RESULTANT FORCES

Q1.
Figure 1 shows a skier using a drag lift.
The drag lift pulls the skier from the bottom to the top of a ski slope.
The arrows, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} represent the forces acting on the skier and her skis.
Figure 1

(a) Which arrow represents the force pulling the skier up the slope?

Tick one box.
A

B

C

D

(b) Which arrow represents the normal contact force?

Tick one box.
A \square

B

C

D

(c) The drag lift pulls the skier with a constant resultant force of 300 N for a distance of 45 m .

Use the following equation to calculate the work done to pull the skier up the slope.

$$
\text { work done }=\text { force } \times \text { distance }
$$

\qquad
\qquad
Work done $=$
(d) At the top of the slope the skier leaves the drag lift and skis back to the bottom of the slope.

Figure 2 shows how the velocity of the skier changes with time as the skier moves down the slope.

Figure 2

After 50 seconds the skier starts to slow down.
The skier decelerates at a constant rate coming to a stop in 15 seconds.
Draw a line on Figure 2 to show the change in velocity of the skier as she slows down and comes to a stop.

Q2.
The stopping distance of a car is the sum of the thinking distance and the braking distance.

The table below shows how the thinking distance and braking distance vary with speed.

Speed in \mathbf{m} / \mathbf{s}	Thinking distance in \mathbf{m}	Braking distance in \mathbf{m}
10	6	6.0
15	9	13.5
20	12	24.0
25	15	37.5
30	18	54.0

(a) What is meant by the braking distance of a vehicle?
\qquad
\qquad
(b) The data in the table above refers to a car in good mechanical condition driven by an alert driver.

Explain why the stopping distance of the car increases if the driver is very tired.
\qquad
\qquad
\qquad
\qquad
(c) A student looks at the data in the table above and writes the following:
thinking distance \propto speed
thinking distance \propto speed
Explain whether the student is correct.
\qquad
\qquad
\qquad
\qquad
(d) Applying the brakes with too much force can cause a car to skid.

The distance a car skids before stopping depends on the friction between the road surface and the car tyres and also the speed of the car

Friction can be investigated by pulling a device called a 'sled' across a surface at constant speed.

The figure below shows a sled being pulled correctly and incorrectly across a surface.

The constant of friction for the surface is calculated from the value of the force pulling the sled and the weight of the sled.

Why is it important that the sled is pulled at a constant speed?
Tick one box.
If the sled accelerates it will be difficult to control.

If the sled accelerates the value for the constant of friction will be wrong.
If the sled accelerates the normal contact force will change.

(e) If the sled is pulled at an angle to the surface the value calculated for the constant of friction would not be appropriate.

Explain why.
\qquad
\qquad
\qquad
\qquad
(f) By measuring the length of the skid marks, an accident investigator determines that the distance a car travelled between the brakes being applied and stopping was 22 m.

The investigator used a sled to determine the friction. The investigator then calculated that the car decelerated at $7.2 \mathrm{~m} / \mathrm{s}^{2}$.

Calculate the speed of the car just before the brakes were applied.
Give your answer to two significant figures.
Use the correct equation from the Physics Equation Sheet.

$$
\text { Speed }=\ldots \mathrm{m} / \mathrm{s}
$$

Q3.
The diagram below shows a person using a device called a jetpack. Water is forced downwards from the jetpack and produces an upward force on the person.

(a) State the condition necessary for the person to be able to remain stationary in mid-air.
\qquad
\qquad
(b) The person weighs 700 N and the jetpack weighs 140 N .
(i) Calculate the combined mass of the person and the jetpack.

Gravitational field strength $=10 \mathrm{~N} / \mathrm{kg}$
\qquad
\qquad
\qquad
Combined mass = \qquad kg
(ii) Increasing the upward force to 1850 N causes the person to accelerate upwards.

Calculate the acceleration of the person and the jetpack. Give the unit.

Acceleration $=$ \qquad Unit \qquad

Q4.
(a) When a force is applied to a spring, the spring extends by 0.12 m .

