
Knowledge organiser

Science: Foundation Tier

RAYNES

cell site of chemical gel like substance containing reactions in the cell enzymes to catalyse the reactions membrane bacterial not in nucleus floats controls the function of the cell DNA in the cytoplasm **NOT** made of cell wall supports and strengthens the cell cellulose small rings of DNA contain additional genes plasmid controls the movement of semi permeable cytoplasm substances in and out of the cell

PiXL

Bacterial cells are much smaller than plant and animal cells

Prokaryotes simpler organisms

	contains all the parts of animal cells plus extras		
	permanent vacuole	contains cell sap	keeps cell turgid, contains sugars and salts in solution
_	cell wall	made of cellulose	supports and strengthens the cell
	chloroplast	site of photosynthesis	contains chlorophyll, absorbs light energy
	changes and becom	•	Cell differentiation

how a cel Undiffer

animal cell differentiation

early stages of development only for repair and replacement

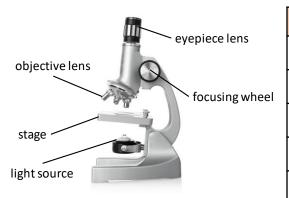
plant cell differentiation

all stages of life cycle the stem cells are grouped together in meristems

Microscopy

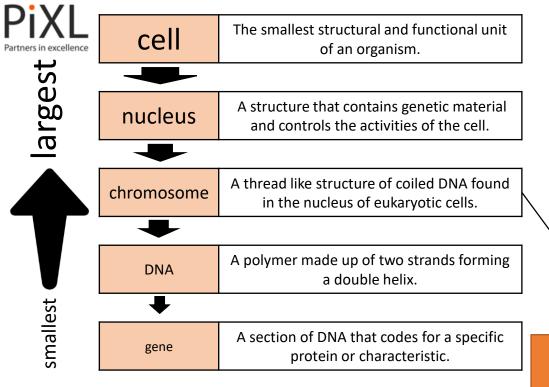
magnification M = size of image I real size of the object A

AQA


specialised animal cells

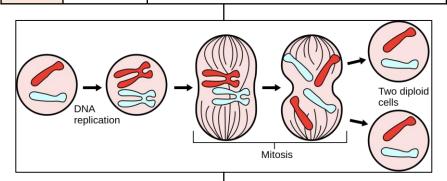
specialised plant cells

Specialised cells


_				
	nerve		carry electrical signals	long branched connections and insulating sheath
	sperm	30	fertilise an egg	streamlined with a long tail acrosome containing enzymes large number of mitochondria
	muscle		contract to allow movement	contains a large number of mitochondria long
_				
			absorb water	hair like projections to increase the

root hair		and minerals from soil	surface area
xylem		carry water and minerals	TRANSPIRATION - dead cells cell walls toughened by lignin flows in one direction
phloem	†	carry glucose	TRANSLOCATION - living cells cells have end plates with holes flows in both directions

Feature	Light (optical) microscope	Electron microscope	
Radiation used	Light rays	Electron beams	
Max magnification	~ 1500 times	~ 2 000 000 times	
Resolution	200nm	0.2nm	
Size of microscope	Small and portable	Very large and not portable	
Cost	~£100 for a school one	Several £100,000 to £1 million plus	


PREFIXES				
Prefix	Multiple	Standard form		
centi (cm)	1 cm = 0.01 m	x 10 ⁻²		
milli (mm)	1 mm = 0.001 m	x 10 ⁻³		
micro (μm)	1 μm = 0.000 001 m	x 10 ⁻⁶		
nano (nm)	1nm = 0.000 000 001 m	x 10 ⁻⁹		

Cells divide in a series of stages. The genetic material is doubled and then divided into two identical cells.

MITOSIS AND THE CELL CYCLE

Stage 1	Growth	Increase the number of sub-cellular structures e.g. ribosomes and mitochondria.
Stage 2	DNA Synthesis	DNA replicates to form two copies of each chromosome.
Stage 3	Mitosis	One set of chromosomes is pulled to each end of the cell and the nucleus divides. Then the cytoplasm and cell membranes divide to form two cells that are identical to the parent cell.

Mitosis occurs during growth, repair, replacement of cells.

Asexual reproduction occurs by mitosis in both plants

& simple animals.

	Small intestines	Villi – increase surface area, Good blood supply – to maintain concentration gradient, Thin membranes – short diffusion distance.
Gills in fish Gill filaments and lamella – increase surfamaintain concentration gradient, Thin men		Alveoli— increase surface area, Good blood supply — to maintain concentration gradient, Thin membranes — short diffusion distance.
		Gill filaments and lamella – increase surface area, Good blood supply – to maintain concentration gradient, Thin membranes – short diffusion distance.
		Root hair cells - increase surface area.
$\left[\right]$	Leaves	Large surface area, thin leaves for short diffusion path, stomata on the lower surface to let O_2 and CO_2 in and out.

ADAPTATIONS FOR DIFFUSSION

The greater the difference in concentrations the faster the rate of diffusion.

Diffusion <i>No</i> energy required	Movement of particles in a solution or gas from a higher to a lower concentration
Osmosis	Movement of water

E.g. O₂ and CO₂ in gas exchange, urea in kidneys. Factors that affect the rate are concentration, temperature and surface area.

E.g. Plants absorb water from the

PiXL

Transport in cells

No energy required to a more concentrated solution

soil by osmosis through their root hair cells. Plants use water for several vital processes including photosynthesis and transporting minerals.

Active
transport
ENERGY
required

Movement of particles from a dilute solution to a more concentrated solution

E.g. movement of mineral ions into roots of plants and the movement of glucose into the small intestines.

Human Embryonic stem cells	Can be cloned and made to differentiate into most cell types	Therapeutic cloning uses same genes so the body does not reject the tissue. Can be a risk of infection
Adult bone marrow stem cells	Can form many types of human cells e.g. blood cells	Tissue is matched to avoid rejection, risk of infection. Only a few types of cells can be formed.
Meristems (plants)	Can differentiate into any plant cell type throughout the life of the pant.	Used to produce clones quickly and economically, e.g. rare species, crop plants with pest /disease resisitance

Treatment with stem cells may be able to help conditions such as diabetes and paralysis. Some people object to the use of stem cells on ethical or religious grounds

AQA

Cell Biology 2

Cell division

STEM CELLS

Undifferentiated cell of

an organism

Divides to form more cells of the

same type, and can differentiate

to form many other cell types.

Enzymes catalyse (increase the rate of) specific reactions in living organisms

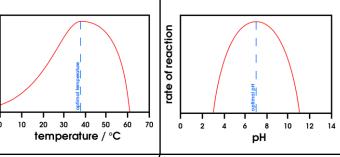
The 'lock and key theory' is a simplified model to explain enzyme action

Enzymes catalyse specific reactions in living organisms due to the shape of their active site

Digestive enzymes speed up the conversion of large insoluble molecules (food) into small soluble molecules that can be absorbed into the bloodstream

The activity of enzymes is affected by changes in temperature and pH

Enzymes activity has an optimum temperature


Temperature too high

rate of reaction

Enzyme activity has an optimum pH

pH too high or too

low

Large changes in temperature or pH can stop

the enzyme from working (denature)

Enzyme changes shape (denatures) the

substrate no longer fits the active site.

Enzymes in digestion

> The human digestive system

AQA GCSE ORGANISATION Part 1

> **Principles of** organisation

An organ system in which organs work together to digest and absorb food.

