the curve between \mathbf{X} and \mathbf{Y}.

Raising the temperature \qquad the speed of the reacting particles.

These particles collide more \qquad and more \qquad .

Q26.

(a) The graph shows how the mass of oxygen you breathe in changes as you climb up a mountain.

Describe, in as much detail as you can, how the mass of oxygen in one breath changes as you climb from sea level to 3000 m .
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) People who live high up in mountainous areas have more red blood cells than people who live at sea level. The graph below shows how the number of red blood cells changes with height above sea level.

Number of red cells in blood in millions per mm^{3}

(i) How many more red blood cells does a person living at 3000 m above sea level have than someone living at sea level? Show clearly how you work out your answer.
\qquad
\qquad
Increase in number of red blood cells = \qquad millions per m^{3}
(ii) What is the advantage of having more red blood cells?
\qquad
\qquad

Q27.
The temperature at the surface of the skin can be measured by using a technique called thermography.

In this technique, areas with higher temperature appear as a different colour on the thermographs.

The drawings below show the results of an investigation in which thermographs were taken from a person before and after exercise.

Describe and explain, as fully as you can, the effects of exercise on skin temperature.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 3 marks)
Q28.
The graph shows the concentration of carbon dioxide in the air in a greenhouse full of tomato plants, measured over a period of 24 hours.

(a) Explain why the concentration of carbon dioxide in the air in the greenhouse increased between \mathbf{X} and \mathbf{Y}.
\qquad
\qquad
\qquad
\qquad
(b) Explain why the concentration of carbon dioxide in the air in the greenhouse decreased between \mathbf{Y} and \mathbf{Z}.
\qquad
\qquad
\qquad
\qquad
(Total 4 marks)

Q29.
The diagram shows a water balance for a girl who spends most of the day working at a desk. It is not complete.
(a) Complete the diagram by writing in the volume of sweat produced.

(b) The next day she spent much of the day training, doing many different types of exercise.

State how each of the following would change and why it would be different from the previous day.
(i) The amount of water given off as sweat.
\qquad
\qquad
\qquad
(ii) The amount of water breathed out.
\qquad
\qquad
\qquad
(iii) The amount of urine passed, if she had the same water intake as on the previous day.
\qquad
\qquad
\qquad
(c) Which organ controls the amount of water in the body?

Q30.
The diagram shows the human breathing system.
(a) Complete the labels (i) and (ii).

(b) Complete the following sentence.

When we breathe out, the mixture of gases which leaves the air sacs contains more \qquad and less \qquad than the mixture of
gases which enters the air sacs.

Q31.
(i) What is the name of the process which takes place in living cells in your body and which releases energy from oxygen and glucose?
\qquad
(ii) Name the two products of the process in part (i).
\qquad and \qquad

Q32.
(a) (i) Complete the word equation for the process of aerobic respiration.

Glucose + \rightarrow carbon dioxide + water
(ii) Which organ removes carbon dioxide from your body?
\qquad
(b) Use names from the box to complete the two spaces in the passage.

carbon dioxide acid	nitrogen lactic		

Anaerobic respiration can occur when an athlete does vigorous exercise.
This is because there is not enough \qquad in the body.

The product of anaerobic respiration is \qquad .
(Total 4 marks)

Q33.
Oxygen from our lungs is carried, by our blood, to cells in our body where aerobic respiration takes place.
(i) Complete the two spaces to balance the chemical reaction for aerobic respiration.

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}
$$

(ii) Name the substance with the formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$.
\qquad
(iii) Name the structures in the cytoplasm of our cells where aerobic respiration takes place.
\qquad

Q34.
A young athlete trains and this makes her heart work harder. The table shows part of her training record.

Time measured in weeks from the start of training	0	8	16	24	32	40
Resting pulse rate measured in pulses per minute	75	69	66	63	61	60

(i) Give two changes to her heart resulting from this training.
\qquad
\qquad
2. \qquad
\qquad
(ii) The graph shows a smooth curve drawn to match the data from her training record.

Use the graph:
(A) to estimate her resting pulse rate, in pulses per minute, after 18 weeks of training;
\qquad
(B) to predict her resting pulse rate, in pulses per minute, if she continues her training until the end of the year.
\qquad
(Total 4 marks)
Q35.
(a) The air you breathe in and the air you breathe out are different.

Use the names of gases from this box to complete the three spaces.

argon	carbon dioxide	nitrogen	oxygen	water vapour

Compared to the air you breathe in, the air you breathe out contains:

- more
- more \qquad
- less \qquad
(b) The process of aerobic respiration takes place in your cells.
(i) Complete the space in the word equation for this process.
\qquad + oxygen \rightarrow carbon dioxide + water
(ii) Complete the space to give the main energy transfer which takes place in this process.
chemical energy \rightarrow \qquad energy
(iii) What is the name of the organ where oxygen from the air passes to your blood?
\qquad
(c) The athlete is taking part in vigorous exercise.

Complete the two spaces in the passage.
The cells in our muscles respire anaerobically during vigorous exercise. This results in \qquad debt and the production of \qquad acid.

Q36.
(a) The diagram shows a cereal crop.

Complete spaces (i) and (ii).

(iii) What sort of weather may cause the cereal crop to wilt?
\qquad
(b) Describe the process of transpiration in plants.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q37.

The man uses energy as he walks along. Energy is released in the cells in his body.
(i) What name is given to this process which occurs in his cells?

Circle the correct name.

circulation reproduction respiration transpiration

(ii) What gas is brought to his cells by the blood?
(iii) What gas is released by his cells and carried away by the blood?
\qquad

Q38.