The spring has a spring constant of $25 \mathrm{~N} / \mathrm{m}$.
Calculate the force applied to the spring.
\qquad
\qquad

Force = \qquad N
(b) Figure 1 shows a toy glider. To launch the glider into the air, the rubber band and glider are pulled back and then the glider is released.

Figure 1

(i) Use the correct answers from the box to complete the sentence.

chemical	elastic potential	kinetic	thermal

When the glider is released, the \qquad energy
stored in the rubber band decreases and the glider gains
\qquad energy.
(ii) Figure 2 shows how the extension of the rubber band varies with the force applied to the rubber band.

Figure 2

What can you conclude, from Figure 2, would happen to the extension of the rubber band if the force applied to the rubber band was increased to 6 N ?

The rubber band does not break.
\qquad
\qquad
\qquad
\qquad
(c) Figure $\mathbf{3}$ shows the vertical forces, \mathbf{A} and \mathbf{B}, acting on the glider when it is flying.

Figure 3

(i) What name is given to the force labelled \mathbf{B} ?

Draw a ring around the correct answer.
drag
friction
weight
(ii) Which one of the following describes the downward speed of the glider when force \mathbf{B} is greater than force \mathbf{A} ?

Tick (\checkmark) one box.

Downward speed increases

Downward speed is constant

Downward speed decreases

Q5.
(a) Figure 1 shows a car travelling around a bend in the road. The car is travelling at a constant speed.

Figure 1

There is a resultant force acting on the car. This resultant force is called the centripetal force.
(i) In which direction, A, B, C or D, does the centripetal force act on the car?

Tick (\checkmark) one box.
A

B

C

D

(ii) State the name of the force that provides the centripetal force.
\qquad
(iii) State two factors that affect the size of the centripetal force acting on the car.

1. \qquad
2. \qquad
(b) Figure 2 shows a racing car.

Figure 2

The racing car should not roll over when racing.
State two features of the car that make it difficult for the car to roll over.

1. \qquad
\qquad
2. \qquad
\qquad

Q6.
When two objects interact, they exert forces on each other.
(a) Which statement about the forces is correct?

Tick (\checkmark) one box.

	Tick (\checkmark)
The forces are equal in size and act in the same direction.	
The forces are unequal in size and act in the same direction.	
The forces are equal in size and act in opposite directions.	
The forces are unequal in size and act in opposite directions.	

(b) A fisherman pulls a boat towards land.

The forces acting on the boat are shown in Diagram 1.
The fisherman exerts a force of 300 N on the boat.
The sea exerts a resistive force of 250 N on the boat.
Diagram 1

(i) Describe the motion of the boat.
\qquad
\qquad
\qquad
\qquad
(ii) When the boat reaches land, the resistive force increases to 300 N . The fisherman continues to exert a force of 300 N .

Describe the motion of the boat.
Tick ($\mathcal{\checkmark}$) one box.

(iii) Explain your answer to part (b)(ii).
\qquad
\qquad
\qquad
\qquad
(iv) Another fisherman comes to help pull the boat. Each fisherman pulls with a force of 300 N , as shown in Diagram 2.

Diagram 2 is drawn to scale.
Add to Diagram 2 to show the single force that has the same effect as the two 300 N forces.

Determine the value of this resultant force.

Diagram 2

Resultant force $=$ \qquad N

The diagram shows a boat pulling a water skier.
(a) The arrow represents the force on the water produced by the engine propeller. This force causes the boat to move.

Explain why.
\qquad
\qquad
\qquad
\qquad
(b) The boat accelerates at a constant rate in a straight line. This causes the velocity of the water skier to increase from $4.0 \mathrm{~m} / \mathrm{s}$ to $16.0 \mathrm{~m} / \mathrm{s}$ in 8.0 seconds.
(i) Calculate the acceleration of the water skier and give the unit.
\qquad
\qquad
\qquad
Acceleration $=$ \qquad
(ii) The water skier has a mass of 68 kg .

Calculate the resultant force acting on the water skier while accelerating.
\qquad
\qquad
\qquad
Resultant force $=$ \qquad N
(iii) Draw a ring around the correct answer to complete the sentence.

