RESULTANT FORCES

Q1.

Figure 1 shows a skier using a drag lift.

The drag lift pulls the skier from the bottom to the top of a ski slope.

The arrows, A, B, C and D represent the forces acting on the skier and her skis.

Figure 1

(a) Which arrow represents the force pulling the skier up the slope?

Tick one box.	
A	
В	
С	
D	

(1)

(b) Which arrow represents the normal contact force?

Tick **one** box.

A	
В	
С	
D	

(c) The drag lift pulls the skier with a constant resultant force of 300N for a distance of 45 m.

Use the following equation to calculate the work done to pull the skier up the slope.

(d) At the top of the slope the skier leaves the drag lift and skis back to the bottom of the slope.

Figure 2 shows how the velocity of the skier changes with time as the skier moves down the slope.

Figure 2

After 50 seconds the skier starts to slow down.

The skier decelerates at a constant rate coming to a stop in 15 seconds.

Draw a line on **Figure 2** to show the change in velocity of the skier as she slows down and comes to a stop.

(2)

(2)

(Total 6 marks)

Q2.

The stopping distance of a car is the sum of the thinking distance and the braking distance.

The table below shows how the thinking distance and braking distance vary with speed.

Speed in m / s	Thinking distance in m	Braking distance in m
10	6	6.0
15	9	13.5
20	12	24.0
25	15	37.5
30	18	54.0

The data in the	ne table above refers to a car in good mechanical condition driven by
	he stopping distance of the car increases if the driver is very tired.
A student loo	ks at the data in the table above and writes the following:
	thinking distance ∝ speed
	thinking distance ∝ speed
Explain wheth	ner the student is correct.

(2)

(d) Applying the brakes with too much force can cause a car to skid.

The distance a car skids before stopping depends on the friction between the road surface and the car tyres and also the speed of the car.

Friction can be investigated by pulling a device called a 'sled' across a surface at constant speed.

The figure below shows a sled being pulled correctly and incorrectly across a surface.

The constant of friction for the surface is calculated from the value of the force pulling the sled and the weight of the sled.

Correct ✓	Incorrect X
Why is it important that the sled is	s pulled at a constant speed?
Tick one box.	
If the sled accelerates it will be d	lifficult to control.
If the sled accelerates the value of friction will be wrong.	for the constant
If the sled accelerates the norma will change.	al contact force
If the sled is pulled at an angle to friction would not be appropriate.	the surface the value calculated for the constant
Explain why.	
	id marks, an accident investigator determines that
By measuring the length of the ski	id marks, an accident investigator determines that een the brakes being applied and stopping was 22
By measuring the length of the ski the distance a car travelled between.	een the brakes being applied and stopping was 22 etermine the friction. The investigator then
By measuring the length of the ski the distance a car travelled between. The investigator used a sled to de	een the brakes being applied and stopping was 22 etermine the friction. The investigator then ed at 7.2 m/s^2 .
By measuring the length of the ski the distance a car travelled between. The investigator used a sled to decalculated that the car decelerate	een the brakes being applied and stopping was 22 etermine the friction. The investigator then ed at 7.2 m / s².

		Speed =	
		(Tota) al 11 mark
		am below shows a person using a device called a jetpack. Water is forced s from the jetpack and produces an upward force on the person.	
		Water out Water in Lake	
a)	Stat mid-	e the condition necessary for the person to be able to remain stationary in air.	
))	The	person weighs 700 N and the jetpack weighs 140 N.	
))	The	person weighs 700 N and the jetpack weighs 140 N. Calculate the combined mass of the person and the jetpack.	
)			

Q3.

(ii)

Calculate the acceleration of the person and the jetpack. Give the unit.