(a) Respiration is a process which takes place in living cells. What is the purpose of respiration?
\qquad
\qquad
(b) (i) Balance the equation for the process of respiration when oxygen is available.
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+$
$\mathrm{O}_{2} \rightarrow$
$\mathrm{CO}_{2}+$
$\mathrm{H}_{2} \mathrm{O}$
(ii) What is the name of the substance in the equation with the formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?
\qquad
(c) Oxygen is absorbed through the alveoli in the lungs.
(i) How are the alveoli adapted for this function?
\qquad
\qquad
\qquad
(ii) Name the gas which is excreted through the alveoli.
\qquad
(d) (i) What is the name of the process of respiration when oxygen is not available?
\qquad
(ii) Describe the process of respiration which takes place in human beings when oxygen is not available and give an effect.
\qquad
\qquad
\qquad
\qquad
\qquad

Q39.
Plants need chemical energy for respiration and for active transport.
(i) Write a balanced chemical equation which represents the process of respiration in plants.
\qquad
(ii) Describe the process of active transport in the root hair cells of plants.
\qquad

Q40.
The table shows the percentage of some gases in the air a boy breathed in and out.

Gases	Air breathed in	Air breathed out
carbon dioxide	0.04%	4.0%
oxigen	20.0%	16.0%
water vapour	1.0%	6.0%

(a) What happens in the lungs to change the levels of oxygen and carbon dioxide in this way?

Oxygen \qquad
\qquad

Carbon dioxide \qquad
\qquad
\qquad
(b) Compare the percentage of water vapour in the air breathed out with the percentage in air breathed in.
\qquad

Q41.

Diagram 1 shows the main features of human blood circulation.

(a) What changes in the composition of blood occur in the lungs?
\qquad
\qquad
\qquad

Diagram 2 shows how the circulation of blood changes between rest and exercise.

Rate of supply of blood to parts of the body ($\mathrm{cm}^{3} / \mathrm{min}$) when at rest and during exercise.
(b) (i) Use the information from Diagram 2 to complete the table below.

Parts of the body to be included:

Digestive System

Skin

Brain

Arteries of Heart

Muscles of Skeleton

Bone

HOW BLOOD SUPPLY CHANGES DURING EXERCISE		
reduced	unchanged	increased
Kidney		

(ii) What happens to the rate of supply of blood to the whole body with exercise?
(You should make full use of the information provided.)
\qquad
\qquad
\qquad

Q42.
(a) Breathed-out air is different from breathed-in air.

The two pie-charts show the percentages of different gases in each.
Complete the second pie-chart, using the information from the table.

AIR YOU BREATHE OUT

This air contains less than
1% carbon dioxide. (Too little to show)

Gases in breathed-out air	
nitrogen	79%
oxygen	16%
carbon dioxide	4%
other gases	1%

(b) Use the information above to complete the following sentences.

The air you breathe out contains more \qquad than the air you breathe in.

The air you breathe out contains less \qquad than the air you breathe in.
(Total 5 marks)

Q43.

As they go higher up a mountain, mountaineers take less oxygen into their bodies with each breath.

This is shown in the table below.

	MILLIGRAMS OF OXYGEN TAKEN INTO LUNGS WITH EACH NORMAL BREATH	MILLIGRAMS OF OXYGEN TAKEN INTO BLOOD WITH EACH NORMAL BREATH
At bottom of	300	60

mountain		
At top of mountain	150	30

(a) At the top of the mountain, they only take half as much oxygen into their lungs with each breath as they did at the bottom.

How does this affect the amount of oxygen that gets into their blood with each breath?
\qquad
\qquad
(b) Why do the cells in the mountaineers' bodies need oxygen?
\qquad
\qquad

Q44.
(a) (i) The table shows an athlete's breathing rate after the end of a race.

The results can be put onto a graph.
Three of the points are already plotted.
Plot the other points shown in the table.
Then draw the graph.

Time after end of race (minutes)	Breathing rate (litres per second)
0	4
1	2
2	1
3	1
4	1
5	

(ii) What is the athlete's breathing rate $1 / 2$ (half) a minute after the end of the race?
\qquad
(b) One of the reasons for breathing is to get rid of carbon dioxide from your body. Choose words from the list to complete the sentences below about how your body does this.

> blood heart kidneys lungs urine

Carbon dioxide gets out of your body from your \qquad
The carbon dioxide is carried to this part of your body by your \qquad
(c) The bar charts show what happens in an athlete's muscles when running in two races of different distances.

(i) Compare what happens in the athlete's muscles when running in the two races.
\qquad
\qquad
\qquad
(ii) Use the information in the box to explain your answer to (i).

aerobic respiration	glucose + oxygen	$\ldots \ldots \ldots$	carbon dioxide + water
anaerobic respiration	glucose	$\ldots \ldots$.	lactic acid

\qquad
\qquad

Q45.
(a) The table shows an athlete's breathing rate after the end of a race.

Use the information shown in the table to draw a line graph.

Time after end of race (minutes)	Breathing rate (iitres per second)
0	4
1	2
2	1
3	1
4	1
5	1

(b) The bar charts show what happens in an athlete's muscles when running in two races of different distances.

(i) Compare what happens in the athlete's muscles when running in the two races.
\qquad
\qquad
(ii) Use the information in the box to explain your answer to (i).

| aerobic respiration | glucose + oxygen | \ldots. | carbon dioxide + water |
| :--- | ---: | :--- | :--- | :--- |
| anaerobic respiration | glucose | \ldots. | lactic acid |

\qquad
\qquad
(c) Explain why the athlete breathes at a faster rate than normal for two minutes after finishing a 100 metres race.
\qquad
\qquad
\qquad