More energy

consumed in food and drink than used diseases obesity

Non-communicable

Food tests

Linked to increased rates of cardiovascular disease and development of diabetes type 2.

liver stomach

oesophagus

anus

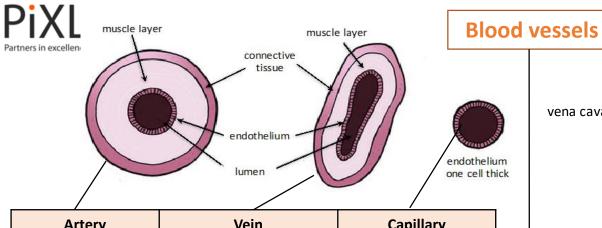
gall bladder pancreas large small intestines intestines

\setminus	Sugars (glucose)	Benedicts' test	Orange to brick red precipitate.
\	Starch	Iodine test	Turns black.
	Biuret	Biuret reagent	Mauve or purple solution.

mouth

Made in salivary Break down carbohydrates to Carbohydrases simple sugar (e.g. amylase breaks glands, pancreas, (e.g. amylase) small intestine down starch to glucose). Break down protein to amino Made in stomach, **Proteases** pancreas acids. Made in pancreas Break down lipids (fats) to Lipases (works in small glycerol and fatty acids). intestine) Emulsifies lipids to increase Made in liver, surface area to increase the rate Bile (not an stored in gall of lipid break down by lipase. enzyme) bladder. Changes pH to neutral for lipase to work

The products of digestion are used to build new carbohydrates, lipids and proteins. Some glucose is used for respiration.


organs

Cells, tissues,

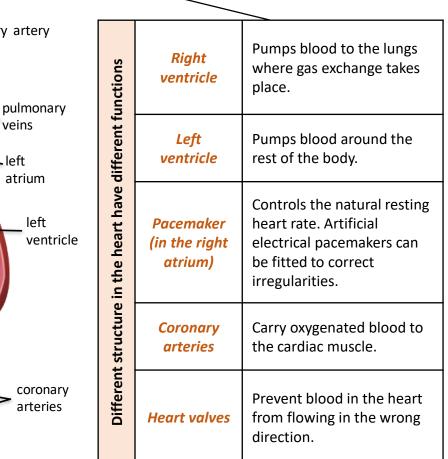
systems

and

The basic building blocks Cells e.g. muscle cells of all living organisms. A group of cells with a e.g. muscle similar structure and **Tissues** tissue function. Aggregations (working together) of tissues **Organs** e.g. the heart performing a specific function. Organs working together e.g. the to form organ systems, Organ circulatory which work together to systems system form an organism.

Artery	Veili	Capillaly
Carry blood away from the heart	Carry blood to the heart	Connects arteries and veins
Thick muscular walls, small lumen, carry blood under high pressure, carry oxygenated blood (except for the pulmonary artery).	Thin walls, large lumen, carry blood under low pressure, have valves to stop flow in the wrong direction, carry deoxygenated blood (except for the pulmonary vein).	One cell thick to allow diffusion, Carry blood under very low pressure.

Blood


The heart is an organ that pumps blood around the body in a double circulatory system

atrium

left

pulmonary artery

AQA GCSE ORGANISATION part 2

Lungs and gas exchange

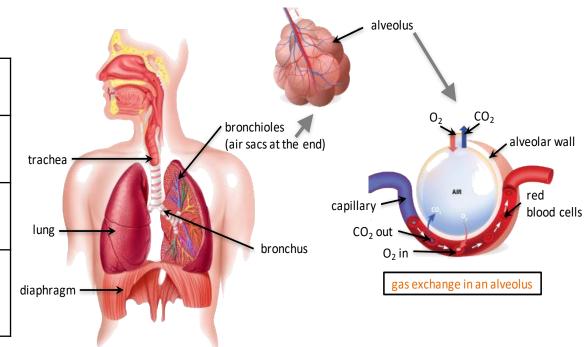
vena cava

right atrium

Heart

right ventricle

The heart pumps low oxygen/high carbon dioxide blood to the lungs


Plasma (55%)	Pale yellow fluid	Transports CO ₂ , hormones and waste.
Red blood cells (45%)	Carries oxygen	Large surface area, no nucleus, full of haemoglobin.
White blood cells (<1%)	Part of the immune system	Some produce antibodies, others surround and engulf pathogens.
Platelets (<1%)	Fragments of cells	Clump together to form blood clots.

Blood is a tissue consisting of plasma,

in which blood cells, white blood cells

and platelets are suspended

Trachea	Carries air to/from the lungs	Rings of cartilage protect the airway.	
Bronchioles	Carries air to/from the air sacs (alveoli)	Splits into multiple pathways to reach all the air sacs.	
Alveoli	Site of gas exchange in the lungs	Maximises surface area for efficient gas exchange.	
Capillaries	Allows gas exchange between into/out of blood	Oxygen diffuses into the blood and carbon dioxide diffuses out.	

Partners in excel	_	lure can be tr	reated with a tr	ansplant	or artificia	heart	AQA G	CSE	ORGANI	SATION part 3	Plan	ttissues	PIXL
Disease	Cause	Effect	Treatment	an							op layer of the leaf)	Reduces water le	oss from the leaf
ise (CHD)	substances arteries osis)	cannot get :le.	he n it up.	Plant organ	cuticle upper epidermis palisade			chloroplast vacuole nucleus cell wall cytoplasm	Epiderma tissues		s and stomata	control water lo	n and close the stomata to ss and allow for gas en and carbon dioxide).
ıry heart disease	up for fatty ne coronary atheroscler	Oxygen-ated blood ca to the cardiac muscle.	Stents: inserted into the blocked artery to open it Statins: lower harmful cholesterol.		lower epidermis cuticle	cuard cell stoma			Palisade mesophyl	Palis	ade cells	are packed with	p surface of the leaf that chloroplasts that contain n adaptations maximize
Coronary	A build	- ,	Stents: insel blocked arte Statins: low cholesterol.		trai the				Spongy mesophyl	Air spaces in the	e leaf between cells		e area for gas exchange ioxide can diffuse into ng cells.
Faulty heart valves	ves don't op close proper	Blood can leak or flow in the wrong direction	Biological valve transplant or a mechanical valve can be inserted		em and system	one way walls tough with	nened		xylem	lignin add transportatio	strengthened by apted for the n of water in the ation stream		t of water and mineral ots to the stem and the
Cer			es i	The roots, plant orga of substa	of substance of su			phloem	cell to the next t	from one phloem hrough pores in the d walls	leaves to the res	lved sugars from the et of the plant for or storage (translocation).	
Cancer	to uncontro	lled growth	DNA that lead						Meristem tissue	· ·	and shoot tips) are uding root hair cells	area for the upta	ave an increased surface ake of water by osmosis, s by active transport.
Benig tumo	body (u	ed in one are sually by a ane) – not cai					phloem		•	ter is used to		Effect of Humidity on Plant Transp	iration
Malign tumo	ant lnvade differer	tissues and sp at parts of the condary tume	oread to e body to		Flow	Leaf	glucose solution cells have end with holes		lost over trans	amount of water cime (rate of piration)	B Rate of Transpiration		centration outside the Effect of Wind Velocity on Plant Transpiration
Some cancers have genetic risk factors. Carcinogens and ionising radiation increase the risk of cancer by changing/damaging DNA Transpiration Transpiration Transpiration The rate at which					ranspiration Rate								
heart and ce can drinl diet,	c factors for /lung diseas ertain types cer include king alcohol, obesity and smoking	fact also the live the of u	ese risks tors can o affect e brain, er and e health unborn abies	Ro	nucleus		permanent vacuole cell wall cell membrane		nspiration	water is lost from the leaves of a plant. The transpiration stream is the column of water moving through the roots, stem and leaves	Temperature, humidity, air movement and light intensity affect the rate of transpiration.	Reflect of Transpiration Transpiration Transpiration Transpiration	The shape of the graph for light intensity is the same for temperature (energy)

better hope – brighter future

PIXL Partners in excellence	Phagocytes	Phagocytosis	Phagocytes engulf the pathogens and digest them.		
become phagosome phagosome phagosomes phagosomes	Lymphocytes	Antibody production	Specific antibodies destroy the pathogen. Thi takes time so an infection can occur. If a pers is infected again by the same pathogen, the lymphocytes make antibodies much faster.		
	, , , , , , , , ,	Antitoxin production	Antitoxin is a type of antibody produced to counteract the toxins produced by bacteria.		