The force from the boat pulling the water skier forwards

Give the reason for your answer.

Q8.
(a) The diagram shows two forces acting on an object.

What is the resultant force acting on the object?
Tick (\checkmark) one box.
8 N to the right

8 N to the left

4 N to the right

4 N to the left

(b) BASE jumpers jump from very high buildings and mountains for sport.

The diagram shows the forces acting on a BASE jumper in flight.
The BASE jumper is wearing a wingsuit.

(i) Draw a ring around the correct answer in the box to complete each sentence.

The BASE jumper accelerates forwards when force A is

smaller than equal to	force \mathbf{B}.

The BASE jumper falls with a constant speed when force \mathbf{C}

is | smaller than |
| :--- |
| equal to |
| bigger than | force \mathbf{D}.

(ii) To land safely the BASE jumper opens a parachute.

What effect does opening the parachute have on the speed of the falling BASE jumper?

Give a reason for your answer.
\qquad
\qquad

Q9.
(a) A student uses some everyday items to investigate static electricity.

1 A strip of plastic is cut

Plastic strip

2 The plastic strip is rubbed
3 The plastic strip is hung
(i) Draw a ring around the correct answer in the box to complete each sentence.

Rubbing the plastic strip with a cloth causes the strip to become negatively charged.

This happens because | electrons |
| :--- |
| neutrons |
| protons | move from the cloth onto the plastic strip.

The cloth is left with | a negative |
| :--- |
| a positive |
| zero | charge.

(ii) When the plastic strip is hung over the wooden rod, the two halves of the strip move equally away from each other.

What two conclusions should the student make about the forces acting on the two halves of the plastic strip?

1. \qquad
\qquad
2. \qquad
\qquad
(b) Electrical charges move more easily through some materials than through other materials.

Through which one of the following materials would an electrical charge move most easily?

Draw a ring around your answer.
aluminium
glass
rubber
(Total 5 marks)

Q10.
(a) Some students have designed and built an electric-powered go-kart. After testing, the students decided to make changes to the design of their go-kart.

The go-kart always had the same mass and used the same motor.
The change in shape from the first design (\mathbf{X}) to the final design (\mathbf{Y}) will affect the top speed of the go-kart.

Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The final design go-kart, \mathbf{Y}, is entered into a race.

The graph shows how the velocity of the go-kart changes during the first 40 seconds of the race.

(i) Use the graph to calculate the acceleration of the go-kart between points \mathbf{J} and \mathbf{K}.

Give your answer to two significant figures.
\qquad $\mathrm{m} / \mathrm{s}^{2}$
(ii) Use the graph to calculate the distance the go-kart travels between points \mathbf{J} and \mathbf{K}.
\qquad
\qquad
\qquad
Distance $=$ \qquad m
(iii) What causes most of the resistive forces acting on the go-kart?
\qquad

Q11.

The diagram shows the passenger train on part of a rollercoaster ride.
(a) Which arrow shows the direction of the resultant force acting on the passenger train?
Put a tick (\checkmark) in the box next to your choice.

(b) For part of the ride, the maximum gravitational field strength acting on the passengers seems 3 times bigger than normal.

Normal gravitational field strength $=10 \mathrm{~N} / \mathrm{kg}$
(i) Calculate the maximum gravitational field strength that seems to act on the passengers during the ride.
\qquad
\qquad
Maximum gravitational field strength $=$ \qquad N/kg
(ii) One of the passengers has a mass of 75 kg .

Calculate the maximum weight this passenger seems to have during the ride.
Show clearly how you work out your answer.
\qquad
\qquad
Maximum weight $=$ \qquad N
(Total 4 marks)

Q12.

(a) The diagrams, \mathbf{A}, \mathbf{B} and \mathbf{C}, show the horizontal forces acting on a moving car.

Draw a line to link each diagram to the description of the car's motion at the moment when the forces act.

Draw only three lines.

(b) The front crumple zone of a car is tested at a road traffic laboratory. This is done by using a remote control device to drive the car into a strong barrier. Electronic sensors are attached to a dummy inside the car.