Increasing the upward force to 1850 N causes the person to accelerate upwards. $\,$

		Acceleration) =	Unit
				(Total
		ed to a spring, the spring engling constant of 25 N / m.	xtends by 0.12	2 m.
		plied to the spring.		
For	ce =	N		
Fig	jure 1 shows a toy	glider. To launch the glide and then the glider is relea		he rubber band and
Fig	jure 1 shows a toy	glider. To launch the glide and then the glider is relea Figure 1	sed.	he rubber band and
Fig	jure 1 shows a toy	glider. To launch the glide and then the glider is relea	sed.	he rubber band and
Fig	gure 1 shows a toy er are pulled back Rubber ban	glider. To launch the glide and then the glider is relea	der	
Fig glid	gure 1 shows a toy er are pulled back Rubber ban	glider. To launch the glide and then the glider is relea	der	

(ii) **Figure 2** shows how the extension of the rubber band varies with the force applied to the rubber band.

What can you conclude, from **Figure 2**, would happen to the extension of the rubber band if the force applied to the rubber band was increased to 6 N?

The rubber band does not break	ζ.	

(c) Figure 3 shows the vertical forces, A and B, acting on the glider when it is flying.

(2)

(i) What name is given to the force labelled **B**?

Draw a ring around the correct answer.

	drag	friction	n weight	(1)
(ii)	force B is greater than		ribes the downward speed of the glider when	()
	Tick (✓) one box.			
	Downward speed incre	ases		
	Downward speed is co	nstant		
	Downward speed decre	eases		
				(1)
			(Total 8 m	arks)

Q5.

(a) **Figure 1** shows a car travelling around a bend in the road. The car is travelling at a constant speed.

Figure 1

There is a resultant force acting on the car. This resultant force is called the centripetal force.

In which direction, A, B, C or D, does the centripetal force act on the car?

Α	В	С	D	
State the name	of the force that	provides the cen	tripetal force.	

(2)

(b) Figure 2 shows a racing car.

(i)

Figure 2

	(To	tal 6 ma
objects interact, they exert forces on each other.		
ch statement about the forces is correct?		
(✓) one box.		
	Tick (✓)	
e forces are equal in size and act in the same direction.		
e forces are unequal in size and act in the same direction.		
e forces are equal in size and act in opposite directions.		
e forces are unequal in size and act in opposite directions.		
herman pulls a boat towards land.		
forces acting on the boat are shown in Diagram 1 .		
250 N 300	N	
Describe the motion of the boat.		
	objects interact, they exert forces on each other. ch statement about the forces is correct? (/) one box. e forces are equal in size and act in the same direction. e forces are unequal in size and act in the same direction. e forces are equal in size and act in opposite directions. e forces are unequal in size and act in opposite directions. cherman pulls a boat towards land. forces acting on the boat are shown in Diagram 1. fisherman exerts a force of 300 N on the boat. sea exerts a resistive force of 250 N on the boat. Diagram 1	objects interact, they exert forces on each other. ch statement about the forces is correct? (/) one box. Tick (/) e forces are equal in size and act in the same direction. e forces are unequal in size and act in opposite directions. e forces are unequal in size and act in opposite directions. e forces are unequal in size and act in opposite directions. e forces are unequal in size and act in opposite directions. sherman pulls a boat towards land. forces acting on the boat are shown in Diagram 1. fisherman exerts a force of 300 N on the boat. Diagram 1 Diagram 1

Q6.

(ii) When the boat reaches land, the resistive force increases to 300 N. The fisherman continues to exert a force of 300 N.

Describe the motion of the boat.

Tick (✓) one box.

Accelerating to the right

Constant velocity to the right

Stationary

Explain your answer to part (b)(ii). (iii)

(2)

(1)

(iv) Another fisherman comes to help pull the boat. Each fisherman pulls with a force of 300 N, as shown in **Diagram 2**.

Diagram 2 is drawn to scale.

Add to Diagram 2 to show the single force that has the same effect as the two 300 N forces.

Determine the value of this resultant force.

Q7.

The diagram shows a boat pulling a water skier.