Identification

Reference using gardening manual

laboratory test for

pathogens, testing

or website,

kit using

monoclonal

antibodies.

Magnesium ions needed

to make chlorophyll -

not enough leads to

chlorosis - leaves turn

Phagocytes	Phagocytosis	them.
Lymphocytes	Antibody production	Specific antibodies destroy the pathogen. This takes time so an infection can occur. If a person is infected again by the same pathogen, the lymphocytes make antibodies much faster.
	Antitoxin production	Antitoxin is a type of antibody produced to counteract the toxins produced by bacteria.

AQA GCSE INFECTION AND RESPONSE part 1

Plants have several ways of defending themselves from pathogens and animals

	.1				
Physical	Mechanical				
Thick waxy layers, cell walls stop pathogen entry	Thorns, curling up leaves to prevent being eaten				
Chemical					

Antibacterial and toxins made by plant yellow. Bacteria may produce toxins that damage tissues and make us fell ill

Detection

Stunted growth

Spots on leaves

Area of decay

growths

Malformed

stem/leaves

Discolouration

Presence of pests

Nitrate ions needed

for protein synthesis

– lack of nitrate =

stunted growth.

Detection and identification of plant diseases (bio only)

Viruses	Bacteria (prokaryotes)	Protists (eukaryotes)	Fungi (eukaryotes)	
e.g. cold, influenza, measles, HIV, tobacco mosaic virus	e.g. tuberculosis (TB), Salmonella, Gonorrhoea	e.g. dysentery, sleeping sickness, malaria	e.g. athlete's foot, thrush, rose black spot	
DNA or RNA surrounded by a protein coat	No membrane bound organelles (no chloroplasts, mitochondria or nucleus). Cell wall. Single celled organisms	Membrane bound organelles. Usually single celled.	Membrane bound organelles, cell wall made of chitin. Single celled or multi- cellular	

Communicable diseases Pathogens are microorganisms that cause infectious disease **Pathogens** Viruses live and reproduce inside

> cells causing damage

Pathogens are identified by white blood cells by the different proteins on their surfaces ANTIGENS.

Antigens (surface protein)

Immune system

White blood cells are part of the immune

Human

defence

systems

systems

Non-specific defence

ecific ways getting in	8	Nose	Nasal hairs, sticky mucus and cilia prevent pathogens entering through the nostrils.	
several non sp om pathogens		Trachea and bronchus (respiratory system)	Lined with mucus to trap dust and pathogens. Cilia move the mucus upwards to be swallowed.	
The human body has several non specific ways of defending itself from pathogens getting in		Stomach acid	Stomach acid (pH1) kills most ingested pathogens.	
		Skin	Hard to penetrate waterproof barrier. Glands secrete oil which kill microbes	

Pathogens may infect plants or animals and can be spread by direct contact, water or air

	Pathogen	Disease	Symptoms	Method of transmission	Control of spread
	Virus	Measles	Fever, red skin rash.	Droplet infection from sneezes and coughs.	Vaccination as a child.
	Virus	HIV	Initially flu like systems, serious damage to immune system.	Sexual contact and exchange of body fluids.	Anti-retroviral drugs and use of condoms.
	Virus	Tobacco mosaic virus	Mosaic pattern on leaves.	Enters via wounds in epidermis caused by pests.	Remove infected leaves and control pests that damage the leaves.
	Bacteria	Salmonella	Fever, cramp, vomiting, diarrhoea.	Food prepared in unhygienic conditions or not cooked properly.	Improve food hygiene, wash hands, vaccinate poultry, cook food thoroughly.
	Bacteria	Gonorrhoea	Green discharge from penis or vagina.	Direct sexual contact or exchange of body fluids.	Use condoms. Treatment using antibiotics.
-	Protists	Malaria	Recurrent fever.	By an animal vector (mosquitoes).	Prevent breeding of mosquitoes. Use of nets to prevent bites.
	Fungus	Rose black spot	Purple black spots on leaves.	Spores carried via wind or water.	Remove infected leaves. Spray with fungicide.

Most new drugs are synthesised by chemists in the pharmaceutical industry.

Traditionally drugs were extracted from plants and microorganisms					
Digitalis	Aspirin	Penicillin			
Extracted from foxglove plants and used as a heart drug	A painkiller and anti-inflammatory that was first found in willow bark	Discovered by Alexander Fleming from the <i>Penicillium</i> mould and used as an antibiotic			

Antibiotics and painkillers

Antibiotics have greatly reduced deaths from infectious bacterial disease

Bacteria can mutate

Sometimes this makes them resistant to antibiotic drugs.

antibiotics

e.g. penicillin

Kill infective bacteria inside the body. Specific bacterial infections require specific antibiotics.

Painkillers e.g. aspirin, paracetamol, ibuprofen

painkillers e.g. aspirin, paracetamol, ibuprofen

Drugs that are used to treat the symptoms of a disease. They do not kill pathogens

Antibiotics cannot be use to treat viral pathogens

Drugs have to be tested and trialled before to check they are safe and effective

are ly r:	Efficacy	Make sure the drug works
Irugs nsive ed fo	Toxicity	Check that the drug is not poisonous
New c exte test	Dose	The most suitable amount to take

Preclinical trials - using cells, tissues and live animals - must be carried out before the drug can be tested on humans.

Discovery AQA INFECTION AND RESPONSE

Vaccination

Used to immunise a large proportion of the population to prevent the spread of a pathogen

It is difficult to develop drugs to kill viruses without harming body tissues because viruses live and reproduce inside cells

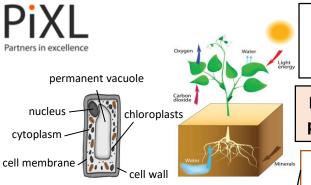
be carried out before the drug can be tested on numans.

Clinical trials use healthy volunteers and patients

Stage 1	Stage 2	Stage 3	Stage 4
Healthy volunteers try small dose of the drug to check it is safe record any side effects	A small number of patients try the drug at a low dose to see if it works	A larger number of patients; different doses are trialled to find the optimum dose	A double blind trial will occur. The patients are divided into groups. Some will be given the drug and some a placebo.

Double blind trial:
patients and scientists do
not know who receives
the new drug or placebo
until the end of the trial.
This avoids bias.

Small amount of dead or inactive form of the pathogen 1st infection by pathogen


Re-infection by the same pathogen White blood cells detect pathogens in the vaccine. Antibodies are released into the blood.

White blood cells detect pathogens. Antibodies are made much faster and in larger amounts.