(i) Draw an arrow in Box 1 to show the direction of the force that the car exerts on the barrier.
(ii) Draw an arrow in Box 2 to show the direction of the force that the barrier exerts on the car.
(iii) Complete the following by drawing a ring around the correct line in the box.

The car exerts a force of 5000 N on the barrier. The barrier does not move. The force

exerted by the barrier on the car will be \begin{tabular}{|l|}

\hline | more than |
| :--- |
| equal to |
| less than |

\hline
\end{tabular}

(iv) Which one of the following gives the most likely reason for attaching electronic sensors to the dummy?

Put a tick (\checkmark) in the box next to your answer.

To measure the speed of the car just before the impact.

To measure the forces exerted on the dummy during the impact.

To measure the distance the car travels during the impact. \square

Q13.

(a) A car is being driven along a straight road. The diagrams, A, B and C, show the horizontal forces acting on the moving car at three different points along the road.

Describe the motion of the car at each of the points, \mathbf{A}, \mathbf{B} and \mathbf{C}.

(b) The diagram below shows the stopping distance for a family car, in good condition, driven at $22 \mathrm{~m} / \mathrm{s}$ on a dry road. The stopping distance has two parts.
(i) Complete the diagram below by adding an appropriate label to the second part of the stopping distance.

The distance the car travels during the driver's reaction time

(ii) State one factor that changes both the first part and the second part of the stopping distance.
\qquad
(c) The front crumple zone of a car is tested at a road traffic laboratory. This is done by using a remote control device to drive the car into a strong barrier. Electronic sensors are attached to the dummy inside the car.

(i) At the point of collision, the car exerts a force of 5000 N on the barrier.

State the size and direction of the force exerted by the barrier on the car.
\qquad
\qquad
(ii) Suggest why the dummy is fitted with electronic sensors.
\qquad
\qquad
(iii) The graph shows how the velocity of the car changes during the test.

Use the graph to calculate the acceleration of the car just before the collision with the barrier.

Show clearly how you work out your answer, including how you use the graph, and give the unit.
\qquad

Q14.

(a) The diagram shows the horizontal forces acting on a swimmer.

(i) The swimmer is moving at constant speed.

Force \mathbf{T} is 120 N .
What is the size of force \mathbf{D} ?
(ii) By increasing force \mathbf{T} to 140 N , the swimmer accelerates to a higher speed.

Calculate the size of the initial resultant force acting on the swimmer.
\qquad
\qquad
Initial resultant force = N
(iii) Even though the swimmer keeps the force \mathbf{T} constant at 140 N , the resultant force on the swimmer decreases to zero.

Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) A sports scientist investigated how the force exerted by a swimmer's hands against the water affects the swimmer's speed.
The investigation involved 20 males and 20 females swimming a fixed distance. Sensors placed on each swimmer's hands measured the force 85 times every second over the last 10 metres of the swim.

The measurements were used to calculate an average force.
The average speed of each swimmer over the last 10 metres of the swim was also measured.

The data from the investigation is displayed in the graph.

(i) What was the dependent variable in this investigation?
\qquad
(ii) Explain one advantage of measuring the force 85 times every second rather than just once or twice every second.
\qquad
\qquad
\qquad
\qquad
(iii) Give one way in which the data for the male swimmers is different from the data for the female swimmers.
\qquad
\qquad
(iv) Considering only the data from this investigation, what advice should a swimming coach give to swimmers who want to increase their average speed?
\qquad
\qquad

Q15.

The diagram shows the passenger train on part of a rollercoaster ride.
(a) Which arrow shows the direction of the resultant force acting on the passenger train?

Put a tick (v^{\prime}) in the box next to your choice.

(b) At the bottom of the slope, the passengers in the train all have the same speed but they each have a different kinetic energy.

Why is the kinetic energy of each passenger different?
\qquad
\qquad
(c) For part of the ride, the maximum gravitational field strength acting on the passengers seems 3 times bigger than normal.

Normal gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$
(i) Calculate the maximum gravitational field strength that seems to act on the passengers during the ride.
\qquad
\qquad
Maximum gravitational field strength $=$ \qquad N/kg
(ii) One of the passengers has a mass of 80 kg .