Expi	ain why.
	boat accelerates at a constant rate in a straight line. This causes the velocity water skier to increase from 4.0 m/s to 16.0 m/s in 8.0 seconds.
(i)	Calculate the acceleration of the water skier and give the unit.
(1)	Calculate the acceleration of the water skiel and give the unit.
	Acceleration =
	Acceleration =
(ii)	Acceleration = The water skier has a mass of 68 kg.
(ii)	
(ii)	The water skier has a mass of 68 kg.
(ii)	The water skier has a mass of 68 kg.
(ii)	The water skier has a mass of 68 kg.
(ii)	The water skier has a mass of 68 kg. Calculate the resultant force acting on the water skier while accelerating.
(ii)	The water skier has a mass of 68 kg.
(ii) (iii)	The water skier has a mass of 68 kg. Calculate the resultant force acting on the water skier while accelerating.
	The water skier has a mass of 68 kg. Calculate the resultant force acting on the water skier while accelerating. Resultant force = Draw a ring around the correct answer to complete the sentence.
	The water skier has a mass of 68 kg. Calculate the resultant force acting on the water skier while accelerating. Resultant force =
	The water skier has a mass of 68 kg. Calculate the resultant force acting on the water skier while accelerating. Resultant force = Draw a ring around the correct answer to complete the sentence. The force from the boat pulling the water skier forwards
	The water skier has a mass of 68 kg. Calculate the resultant force acting on the water skier while accelerating. Resultant force = Draw a ring around the correct answer to complete the sentence. The force from the boat pulling the water skier forwards

Q8.

(a) The diagram shows two forces acting on an object.

What is the resultant force acting on the object?

Tick (✓) one box.

8 N to the right	
9	

(1)

(b) BASE jumpers jump from very high buildings and mountains for sport.

The diagram shows the forces acting on a BASE jumper in flight. The BASE jumper is wearing a wingsuit.

(i) Draw a ring around the correct answer in the box to complete each sentence.

The BASE jumper accelerates forwards when force A

	smaller than	
is	equal to	force B .

bigger than

is

The BASE jumper falls with a constant speed when force C

smaller than
equal to force **D**.
bigger than

(2)

(ii) To land safely the BASE jumper opens a parachute.

What effect does opening the parachute have on the speed of the falling BASE jumper?

Give a reason for your answer.

(2)

(Total 5 marks)

Q9.

(a) A student uses some everyday items to investigate static electricity.

1 A strip of plastic is cut

2 The plastic strip is rubbed

3 The plastic strip is hung

from a plastic carrier bag		with a cloth		over a wooden rod		
(i) Draw a ring around the cor		rect answ	er in the	box to complete each sentence.		
	Rubbing the plastic s charged.	trip wit	th a cloth	causes	the strip to become negatively	
			electror	ns		
Т	his happens becaus	e	neutron	S	move from the cloth onto the plastic s	strip
			protons			
T	The cloth is left with	a pos	gative	charge		
		zero				(2)
	When the plastic strip				en rod, the two halves of the strip	
١		s shou	uld the st		ake about the forces acting on the	
,	1					
-						
	2.					

(b) Electrical charges move more easily through some materials than through other materials.

Through which **one** of the following materials would an electrical charge move most easily?

Draw a ring around your answer.

aluminium glass rubber (1)

(Total 5 marks)

Q10.

(a) Some students have designed and built an electric-powered go-kart. After testing, the students decided to make changes to the design of their go-kart.

First design X

Final design Y

(3)

The go-kart always had the same mass and used the same motor.

The change in shape from the first design (X) to the final design (Y) will affect the top speed of the go-kart.

Explain why.			

(b) The final design go-kart, Y, is entered into a race.

The graph shows how the velocity of the go-kart changes during the first 40 seconds of the race.

(i) Use the graph to calculate the acceleration of the go-kart between points ${\bf J}$ and ${\bf K}$.

Give your answer to two significant figures.

		Acceleration = m/s ²	(2)
	(ii)	Use the graph to calculate the distance the go-kart travels between points \boldsymbol{J} and $\boldsymbol{K}.$	(2)
		Distance = m	(2)
	(iii)	What causes most of the resistive forces acting on the go-kart?	
		(Total 8 ma	(1) arks)
1. The	diagra	am shows the passenger train on part of a rollercoaster ride.	
(a)	train	ich arrow shows the direction of the resultant force acting on the passenger $?$ a tick (\checkmark) in the box next to your choice.	
		Direction of travel	
(b)		part of the ride, the maximum gravitational field strength acting on the sengers seems 3 times bigger than normal.	(1)
	Norr	mal gravitational field strength = 10 N/kg	
	(i)	Calculate the maximum gravitational field strength that seems to act on the passengers during the ride.	
		Maximum gravitational field strength = N/kg	

Q11.