A placebo can look identical to the new drug but contain no active ingredients

Vaccination

A person is unlikely to suffer the symptoms of the harmful disease and it's spread in a population is prevented

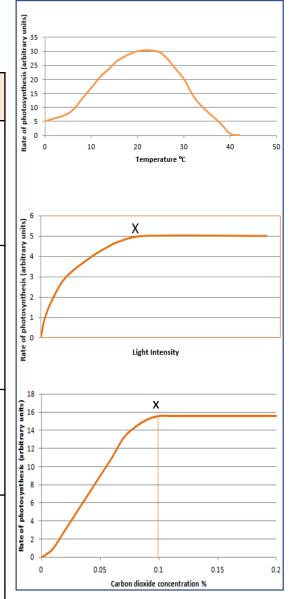
Respiration, stored as insoluble starch, fats or oils for storage, cellulose for cell walls, combine with nitrates from the soil to form amino acids for protein synthesis

Plants use the glucose produced in photosynthesis in a variety of ways

Photosynthetic reaction

The plant manufactures glucose from carbon dioxide and water using energy transferred from the environment to the chloroplasts by light

Plants make use
of light energy
from the
environment
(ENDOTHERMIC)
to make food
(glucose)


 CO_2 + H_2O $\xrightarrow{\text{light}} O_2$ + $C_6H_{12}O_6$

The rate of photosynthesis is affected by temperature, light intensity, carbon dioxide concentration, and the amount of chlorophyll

	Factor	How the rate is affected	Limiting factors (why the rate stops going up)
Factors affecting the rate of photosynthesis	Temperature	As the temperature of the environment the plant is in increases rate of photosynthesis increases (up to a point) as there is more energy for the chemical reaction.	Photosynthesis is an enzyme controlled reaction. If the temperature increases too much, then the enzymes become denatured and the rate of reaction will decrease and stop
	Light intensity	Light intensity increases as the distance between the plant and the light sources increases. As light intensity increases so does the rate of photosynthesis (up to a point) as more energy is available for the chemical reaction.	At point X another factor is limiting the rate of photosynthesis. This could be carbon dioxide concentration, temperature or the amount of chlorophyll
	Carbon dioxide concentration	Carbon dioxide is needed for plants to make glucose. The rate of photosynthesis will increase when a plant is given higher concentrations of carbon dioxide (up to a point).	At point X another factor is limiting the rate of photosynthesis. This could be light intensity, temperature or the amount of chlorophyll
	Amount of chlorophyll	Chlorophyll is a photosynthetic pigment that absorbs light and allows the reaction between water and carbon dioxide to occur (photosynthesis)	Another factor could limit the rate of photosynthesis. This could be light intensity, temperature or the carbon dioxide concentration

AQA GCSE BIOENERGETICS part 1

Rate of photosynthesis

Rate of photosynthesis

Graph lines C and D:

If temperature is increased by 10°C then a slight increase in rate of photosynthesis occurs.

Graph lines A and D: If carbon

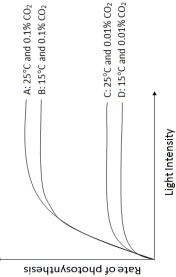
dioxide concentration and

limited by temperature and/or amount of chlorophyll. Plant

temperature are increased the

rate of photosynthesis

increases significantly up to a


point.

Explain graphs of two or three factors and decide which is the limiting factor

Graph Lines A and B:

If carbon dioxide concentration is increased from 0.01% to 0.1% then a large increase in rate occurs up to a point.

better hope – brighter future

During long periods of vigorous activity muscles become fatigued and stop contracting efficiently

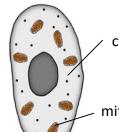
An organism will receive all the energy it needs for living processes as a result of the energy transferred from respiration

For movement

For keeping warm

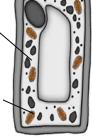
For chemical

reactions


To keep a steady body temperature in a cold environment.

To enable muscles to contract in

animals.



To build larger molecules from smaller one.

cytoplasm

mitochondria

plant cell

Electron micrograph of a mitochondrion

animal cell

Response to exercise

During exercise the human body reacts to increased demand for energy

Heart rate increases

Top pump oxygenated blood faster to the muscle tissues and cells.

Breathing rate and breath volume increase

This increases the amount of oxygen entering the blood stream.

Metabolism is the sum of all the reactions in a cell or the body

Metabolism

The energy transferred by respiration in cells is used by the organism for the continual enzyme controlled processes of metabolism.

Metabolism

Conversion of glucose to starch, glycogen and cellulose.

The formation of lipid molecules from a molecule of glycerol and three molecules of fatty acid.

The use of glucose and nitrate ions to form amino acids which in turn are used to synthesise proteins.

Respiration

Breakdown of excess proteins to form urea for excretion.

Respiration

AQA GCSE BIOENERGETICS part 2

Cellular respiration is an exothermic reaction which is continuously

occurring in all living cells

fatigued.

glucose -> lactic acid

This process is economically important in the manufacture of alcoholic drinks and bread.

Anaerobic respiration in plant and yeast cells

The end products are ethanol and carbon

dioxide. Anaerobic respiration in yeast cells is

called fermentation

ethanol + carbon dioxide

glucose \rightarrow

Anaerobic respiration

Respiration when oxygen is in short supply. Occurs during intensive exercise

During hard exercise, muscle cells are respiring so fast that blood cannot transport enough oxygen to meet their needs.

Glucose is partially oxidised to produce lactic acid which builds up in muscle tissue causing them to become painful and

Anaerobic respiration releases a much smaller amount of energy than aerobic respiration.

The incomplete oxidation of glucose causes a build up of lactic acid and creates an oxygen debt

Aerobic respiration

Respiration with oxygen. Occurs inside the mitochondria continuously

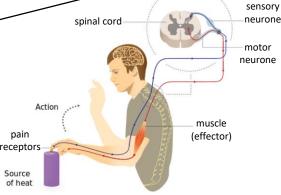
Glucose is oxidised by oxygen to transfer the energy the organism needs to perform it's functions.

> carbon dioxide + water H_2O CO_2 0 glucose + oxygen $C_6H_{12}O_6$

Aerobic respiration releases a large amount of energy from each glucose molecule

Cells called **Enables humans to react to their** PiXL Human control systems include Detect stimuli (changes in environment). receptors surroundings and to co-ordinate their behaviour **Coordination** e.g. brain, spinal cord and pancreas that receive information from receptors. centres Muscles or glands, which bring about Information from receptors passes **Effectors** responses to restore optimum levels. along cells (neurones) as electrical impulses to the central nervous **AQA GCSE** The human system (CNS) **HOMEOSTASIS AND** nervous The CNS is the brain and the spinal **RESPONSE** part 1 cord. system Coordinates the response of effectors; muscles contracting or glands secreting hormones dendrites cell body Lights switch on Stimulus axon with insulating sheath Receptor Cells in retina Typical motor neurone Synapse (gap where two Coordinator **CNS** neurones meet). axon Muscles Effector connected to iris direction of impulse axon terminal vesicles neurotransmitter

Response


Synaptic cleft

Pupils get smaller

Reflex arc	Receptor	Detect stimuli.	
	Sensory neurone	Long axon carries impulse from receptor to spinal cord.	
	Synapse	Gap where neurones meet. Chemical message using neurotransmitter.	
	Relay neurone	Allows impulses to travel between sensory and motor neurones in the spinal cord.	red Se
	Motor neurone	Long axon carries impulse from receptor to effector.	
	Effector	Muscle or gland that carries out response.	1

neurotransmitter receptors

Reflex actions are automatic and rapid; they do not involve the conscious part of the brain and can protect humans from harm.