Calculate the maximum weight this passenger seems to have during the ride.

Show clearly how you work out your answer.

Q16.

The diagram shows an adult and a child pushing a loaded shopping trolley.

(a) (i) What is the total force on the trolley due to the adult and child?
\qquad
(ii) Which one of the terms in the box means the same as total force?

Draw a ring around your answer.

| answer force \quad mean force | resultant force |
| :---: | :---: | :---: |

(iii) The trolley is pushed at a constant speed for 80 metres.

Calculate the work done to push the trolley 80 metres.
Show clearly how you work out your answer.
\qquad
\qquad
Work done $=$ \qquad
(b) Complete the following sentences by drawing a ring around the correct word in each of the boxes.
(i) The unit of work done is the $\begin{aligned} & \text { joule } \\ & \text { newton } \\ & \text { watt }\end{aligned}$.

Q17.

(a) The diagram shows a steel ball-bearing falling through a tube of oil. The forces, \mathbf{L} and \mathbf{M}, act on the ball-bearing.

What causes force L?
(b) The distance - time graph represents the motion of the ball-bearing as it falls through the oil.

(i) Explain, in terms of the forces, \mathbf{L} and \mathbf{M}, why the ball-bearing accelerates at first but then falls at constant speed.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) What name is given to the constant speed reached by the falling ball-bearing?
\qquad
(iii) Calculate the constant speed reached by the ball-bearing.

Show clearly how you use the graph to work out your answer.
\qquad
\qquad
\qquad
Speed $=$ \qquad m/s

Q18.
(a) The diagram shows an aircraft and the horizontal forces acting on it as it moves along a runway. The resultant force on the aircraft is zero.

(i) What is meant by the term resultant force?
\qquad
\qquad
(ii) Describe the movement of the aircraft when the resultant force is zero.
\qquad
\qquad
(b) The aircraft has a take-off mass of 320000 kg . Each of the 4 engines can produce a maximum force of 240 kN .

Calculate the maximum acceleration of the aircraft.
Show clearly how you work out your answer and give the unit.
\qquad
\qquad
\qquad
Acceleration $=$ \qquad
(c) As the aircraft moves along the runway to take off, its acceleration decreases even though the force from the engines is constant.

Explain why.
\qquad
\qquad
\qquad
\qquad

Q19.

The diagram shows the forces on a small, radio-controlled, flying toy.

(a) (i) The mass of the toy is 0.06 kg .

Gravitational field strength $=10 \mathrm{~N} / \mathrm{kg}$
Calculate the weight of the toy.
Show clearly how you work out your answer and give the unit.
\qquad
Weight $=$
(ii) Complete the following sentence by drawing a ring around the correct line in the box.

When the toy is hovering stationary in mid-air, the lift force is

bigger than
the same as
smaller than

(b) When the motor inside the toy is switched off, the toy starts to accelerate downwards.
(i) What does the word accelerate mean?
\qquad
(ii) What is the direction of the resultant force on the falling toy?

Q20.

The diagram shows a small, radio-controlled, flying toy. A fan inside the toy pushes air downwards creating the lift force on the toy.

When the toy is hovering in mid-air, the fan is pushing 1.5 kg of air downwards every 10 seconds. Before the toy is switched on, the air is stationary.
(a) Use the equation in the box to calculate the velocity of the air when the toy is hovering.

$$
\text { force }=\frac{\text { change in momentum }}{\text { time taken for the change }}
$$

Show clearly how you work out your answer.
\qquad
\qquad
\qquad
Velocity $=\ldots \mathrm{m} / \mathrm{s}$
(b) Explain why the toy accelerates upwards when the fan rotates faster.
\qquad
\qquad
\qquad
\qquad
(c) The toy is not easy to control so it often falls to the ground.

Explain how the flexible polystyrene base helps to protect the toy from being damaged when it crashes into the ground.
\qquad
\qquad
\qquad
\qquad
\qquad

Q21.
The diagram shows a sky-diver in free fall. Two forces, \mathbf{X} and \mathbf{Y}, act on the sky-diver.