(1)

(ii)	One of the passengers has a mass of 75	5 kg.	
	Calculate the maximum weight this pass	senger seems to have during	g the ride.
	Show clearly how you work out your ans	swer.	
	M	aximum weight =	N (2) (Total 4 marks)
The	diagrams, A , B and C , show the horizonta	al forces acting on a movin g	g car.
	a line to link each diagram to the descriph the forces act.	otion of the car's motion at th	ne moment
Draw	only three lines.		
		stationary	
1000	500 N		
	Α		_
		constant speed	
2001	500 N		
	В		7
		slowing down	
100	200 N		
	С		7
		accelerating forwards	(3)

Q12.

(a)

(b) The front crumple zone of a car is tested at a road traffic laboratory. This is done by using a remote control device to drive the car into a strong barrier. Electronic sensors are attached to a dummy inside the car.

	Box 1			
	Dummy	Stron Box 2	g barrier	
(i)	Draw an arrow in Box 1 to show the direct on the barrier.	ion of the force tl	nat the car exe	rts (1)
(ii)	Draw an arrow in Box 2 to show the direct exerts on the car.	ion of the force tl	nat the barrier	(1)
(iii)	Complete the following by drawing a ring a	round the correc	t line in the box	
	The car exerts a force of 5000 N on the ba	rrier. The barrier	does not move	Э.
	exerted by the barrier on the car will be	more than equal to less than	5000 N.	(1)
(iv)	Which one of the following gives the most electronic sensors to the dummy?	likely reason for	attaching	, ,
	Put a tick (✓) in the box next to your answ	er.		
	To measure the speed of the car just befo	re the impact.		
	To measure the forces exerted on the dun	nmy during the ir	mpact.	
	To measure the distance the car travels d	uring the impact.		

Q13.

(a) A car is being driven along a straight road. The diagrams, **A**, **B** and **C**, show the horizontal forces acting on the moving car at three different points along the road.

(1)

(Total 7 marks)

Describe the motion of the car at each of the points, A, B and C.

- (b) The diagram below shows the stopping distance for a family car, in good condition, driven at 22 m/s on a dry road. The stopping distance has two parts.
 - (i) Complete the diagram below by adding an appropriate label to the second part of the stopping distance.

(3)

(1)

(1)

(ii) State **one** factor that changes both the first part **and** the second part of the stopping distance.

(c) The front crumple zone of a car is tested at a road traffic laboratory. This is done by using a remote control device to drive the car into a strong barrier. Electronic sensors are attached to the dummy inside the car.

Sugges	st why	the du	mmy is	fitted w	ith ele	ctronic	senso	rs.		
The gra	ph sh	ows ho	w the v	elocity	of the	car ch	anges	during t	he test.	
Velocity n metres er second	9- 8- 7- 6- 5- 4-									
	3- 2- 1-									
	Ó		1		2		3		4	5
					Time	in se	conds			

		Acceleration =		
		(Total 10) mar	(3) ·ks)
Q14. (a)	The	e diagram shows the horizontal forces acting on a swimmer.		
	(i)	The swimmer is moving at constant speed. Force T is 120 N. What is the size of force D ?		
			N	(1)
	(ii)	By increasing force T to 140 N, the swimmer accelerates to a higher speed. Calculate the size of the initial resultant force acting on the swimmer.	_	
		Initial resultant force =	N	(1)
	(iii)	Even though the swimmer keeps the force T constant at 140 N, the resultant force on the swimmer decreases to zero. Explain why.		

(b) A sports scientist investigated how the force exerted by a swimmer's hands against the water affects the swimmer's speed.

(3)

The investigation involved 20 males and 20 females swimming a fixed distance. Sensors placed on each swimmer's hands measured the force 85 times every second over the last 10 metres of the swim.

The measurements were used to calculate an average force.

The average speed of each swimmer over the last 10 metres of the swim was also measured.