Response to internal and external change

Controls in the human body

Blood glucose concentration

Body temperature

Water levels

These automatic control systems may involve nervous responses or chemical responses.

The regulation of internal conditions of a cell or organism to maintain optimum conditions for function.

Homeostasis maintains optimal conditions for enzyme action and all cell functions.

Homeostasis

Human endocrine system

Pituitar Thyroid Adrenal

Testes

flight'.

development.

Produced in adrenal glands,

blood flow to muscles,

Prepares body for 'fight or

increases breathing/heart rate,

conversion glycogen to glucose.

Produced in the thyroid gland,

stimulates the basal metabolic

rate. Important in growth and

Thymus

Ovaries

'Master gland'; secretes several hormones into the blood

Composed of

glands which

secrete chemicals

called hormones

directly into the

bloodstream.

Stimulates other glands to produce hormones

to bring about effects.

The blood carries the

hormone to a target

the nervous system

for longer.

organ where is produces

effects are slower but act

<u>negative feedback</u> system. Insulin is released to reduce glucose levels and which cause the pancreas to release glucagon

an effect. Compared to

Pituitary gland

system

Endocrine

Blood glucose concentration

Too high Pancreas produces the hormone insulin, glucose moves from the blood into the cells. In liver and muscle cells excess glucose is converted to glycogen for storage.

Increasing thyroxine levels prevent the release of thyroid stimulating hormone which stops the release of thyroxine.

Control of

blood glucose

concentration

Adrenaline

Thyroxine

AQA GCSE

HOMEOSTASIS

AND RESPONSE

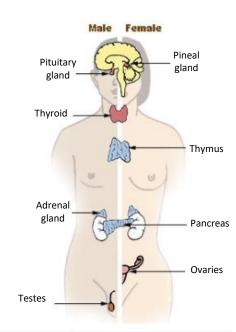
PART 2

Negative feedback (HT only)

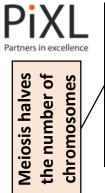
Diabetes Type 1 Type 2 Pancreas fails to produce sufficient Obesity is a risk factor. Body cells no insulin leading to uncontrolled longer respond to insulin. Common blood glucose levels. Normally treatments include changing by diet treated by insulin injection. and increasing exercise.

(HT) Rising glucose levels inhibit the release of glucagon in a Monitored and controlled by the pancreas (HT only) Too low Pancreas produces the hormone glucagon that causes glycogen to be converted into glucose and released into the blood.

better hope – brighter future


AQA GCSE HOMEOSTASIS AND RESPONSE PART 3

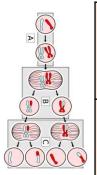
Hormones in human reproduction


Contraception

	Oral contraceptives	Contain hormones to inhibit FSH production so that no eggs mature.
Fertility can be	Injection, implant, skin patch	For slow release of progesterone to inhibit the maturation and release of eggs for months or years.
controlled by hormonal and non hormonal	Barrier methods	Condoms or diaphragms which prevent sperm reaching the egg.
methods	Intrauterine devices	Prevent implantation of an embryo or release a hormone.
	Spermicidal agents	Kill or disable sperm.
	Anstaining	Avoiding intercourse when an egg may be in the oviduct.
	Surgery	Male or female sterilisation.

During puberty reproductive hormones cause secondary sexua characteristics to develop		
Oestrogen (main female reproductive hormone)	Testosterone (main male reproductive hormone)	
Produced in the ovaries. At puberty eggs being to mature releasing one every 28 days – ovulation.	Produced in the testes stimulation sperm production.	

cycle	Follicle stimulating hormone (FSH)	Causes maturation of an egg in the ovary.	(HT) FSH stimulates ovaries to produce oestrogen.	
Menstrual	Luteinising hormone (LH)	Stimulates release of an egg.	(HT) Oestrogen stops FSH production and	
	Oestrogen and progesterone	Maintain uterus lining.	stimulates LH production in pituitary gland.	


Gametes are made in reproductive organs (in animals ovaries and testes)

Cells divide by meiosis to form gametes

Copies of the genetic information are made.

The cell divides twice to form four gametes each with single set of chromosomes.

All gametes are genetically different from each other.

Sexual reproduction involves the fusion of male and female gametes.

Asexual reproduction involves only one parent and no fusion of gametes.

Sperm and egg in animals.

Pollen and egg cells in flowering plants.

e.g. cloning of females only in an aphid population.

Produced by meiosis. There is mixing of genetic information which leads to a variety in the offspring.

Only mitosis is involved. There is no mixing of genetic information. This leads to genetically identical clones.

Gametes join at fertilisation to restore the number of chromosomes

The new cell divides by mitosis. The number of cells increase. As the embryo develops cells differentiate.

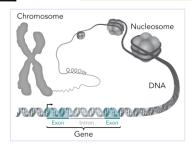
Meiosis

Meiosis leads to non-identical cells being formed while mitosis leads to identical cells being formed

DNA and the genome

Sexual and asexual reproduction

Genetic material in the nucleus is composed of a chemical called DNA.

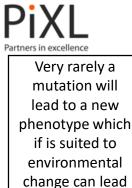


AQA GCSE INHERITANCE,
VARIATION AND
EVOLUTION Part 1

DNA structure

Polymer made up of two strands forming a double helix.

Contained in structures called chromosomes. A gene is a small section of DNA on a chromosome. Each gene codes for a sequence of amino acids to make a specific protein.


The genome is the entire genetic material of an organism.

The whole human genome has now been studied.

It is of great importance for future medical developments Searching for genes linked to different types of disease.

Understanding and treatment of inherited disorders.

Tracing migration patterns from the past.

Embryo screening: small piece of developing placenta removed to check for presence of faulty genes

Gene therapy: replacing the faulty allele in somatic cells with a normal allele

Mother (

Amy

Embryo	Economic	Costly and not 100% reliable.
screening /gene	Social	Not available to everyone (due to cost).
therapy issues	Ethical	Should only 'healthy' embryos be implanted following screening.

Mutations occur continuously

characteristics of individuals in a population may be due to Variation: difference in the

to rapid change

in the species.

Genetic causes

(inheritance)

Environmental

causes (condition

they have

developed in)

A combination of

genes and

environment

All genetic variation arises in mutation, most

have no effect on phenotype, some influence

but very few determine phenotype.

There is usually extensive genetic variation within the population of a species e.g. hair colour, skin colour, height that can also be affected by

environment e.g.

nutrition, sunlight.

all of the offspring would have the disorder. He must be heterozygous was homozygous dominant then ill of the offspring would have the a family tree: If the father

gene therapy may alleviate suffering

Father

Sam

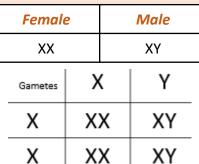
Some disorders are inherited. They are caused by the inheritance of certain alleles

Embryo screening and

Polydactyly	Cystic fibrosis
Caused by inheriting a dominant allele.	Caused by inheriting a recessive allele (both parents have to at least carry it).
Causes a person/anim al to have	A disorder of the cell membrane. Patients

extra toes or

fingers.


pairs of chromosomes

23

Ordinary human body cells contain

determination Sex

One pair of chromosomes carry the genes that determine sex

PiXL

of female child is 6. The ratio is 1:1 The probability of a male c 50%.