(a) Complete these sentences by crossing out the two lines in each box that are wrong.
(i) Force \mathbf{X} is caused by
friction
weight

(b) The size of force \mathbf{X} changes as the sky-diver falls. Describe the motion of the sky-diver when:
(i) force \mathbf{X} is smaller than force \mathbf{Y},
\qquad
\qquad
(ii) force \mathbf{X} is equal to force \mathbf{Y}.
\qquad

Q22.

(a) The arrows in the diagram represent the size and direction of the forces on a space shuttle, fuel tank and booster rockets one second after launch. The longer the arrow the bigger the force.

Thrust force

Weight of shuttle, fuel tanks and booster rockets plus air resistance
(i) Describe the upward motion of the space shuttle one second after launch.
\qquad
(ii) By the time it moves out of the Earth's atmosphere, the total weight of the space shuttle, fuel tank and booster rockets has decreased and so has the air resistance.

How does this change the motion of the space shuttle? (Assume the thrust force does not change).
\qquad
(b) The space shuttle takes 9 minutes to reach its orbital velocity of $8100 \mathrm{~m} / \mathrm{s}$.
(i) Write down the equation that links acceleration, change in velocity and time taken.
\qquad
(ii) Calculate, in $\mathrm{m} / \mathrm{s}^{2}$, the average acceleration of the space shuttle during the first 9 minutes of its flight. Show clearly how you work out your answer.
\qquad
\qquad
average acceleration = \qquad $\mathrm{m} / \mathrm{s}^{2}$
(iii) How is the velocity of an object different from the speed of an object?
\qquad
\qquad

Q23.
(a) Two skydivers jump from a plane. Each holds a different position in the air.

Adapted from Progress with Physics by Nick England, reproduced by permission of Hodder Arnold

Complete the following sentence.
Skydiver \qquad will fall faster because \qquad
\qquad
\qquad

The diagram shows the direction of the forces acting on one of the skydivers.

Adapted from Progress with Physics by Nick England, reproduced
by permission of Hodder Arnold
(b) In the following sentences, cross out in each box the two lines that are wrong.
(i) Force \mathbf{X} is caused by air resistance friction gravity
(ii) Force \mathbf{Y} is caused by
air resistance
gravity
weight
(iii) When force \mathbf{X} is bigger than force \mathbf{Y}, the speed of the

skydiver will \begin{tabular}{|l|}

\hline | go up |
| :--- |
| stay the same |
| go down |

\hline
\end{tabular}

(c) How does the area of an opened parachute affect the size of force \mathbf{Y} ?
\qquad
\qquad

Q24.

The apparatus shown is used to compare the motion of a coin with the motion of a piece of paper as they both fall.

(a) When the tube is filled with air the coin falls faster than the piece of paper. Why?
\qquad
\qquad
(b) The air in the tube is removed by the vacuum pump. The tube is turned upside down.
State two ways in which the motion of the coin and piece of paper will change compared to when there was air in the tube.
1.
\qquad
\qquad
2. \qquad
\qquad
\qquad

Q25.

The diagram below shows an empty cargo ship. It is not moving.

(a) The water exerts a force on the ship. In which direction does this force act?
\qquad
(b) The diagram below shows the same cargo ship. This time it has a full load of cargo.

(i) How does the force exerted by the water on the ship change as the ship is loaded?
\qquad
(ii) Why has the force exerted by the water changed?

Q26.

(a) The diagrams below show pairs of forces acting on different objects. In each case describe what happens when the forces are increased. Then describe what happens when the forces are removed.
(i)

When the forces are increased
\qquad
\qquad
When the forces are removed
\qquad
\qquad
(ii)

When the forces are increased
\qquad
\qquad
When the forces are removed
\qquad
\qquad
(iii)

When the forces are increased

When the forces are removed
\qquad
\qquad
(b) The graph shows the increase in length of a spring against load (force).

The length of the spring with no load was 15 cm .
Use the graph to find:
(i) The load needed to produce an increase in length of 2 cm .
(ii) The increase in length produced by a load of 2.3 N .
(iii) The length of the spring when the load was 2.3 N .