The data from the investigation is displayed in the graph.

,	What was the dependent variable in this investigation:

(iii) Give **one** way in which the data for the male swimmers is different from the data for the female swimmers.

(iv) Considering only the data from this investigation, what advice should a swimming coach give to swimmers who want to increase their average speed?

(1)

Q15.

The diagram shows the passenger train on part of a rollercoaster ride.

(a) Which arrow shows the direction of the resultant force acting on the passenger train?

Put a tick (v) in the box next to your choice.

(1)

(b) At the bottom of the slope, the passengers in the train all have the same speed but they each have a different kinetic energy.

Why is the kinetic energy of each passenger different?

(1)

(c) For part of the ride, the maximum gravitational field strength acting on the passengers seems 3 times bigger than normal.

Normal gravitational field strength = 9.8 N/kg

(i) Calculate the maximum gravitational field strength that seems to act on the passengers during the ride.

Maximum gravitational field strength = _____ N/kg

(1)

(ii) One of the passengers has a mass of 80 kg.

Calculate the maximum weight this passenger seems to have during the ride.

Show clearly how you work out your answer.

Maximum weight =	N	
------------------	---	--

(Total 5 marks)

Q16.

The diagram shows an adult and a child pushing a loaded shopping trolley.

(a) (i) What is the *total force* on the trolley due to the adult and child?

(ii) Which **one** of the terms in the box means the same as *total force*?Draw a ring around your answer.

answer force mean force resultant force

(1)

(1)

(iii) The trolley is pushed at a constant speed for 80 metres.

Calculate the work done to push the trolley 80 metres.

Show clearly how you work out your answer.

Work done = _____

(b) Complete the following sentences by drawing a ring around the correct word in each of the boxes.

(i) The unit of work done is the

joule

newton

watt

(2)

(ii) Most of the work done to push the trolley is transformed into

heat light sound

(1)

(Total 6 marks)

Q17.

(a) The diagram shows a steel ball-bearing falling through a tube of oil. The forces, **L** and **M**, act on the ball-bearing.

What causes force L?

(1)

(b) The distance – time graph represents the motion of the ball-bearing as it falls through the oil.

(i)	Explain, in terms of the forces, L and M, why the ball-bearing accelerates at
	first but then falls at constant speed.

(ii) What name is given to the constant speed reached by the falling ball-bearing?

(1)

(iii) Calculate the constant speed reached by the ball-bearing.

Show clearly how you use the graph to work out your answer.

Speed = _____ m/s

(3)

Q18.

(a) The diagram shows an aircraft and the horizontal forces acting on it as it moves along a runway. The *resultant force* on the aircraft is zero.

(i)	What is meant by the term resultant force?
(ii)	Describe the movement of the aircraft when the resultant force is zero.
	aircraft has a take-off mass of 320 000 kg. Each of the 4 engines can produce eximum force of 240 kN.
a ma	
a ma Calc	eximum force of 240 kN.
a ma Calc	ulate the maximum acceleration of the aircraft.
a ma Calc	ulate the maximum acceleration of the aircraft. w clearly how you work out your answer and give the unit.
a ma Calc	ulate the maximum acceleration of the aircraft. w clearly how you work out your answer and give the unit.
a ma Calc	ulate the maximum acceleration of the aircraft. w clearly how you work out your answer and give the unit.
a ma	ulate the maximum acceleration of the aircraft. w clearly how you work out your answer and give the unit.

Q19.

The diagram shows the forces on a small, radio-controlled, flying toy.

(a)	(i)	The mass of the toy is 0.06 kg.
		Gravitational field strength = 10 N/kg

Calculate the weight of the toy.

Show clearly how you work out your answer and give the unit.

Weight = _____

(ii) Complete the following sentence by drawing a ring around the correct line in the box.

When the toy is hovering stationary in mid-air, the lift force is

bigger than

the same as

smaller than

the weight of the toy.

(b) When the motor inside the toy is switched off, the toy starts to *accelerate* downwards.

(i) What does the word accelerate mean?

(ii) What is the direction of the resultant force on the falling toy?

(1)

(1)

(3)

(1)

Q20.