Using a punnet square (using mouse fur colour as an evample)

СО	iour as an exam	pie)
Parent	Black fur	White fur
phenotype		
Parent genotype	BB	bb
	In each egg	In each sperm
What gametes are present	B	b

Gametes	b	b
В	>Bb	Bb
В	Bb	Bb

The probability of black fur offspring phenotype is 100%. All offspring genotypes are heterozygous (Bb).

Crossing two heterozygous mice (Bb)

Gametes	В	b
В	ВВ	Bb
b	Bb	bb

The probability of black fur is 75% and white fur 25%. The ratio of black to white mice is 3:1

Variation

AQA GCSE INHERITANCE, **VARIATION AND EVOLUTION PART 2**

Peter

Inherited disorders

Female without disorder

Female with disorder

Male without disorder

Male with disorder

The genome and its interaction with the environment influence the development of phenotypes

Sex cells produced in meiosis. **Gamete** Chromosome A long chain of DNA found in the nucleus. Define terms linked to genetics Gene Small section of DNA that codes for a particular protein. Allele Alternate forms of the same gene. A type of allele – always expressed if only one copy present **Dominant** and when paired with a recessive allele. A type of allele – only expressed when paired with another Recessive recessive allele. Pair of the same alleles, dominant or recessive. **Homozygous** Two different alleles are present 1 dominant and 1 recessive. Heterozygous Alleles that are present for a particular feature e.g. Bb or bb Genotype Physical expression of an allele combination e.g. black fur, **Phenotype** blonde hair, blue eyes.

Some characteristics are controlled by a single gene e.g. fur colour, colour blindness.

The alleles present, or genotype operate at a molecular level to develop characteristics that can be expressed as a phenotype.

Most characteristics are as a result of multiple genes interacting.

Genetic inheritance

The concept of probability in predicting results of a single gene cross.

cannot

control the

viscosity of

their mucus.

Dominant and recessive allele combinations

Dominant	Recessive
Represented by a capital letter e.g. B.	Represented by a lower case letter e.g. b.

3 possible combinations: Homozygous dominant BB Heterozygous dominant Bb Homozygous recessive bb

Over time this results in the formation of new species.

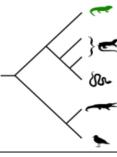
The theory of evolution by natural selection.

Species of all living things have evolved from simple life forms that first developed

3 billion

years ago.

Through natural selection of variants (genotypes) that give rise to phenotypes best suited to their environment or environmental change e.g. stronger, faster. This allows for variants to pass on their genotype to the next generation.


If two populations of one species become so different in phenotype that they can no longer interbreed to produce fertile offspring they have formed two new species.

Classification of living organisms

Use current classification data for living organisms and fossil data for extinct organisms

Humans have been doing this for thousands of years since they first bred food from crops and domesticated animals.

A change in the inherited characteristics of a population over time through the process of natural selection.

Evolution

AQA GCSE
INHERITANCE
VARIATION
AND
EVOLUTION
PART 3

The process by which humans breed

plants/animals for particular genetic characteristics

Selective breeding

Selective breeding

Choosing parents with the desired characteristics from a mixed population

Chosen parents are bred together.

From the offspring those with desired characteristics are bred together.

Repeat over several generations until all the offspring show the desired characteristics.

Evolutionary trees are a method used by scientists to show how organisms are related

Choosing characteristics

Desired characteristics are chosen for usefulness or appearance

Disease resistance in food crops.

Animals which produce more meat or milk.

Domestic dogs with a gentle nature.

Large or unusual flowers.

are related

Selective breeding can lead to 'inbreeding' where some breeds are particularly prone to disease or inherited defects e.g. British Bulldogs have breathing difficulties.

PiXL

AQA GCSE INHERITANCE VARIATION AND EVOLUTION PART 4

evolution

for

Evidence

The full human classification

Classification of living organisms

Kingdom Animalia Carl Linnaeus classified Chordata **Phylum** living things Class Mammalia **Primates** Order **Family** Hominidae Homo Genus **Species** sapiens

Due to improvements in microscopes, and the understanding of biochemical processes, new models of classification were proposed.

Carl Woese

3 domain based on chemical analysis.

Archaea (primitive bacteria), true bacteria, eukaryota.

Organisms are named by the binomial system of genus and species. Humans are Homo sapiens

Fossils

'remains' of ancient organisms which are found in rocks

Parts of organism that have not decayed as necessary conditions are absent.

Parts of the organism replaced by minerals as they decay.

Preserved traces of organisms such as footprints, burrows and rootlet traces.

Early forms of life were soft bodied and few traces are left behind and have been destroyed by geological activity, cannot be certain about how life began

Fossils and antibiotic resistance in bacteria provide evidence for evolution.

Antibiotic resistant **Mutations** strains

produce antibiotic resistant which can spread

Resistant strains are not killed.

Strain survives and reproduces.

People have no immunity to strain and treatment is ineffective.

Extinction

When no members of a species survive

Due to extreme geological events, disease, climate change, habitat destruction, hunting by humans.

Fossils tell scientists how much or how little different organisms have changed over time.

Evolution is widely accepted. Evidence is now available as it has been shown that characteristics are passed on to offspring in genes.

	_					
		Environment	The conditions surrounding an organism; abiotic and biotic.			
٦	stem	Habitat	Place where organisms live e.g. woodland, lake.		200	and
	Ecosystem	Population	Individuals of a species living in a habitat.	7	, init	iving
	_	Community	Populations of different species living in a habitat.		3	S Z Z
			Organisms require a supply of materials from their	_		

Organisms require a supply of materials from their surroundings and from the other living organisms.

Dead organisms decayed by bacteria

and fungi releasing carbon.

Materials are recycled to provide the

building blocks for future organisms

CARBON CYCLE

Bacteria respire when breaking down dead organisms releasing CO2.

CO₂ taken in

during photosynthesis. **Decomposition and** material cycling

> organisation **Levels of**

reproducing

Competition

Interdependence

and territory. Species depend on each other for food, shelter, pollination, seed dispersal etc. Removing a species can affect the whole community

Animals compete with each other for food, mates

Plants in a community or habitat compete with each other for light, space, water and mineral ions.

> **EXAMPLE:** climate change is leading to more dissolved CO₂ in oceans lowering the pH of the water affecting organisms living there.

greys also carry a pathogen food for red squirrels. The increased competition for EXAMPLE: Introduction of

Biotic

Interdependence and competition

ECOLOGY PART 1

Adaptations Organisms

AQA GCSE

adaptations enable them to survive in conditions where they normally live.

> Adaptations may be structural, behavioural or functional.

Abiotic and biotic

factors.

Non-living factors Living factors that that affect a affect a community community Living intensity.

Availability of food. Temperature.

Moisture levels.

Abiotic

content.

Soil pH, mineral

Wind intensity and direction.

Carbon dioxide

levels for a plant.

Oxygen levels for aquatic organisms. New pathogens. One species

New predators

arriving.

outcompeting so numbers are no longer sufficient to breed

Factors affecting rate of decay

conditions for making

Farmers optimise

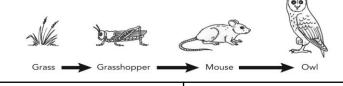
compost for use as

Anaerobic decay in biogas

generators produces

methane gas, used as a fuel.

Temperature, water, oxygen

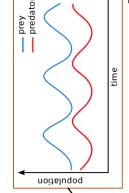

Increase the rate of decay. In enzyme controlled reactions raising the temperature too high will denature the enzymes.

organisms releases Breakdown of dead mineral ions can

Feeding relationships in a community

Food chains

Tertiary Primary Secondary Producer consumer consumer consumer


All food chains begin with a producer e.g. grass that is usually a green plant or photosynthetic algae.