Q27.

The diagrams show pairs of forces acting on different objects. In each case describe what happens when the forces are increased. Then describe what happens when the forces are removed.
(a)

When the forces are increased \qquad
\qquad
When the forces are removed \qquad
\qquad
(b)

When the forces are increased \qquad
\qquad
When the forces are removed \qquad
\qquad

Q28.
(a) The diagram below shows a moving tractor. The forward force from the engine exactly balances the resisting forces on the tractor.

(i) Describe the motion of the tractor.
(ii) The tractor comes to a drier part of the field where the resisting forces are less. If the forward force from the engine is unchanged how, if at all, will the motion of the tractor be affected?
\qquad
\qquad
(b) Two pupils are given the task of finding out how fast a tractor moves across a field. As the tractor starts a straight run across the field the pupils time how long it takes to pass a series of posts which are forty metres apart. The results obtained are shown in the table below.

Distancetravelled (m)	0	40	80	120	160	200
Timetaken (s)	0	8	16	24	32	40

(i) Draw a graph of distance travelled against time taken using the axes on the graph below. Label your graph line A.

(2)
(ii) Calculate the speed of the tractor.
\qquad
\qquad
(3)
(c) In another, wetter field there is more resistance to the movement of the tractor. It now travels at $4 \mathrm{~m} / \mathrm{s}$.
(i) Calculate the time needed to travel 200 m .
(ii) On the graph in part (b) draw a line to represent the motion of the tractor across the second field. Label this line B.
(d) On a road the tractor accelerates from rest up to a speed of $6 \mathrm{~m} / \mathrm{s}$ in 15 seconds.

Calculate the acceleration of the tractor.
\qquad
\qquad
\qquad
\qquad Acceleration = \qquad $\mathrm{m} / \mathrm{s}^{2}$

Q29.

A sky-diver jumps from a plane.
The sky-diver is shown in the diagram below.

(a) Arrows \mathbf{X} and \mathbf{Y} show two forces acting on the sky-diver as he falls.
(i) Name the forces \mathbf{X} and \mathbf{Y}.

X \qquad
Y \qquad
(ii) Explain why force \mathbf{X} acts in an upward direction.
\qquad
\qquad
(iii) At first forces \mathbf{X} and \mathbf{Y} are unbalanced.

Which of the forces will be bigger? \qquad
(iv) How does this unbalanced force affect the sky-diver?
\qquad
\qquad
(b) After some time the sky-diver pulls the rip cord and the parachute opens.

The sky-diver and parachute are shown in the diagram below.

After a while forces \mathbf{X} and \mathbf{Y} are balanced.
Underline the correct answer in each line below.
Force \mathbf{X} has
increased / stayed the same / decreased.
Force \mathbf{Y} has
increased / stayed the same / decreased.
The speed of the sky-diver will
increase / stay the same / decrease.
(c) The graph below shows how the height of the sky-diver changes with time.

(i) Which part of the graph, $\mathbf{A B}, \mathbf{B C}$ or $\mathbf{C D}$ shows the sky-diver falling at a constant speed?
(ii) What distance does the sky-diver fall at a constant speed?
\qquad
(iii) How long does he fall at this speed?

Time \qquad s
(iv) Calculate this speed.
\qquad
\qquad

Q30.

Five forces, $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ and \mathbf{E} act on the van.
(a) Complete the following sentences by choosing the correct forces from \mathbf{A} to \mathbf{E}.

Force \qquad is the forward force from the engine.

Force \qquad is the force resisting the van's motion.
(b) The size of forces \mathbf{A} and \mathbf{E} can change.

Complete the table to show how big force \mathbf{A} is compared to force \mathbf{E} for each motion of the van.
Do this by placing a tick in the correct box.
The first one has been done for you.

MOTION OF VAN	FORCE A SMALLER THAN FORCE E	FORCE A EQUAL TO FORCE E	FORCE A BIGGER THAN FORCE E
Not moving			
Speeding up			
Constant speed			
Slowing down			

(c) When is force \mathbf{E} zero?
\qquad
(d) The van has a fault and leaks one drop of oil every second.