The diagram shows a small, radio-controlled, flying toy. A fan inside the toy pushes air downwards creating the lift force on the toy.

When the toy is hovering in mid-air, the fan is pushing 1.5 kg of air downwards every 10 seconds. Before the toy is switched on, the air is stationary.

(a) Use the equation in the box to calculate the velocity of the air when the toy is hovering.

force =
$$\frac{\text{change in momentum}}{\text{time taken for the change}}$$

Show clearly how you work out your answer.

Velocity = _____ m/s

(3)

(2)

(b) Explain why the toy accelerates upwards when the fan rotates faster.

(c) The toy is not easy to control so it often falls to the ground.

Explain how the flexible polystyrene base helps to protect the toy from being damaged when it crashes into the ground.

		(Total 8 mark
21.		
The	liagram shows a sky-diver in free fall. Two forces, X and Y , act on the sky-div	er.
	X V	
(a)	Complete these sentences by crossing out the two lines in each box that ar wrong.	е
	(i) Force X is caused by friction gravity weight	(
	(ii) Force Y is caused by	
(b)	The size of force ${\bf X}$ changes as the sky-diver falls. Describe the motion of the sky-diver when:	
	(i) force X is smaller than force Y ,	

(ii) force \mathbf{X} is equal to force \mathbf{Y} .

	(1) (Total 5 marks)				
shutt	arrows in the diagram represent the size and direction of the forces on a space le, fuel tank and booster rockets one second after launch. The longer the arrow igger the force.				
	Thrust force				
4					
	tht of shuttle, fuel tanks and ter rockets plus air resistance				
(i)	Describe the upward motion of the space shuttle one second after launch.				
(ii)	By the time it moves out of the Earth's atmosphere, the total weight of the space shuttle, fuel tank and booster rockets has decreased and so has the air resistance.				
	How does this change the motion of the space shuttle? (Assume the thrust force does not change).				
The	space shuttle takes 9 minutes to reach its orbital velocity of 8100 m/s.				
(i)	Write down the equation that links acceleration, change in velocity and time taken.				
(ii)	Calculate, in m/s², the average acceleration of the space shuttle during the first 9 minutes of its flight. Show clearly how you work out your answer.				

Q22.

(a)

(b)

	average acceleration =	m/s²	
			(2)
(iii)	How is the velocity of an object different from the speed of an object?		
			(1)
	(T	Total 6 ma	arks)

Q23.

(a) Two skydivers jump from a plane. Each holds a different position in the air.

Adapted from Progress with Physics by Nick England, reproduced by permission of Hodder Arnold

Complete the following sentence.			
Skydiver	will fall faster because		
		(2)	

The diagram shows the direction of the forces acting on one of the skydivers.

Adapted from Progress with Physics by Nick England, reproduced by permission of Hodder Arnold

(b) In the following sentences, cross out in each box the **two** lines that are wrong.

(i)	Force X is caused by	air resistance friction gravity		
				(1
(ii)	Force Y is caused by	air resistance gravity weight		
` ,	•			(1
(iii)	When force X is bigge	r than force Y ,	the speed of the	
	go up stay the go dow	e same m		(1
		Γ	goes up	
			stays the same goes down	
(iv)	After the parachute op	ens, force X L		(1
How	does the area of an ope	ened parachute	affect the size of force Y ?	`
-				
				 (1 (Total 7 marks

Q24.

(c)

The apparatus shown is used to compare the motion of a coin with the motion of a piece of paper as they both fall.

(b)	dowr State	air in the tube is removed by the vacuum pump. The tube is turned upside n. e two ways in which the motion of the coin and piece of paper will change pared to when there was air in the tube.	
	1		
	2		
			(2)
		(Total 3 m	arks)
Q25. The	diagra	am below shows an empty cargo ship. It is not moving.	
	ulag. c	**************************************	
(a)	The	water exerts a force on the ship. In which direction does this force act?	
			(1)
(b)	The	diagram below shows the same cargo ship. This time it has a full load of cargo.	
	(i)	How does the force exerted by the water on the ship change as the ship is loaded?	
	(ii)	Why has the force exerted by the water changed?	(1)

_	_	_
$\boldsymbol{\Gamma}$	•	_
w	_	T).