Consumers that kill and eat other animals are predators and those eaten are prey.

Organisms respire

releasing

Photosynthetic organisms are the producers of biomass for life on Earth

In a stable community the numbers of predators and prey rise and fall in cycles.

extreme cold artic desert

No leaves to reduce water loss, wide deep roots for absorbing water.

Plants

Cactus in dry, hot

Adaptations

Animals

Polar bear in

Hollow hairs to trap laver of heat. Thick layer of fat for insulation.

Extremophiles

Deep sea vent

bacteria

Populations form in thick layers to protect outer layers from extreme heat of vent.

Global warming

Levels of CO₂ and methane in the atmosphere are increasing. Decreased land availability from sea level rise, temperature rise damages delicate habitats, extreme weather events harm populations of plants and animals. There is a global consensus about global warming and climate change based on systematic reviews of thousands of peer reviewed publications.

Global Warming Predictions

2070-2100 Prediction

vs. 1960-1990

Average

0 1 2 3 4 5 6 7 8

Temperature Increase (°C)

AQA GCSE ECOLOGY PART 2

Maintaining biodiversity

Human activity can have a positive impact on biodiversity

Scientists and concerned citizens

Put in place programmes to reduce the negative impacts of humans on ecosystems and biodiversity

Breeding programmes for endangered species.

Protection and regeneration of rare habitats.

Reintroduction of field margins and hedgerows in agricultural areas where farmers grow only one type of crop.

Reduction of deforestation and CO₂ emissions by some governments.

Recycling resources rather than dumping waste in landfill.

Some of the programmes potentially conflict with human needs for land use, food production and high living standards.

Maintain a
great
biodiversity

Ensures the stability of ecosystems

By reducing the dependence on one species on another for food, shelter, maintenance of the physical environment.

Future of human species

Many human activities are reduction biodiversity and only recently measures have been taken to stop it.

Human activity can have a negative impact on biodiversity

Pollution kills plants and animals which can reduce biodiversity.

Biodiversity is the variety of all different species of organisms on Earth, or within an ecosystem

Biodiversity

Experimental methods are used to determine the distribution and abundance of a species.

oling iques	Quadrats	Organisms are counted within a randomly placed square
Sam _l techn	Transects	Organisms are counted along a belt (transect) of the ecosystem.

	Processing data
Median	Middle value in a sample.
Mode	Most occurring value in a sample.
Mean	The sum of all the value in a sample divided by the sample number.

Biodiversity and the effect of human interaction on the ecosystem

Rapid growth in human population and higher standard of living

Waste management

More resources used and more waste produced.

Pollution in water; sewage, fertiliser or toxic chemicals.

Pollution in air; smoke or acidic gases.

Pollution on land; landfill and toxic chemicals.

AQA GCSE

ECOLOGY PART 3

Waste, land use and deforestation

Land use

Humans reduce the amount of land and habitats available for other plants, animals and microorganisms.

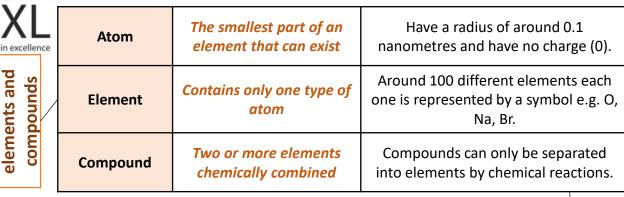
Building and quarrying.

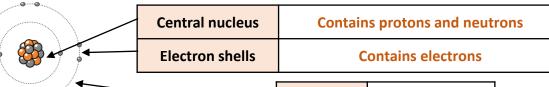
Farming for animals and food crops.

Dumping waste.

Destruction of peat bogs to produce cheap compost for gardeners/farmers to increase food production.

> The decay or burning of peat release CO₂ into the atmosphere.


Large scale deforestation


In tropical areas (e.g. rain forest) has occurred to:

Provide land for cattle and rice fields, grow crops for biofuels.

Deforestation reduces biodiversity and removes a sink for increasing the amount CO₂ in the atmosphere. This conflicts with conserving peat bogs and peatlands as habitats for biodiversity and reduce CO₂ emissions.

•		
Name of Particle	Relative Charge	Relative Mass
Proton	+1	1
Neutron	0	1
Electron	-1	Very small

Atoms,

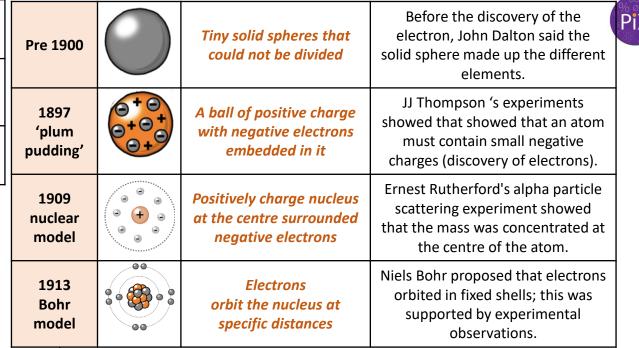
Electronic shell	Max number of electrons
1	2
2	8
3	8
4	2

Relative electrical charges of subatomic particles

7	Mass number	•	ons and neutrons in the icleus
Li 3 ←	Atomic number	The number of protons in the atom	Number of electrons = number of protons

Two or more elements or compounds **Mixtures** not chemically combined together

Can be separated by physical processes.


Electronic structures

AQA GCSE

and periodic

table part 1

Method	Description	Example				
Filtration	Separating an insoluble solid from a liquid	To get sand from a mixture of sand, salt and water.				
Crystallisation	To separate a solid from a solution	To obtain pure crystals of sodium chloride from salt water.				
Simple distillation	To separate a solvent from a solution	To get pure water from salt water.				
Fractional distillation	Separating a mixture of liquids each with different boiling points	To separate the different compounds in crude oil.				
Chromatography	Separating substances that move at different rates through a medium	To separate out the dyes in food colouring.				

The development of the model of the atom

James Chadwick

Provided the evidence to show the existence of neutrons within the nucleus

Atomic structure

A beam of alpha particles are Rutherford's scattering directed at a very thin gold foil experiment

Most of the alpha particles passed right through. A few (+) alpha particles were deflected by the positive nucleus. A tiny number of particles reflected back from the nucleus.