The diagram below shows the oil drops left on the road as the van moves from W to Z.

Describe the motion of the van as it moves from:

W to X \qquad
X to Y \qquad
Y to Z \qquad
(e) The driver and passengers wear seatbelts.

Seatbelts reduce the risk of injury if the van stops suddenly.

backwards downwards force forwards mass weight

Complete the following sentences, using words from the list above, to explain why the risk of injury is reduced if the van stops suddenly.

A large \qquad is needed to stop the van suddenly.

The driver and passengers would continue to move \qquad .

The seatbelts supply a \qquad force to keep the driver and passengers
in their seats.
(Total 11 marks)

Q31.
Four of the forces that act on this container ship are shown in the diagram as $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and D.

Complete each sentence by choosing the correct letters, A, B, C or D.
The first one has been done for you.
At the start, the ship is not moving because forces \mathbf{B} and \mathbf{D} are balanced.
The ship begins to move forward when forces \qquad and \qquad are unbalanced.

When the ship is moving at a steady speed, forces \qquad and \qquad are balanced.

The ship stops at a port. All of the containers are taken off and this changes force \qquad .

Q32.
(a) The model bus is being pushed on a table.

(i) At first the pushing force does not make the model bus move. Explain why.
\qquad
\qquad
(ii) Write down two things that happen as the pushing force increases.

1. \qquad
\qquad
2. \qquad
\qquad
(iii) Complete the formula by choosing the correct words from the box.

(b) In this situation, the car driver needs to stop the car in the shortest possible distance.

(i) Complete the table by putting ticks $\left(\vee^{\prime}\right)$ to show which factors would make the stopping distance greater. The first one has been done for you.

Factor	Tick ($\mathbf{r})$ makes stopping distance greater
brakes are old and worn	
car is travelling fast	
driver has been drinking alcohol	
four new tyres are fitted	
hot, dry, sunny weather	
ice on the road	

(ii) Complete the sentence by writing the correct words in the spaces.

The car will skid if the braking force is too big compared with the friction between the car's \qquad and the \qquad .

Q33.

In a science lesson, some children float an apple on some water.
One of the children says:
"The apple is not moving. That means that there cannot be any forces acting on it."
Do you agree?
Explain your answer as fully as you can.
\qquad
\qquad
\qquad

Q34.
Choose words from this list to complete the sentences below.

balanced	electricity	gravity
joules	magnetism	newtons

When you drop something it falls.
This is because it is pulled to the Earth by \qquad
We measure forces in units called \qquad
When a falling object reaches the ground, it stops moving.
This means that the forces acting on it are now \qquad
(Total 3 marks)

Q35.

A sky-diver steps out of an aeroplane.
After 10 seconds she is falling at a steady speed of $50 \mathrm{~m} / \mathrm{s}$.
She then opens her parachute.

After another 5 seconds she is once again falling at a steady speed.
This speed is now only $10 \mathrm{~m} / \mathrm{s}$.
(a) Calculate the sky-diver's average acceleration during the time from when she opens her parachute until she reaches her slower steady speed. (Show your working.)
\qquad
\qquad
\qquad
(b) Explain, as fully as you can:
(i) why the sky-diver eventually reaches a steady speed (with or without her parachute).
\qquad
\qquad
(ii) why the sky-diver's steady speed is lower when her parachute is open.
\qquad
(c) The sky- diver and her equipment have a total mass of 75 kg . Calculate the gravitational force acting on this mass. (Show your working.)
\qquad
\qquad
Answer \qquad N

Q36.
When you slide a book across a table, there is a force of friction between the book and the table.

(a) Which arrow shows the force of friction that acts on the book? \qquad
(b) The force of friction will slow the book down.

Write down one other effect that the force of friction will have on the book.
\qquad

Q37.
The brick shown in the diagram is being pushed but it is not moving.

(a) The pushing force does not make the brick move. Explain why.
\qquad
(b) The weight of the brick does not make it move downwards. Explain why.
(c) A bigger pushing force does make the brick slide across the table. Write down one thing that the sliding brick will do to the surface of the table.