(a) The diagrams below show pairs of forces acting on different objects. In each case describe what happens when the forces are increased. Then describe what happens when the forces are removed.

(i)

	Thin strip of plasticine
Pulling for	ce
	When the forces are increased
	When the forces are removed
(ii)	
P	Strong metal spring
	When the forces are increased
	When the forces are removed
(iii)	This of astic red as
	Pushing force Pushing force
	When the forces are increased

When the forces are removed

(6)

(b) The graph shows the increase in length of a spring against **load** (force).

The length of the spring with no load was 15 cm.

Use the graph to find:

- (i) The load needed to produce an increase in length of 2 cm.
- (ii) The increase in length produced by a load of 2.3 N.
- (iii) The **length** of the spring when the load was 2.3 N.

(3)

Q27.

The diagrams show pairs of forces acting on different objects. In each case describe what happens when the forces are increased. Then describe what happens when the forces are removed.

(a)

Thin strip of plasticine	
Pulling force	
When the forces are increased	
When the forces are removed	
	(2)
(b)	
Strong metal spring	
Pushing force — DODDODDODDODD This Pushing force	
When the forces are increased	
When the forces are removed	
(Total 4 mar	(2) rks)

Q28.

(a) The diagram below shows a moving tractor. The forward force from the engine exactly balances the resisting forces on the tractor.

motion of the tractor be affected?	less. If the	or comes to a drier part of the field where the resisting forces are e forward force from the engine is unchanged how, if at all, will the tractor be affected?
------------------------------------	--------------	--

(3)

(b) Two pupils are given the task of finding out how fast a tractor moves across a field. As the tractor starts a straight run across the field the pupils time how long it takes to pass a series of posts which are forty metres apart. The results obtained are shown in the table below.

Distancetravelled (m)	0	40	80	120	160	200
Timetaken (s)	0	8	16	24	32	40

(i) Draw a graph of distance travelled against time taken using the axes on the graph below. Label your graph line A.

,	Calculate the speed of the tractor.	

(2)

(c) In another, wetter field there is more resistance to the movement of the tractor. It now travels at 4 m/s.

(i)

Calculate the time needed to travel 200m.							

(ii) On the graph in part (b) draw a line to represent the motion of the tractor across the second field. Label this line B.

(1)

(d)		a road the tractor accelerates from rest up to a speed of 6 m/s	s in 15 seconds.
	Calc	ulate the acceleration of the tractor.	
		Acceleration = _	m/s ²
			(Total 15 m
2 9. A sky	-dive	r jumps from a plane.	
The s	ky-di	ver is shown in the diagram below.	
(a)	Arro	ows X and Y show two forces acting on the sky-diver as he fa	lls.
()	(i)	Name the forces X and Y .	
		X	
		Υ	
	(ii)	Explain why force X acts in an upward direction.	
	(iii)	At first forces X and Y are unbalanced.	

(iv)	How does this unbalanced force affect the sky-diver?

(b) After some time the sky-diver pulls the rip cord and the parachute opens.

The sky-diver and parachute are shown in the diagram below.

After a while forces X and Y are balanced.

Underline the correct answer in each line below.

Force X has

increased / stayed the same / decreased.

Force Y has

increased / stayed the same / decreased.

The speed of the sky-diver will

increase / stay the same / decrease.

(c) The graph below shows how the height of the sky-diver changes with time.

(3)

(2)

	constant speed?	
i)	What distance does the sky-diver fall at a constant speed?	
	Distance	_ m
ii)	How long does he fall at this speed?	
	Time	_ s
/)	Calculate this speed.	

Speed_

(Total 14 marks)

(2)

_ m/s

Five forces, A, B, C, D and E act on the van.

Force is	the force resisting the va	an's motion.	
Complete the table of the van.	A and E can change. to show how big force A a tick in the correct box. een done for you.	A is compared to force	e E for each motion
MOTION OF VAN	FORCE A SMALLER THAN FORCE E	FORCE A EQUAL TO FORCE E	FORCE A BIGGER THAN FORCE E
Not moving			
Speeding up			
Constant speed			
Slowing down			
When is force E ze	ero?		
	t and leaks one drop of or shows the oil drops left		an moves from W to

Describe the motion of the van as it moves from:

	W to X					
	X to Y					
	Y to Z					
(e)		d passengers we uce the risk of inj			y.	
	backwards	downwards	force	forwards	mass	weight
		following sentenery is reduced if the			st above, to	o explain why
	A large		is needed	I to stop the va	n suddenly	
	The driver and	d passengers wo	uld continue	to move		·
	The seatbelts passengers	supply a		force to l	keep the dr	iver and
	in their seats.					
	r of the forces th	nat act on this co	ntainer ship a	are shown in th	e diagram	(Total 11 m as A, B, C and
Four	r of the forces th	nat act on this co	ntainer ship a	are shown in th	e diagram	·
Four D .		• • •	A C			as A, B, C and
D—	nplete each sen	tence by choosin	A C C c c c c c c c c c c c c c c c c c			as A, B, C and
D. D Com	nplete each sent first one has be	tence by choosing	A C C c c c c c c c c c c c c c c c c c	letters, A, B, (or D.	as A, B, C and
D. Com The At th	inplete each sent first one has be the start, the ship	tence by choosin	c ag the correct	letters, A , B , 0	C or D.	as A , B , C and

The ship stops at a port. All of the containers are taken off and this changes

balanced.

force _____ .

(Total 3 marks)

Q32.

(ii)

(a) The model bus is being pushed on a table.

(i)	At first the pushing force does not make the model bus move. Explain why.	
		-
		(1)

write down two things that happen as the pushing force increases.	
1.	
2.	

(2)

(2)

(iii) Complete the formula by choosing the correct words from the box.

acceleration	distance moved	force applied
speed	time ta	aken

Work done on			
the model bus	=	 ×	

(b) In this situation, the car driver needs to stop the car in the shortest possible distance.

	Factor	Tick (✓) makes stopping distance greater	
	brakes are old and worn	✓	
	car is travelling fast		
	driver has been drinking alcohol		
	four new tyres are fitted		
	hot, dry, sunny weather		
	ice on the road		
(ii)	Complete the sentence by writing	ng the correct words in the spaces.	
	The car will skid if the braking for	orce is too big compared with the friction	
	between the car's	and the	
		(T.	otal 9 n
		`	
ı scien	ce lesson, some children float an	apple on some water.	
	ce lesson, some children float an	apple on some water.	
e of the	e children says:	apple on some water. there cannot be any forces acting on it."	

Q33.

Q34.

Q34.				
Cho	oose words from this li	st to complete the se	ntences below.	
	balanced	electricity	gravity	
	joules	magnetism	newtons	
Who	en you drop somethin	g it falls.		
This	s is because it is pulled	d to the Earth by		
We	measure forces in uni	ts called		
Who	en a falling object read	ches the ground, it sto	pps moving.	
This	s means that the force	s acting on it are now		
			(Total 3	3 marks)
Q35.				
A sl	ky-diver steps out of a	n aeroplane.		
Afte	er 10 seconds she is fa	alling at a steady spee	ed of 50m/s.	
She	then opens her parac	chute.		
Afte	er another 5 seconds s	he is once again fallii	ng at a steady speed.	
This	s speed is now only 10	m/s.		
(a)			ration during the time from when she oper er steady speed. (Show your working.)	าร
(b)	Explain, as fully as	you can:		(3)
	(i) why the sky-c her parachute		es a steady speed (with or without	

(ii)	why the sky-diver's steady speed is lower when her parachute is open.
	sky- diver and her equipment have a total mass of 75kg. Calculate the itational force acting on this mass. (Show your working.)

Q36.

When you slide a book across a table, there is a force of friction between the book and the table.

(a)	Which arrow shows the force of friction that acts on the book?	
(b)	The force of friction will slow the book down. Write down one other effect that the force of friction will have on the book.	
		(1)

(Total 2 marks)

Q37.

The brick shown in the diagram is being pushed but it is **not** moving.