Chemical equations

Show chemical reactions - need reactant(s) and product(s) energy always involves and energy change

Uses words to show reaction

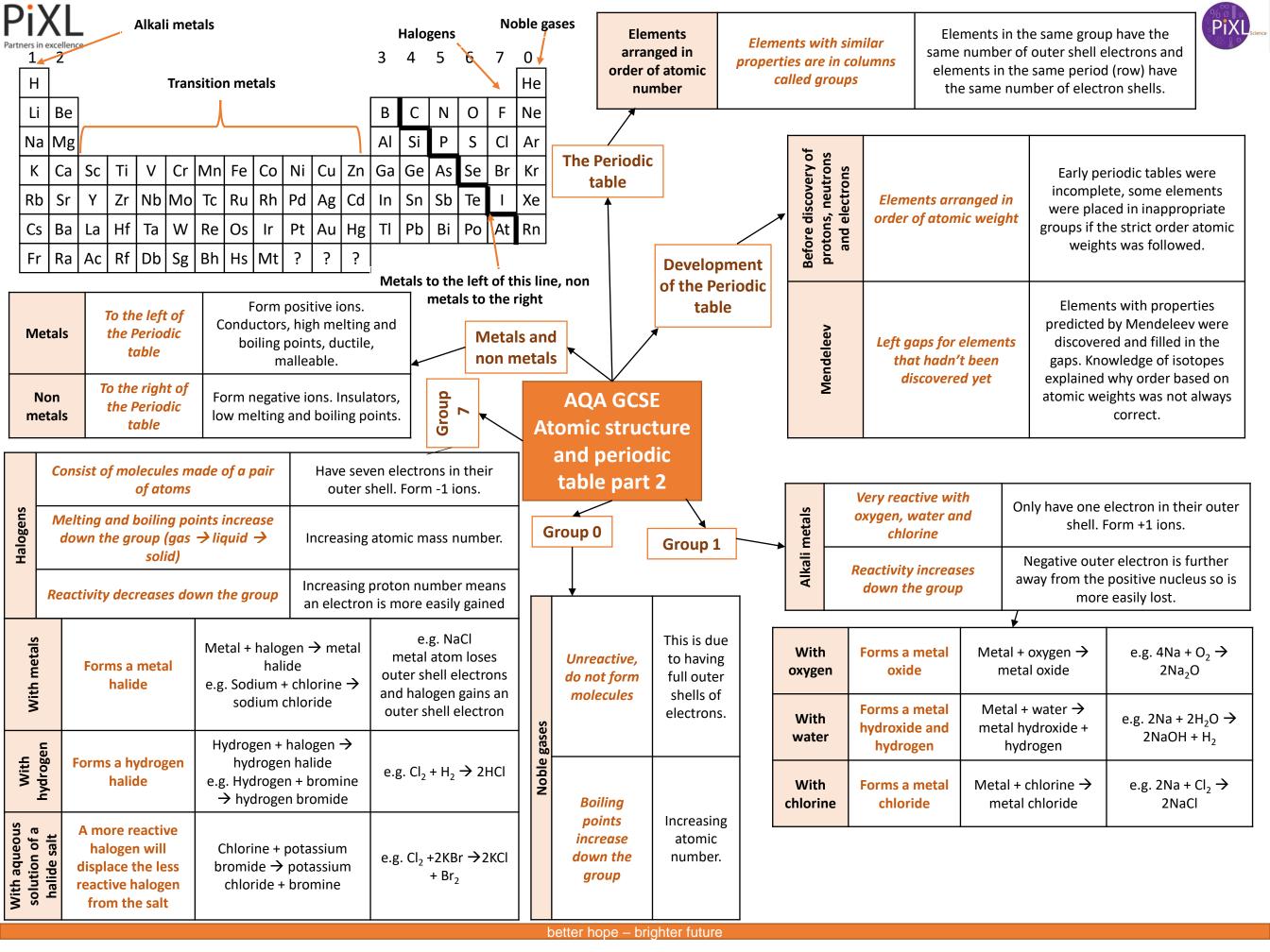
Law of conservation of mass states the total mass of products = the total mass of reactants.

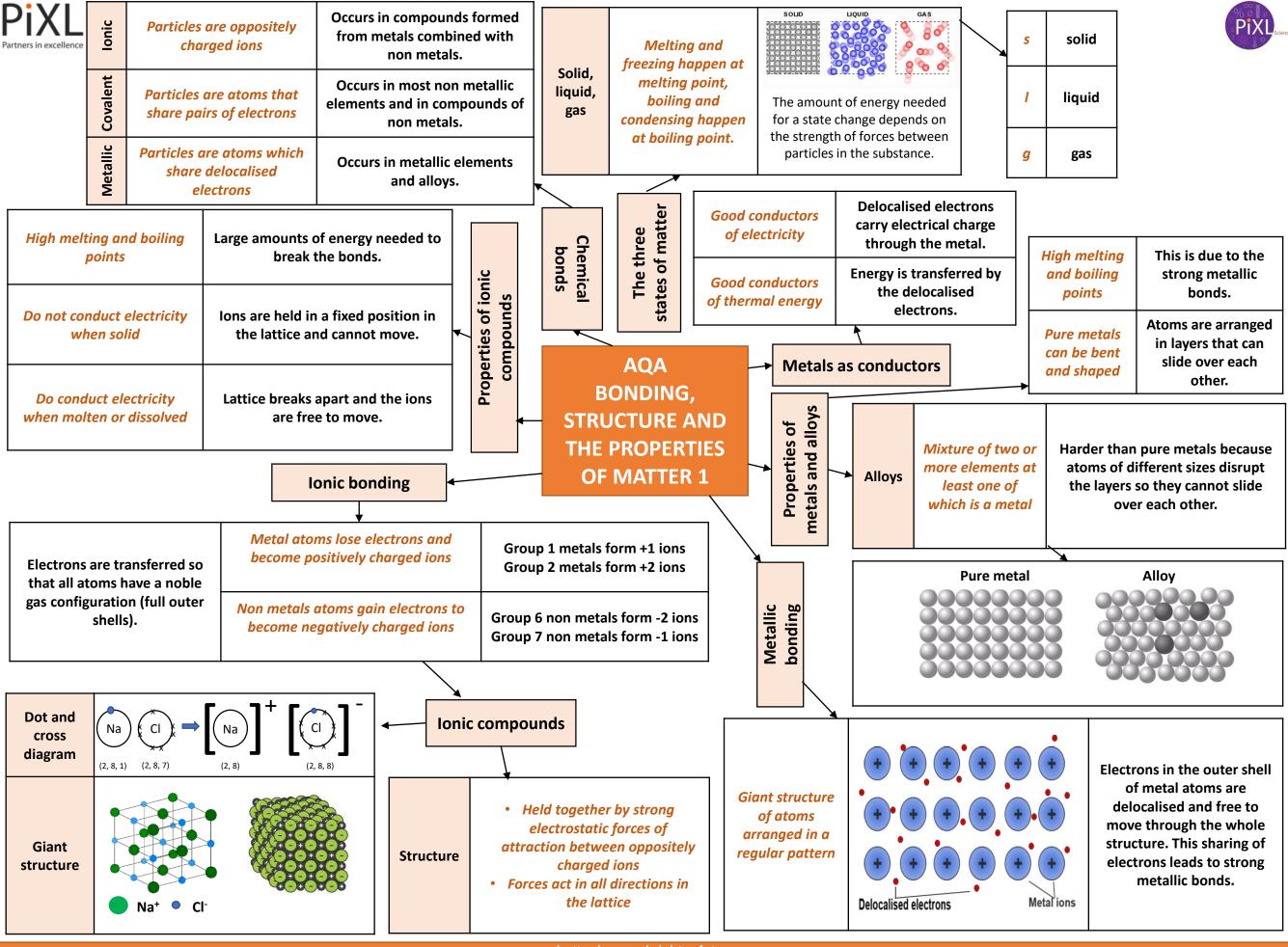
> Does not show what is happening to the atoms or the

> > number of atoms.

Shows the number of atoms and

molecules in the reaction, these need to be balanced.


	(_	Vord uations	n	reactants → production production reactants → production reactants → magnes					
	(•	mbol uations		Uses symbols to show reaction reactants → products 2Mg + O ₂ → 2MgO					
00000	atomic mass		Isotope	es	Atoms of the same element with the same number of	35 ((% isoto				
	atollii		•		protons and different numbers of neutrons	e.g. (


³⁵Cl (75%) and ³⁷Cl (25%)

Relative abundance = (% isotope 1 x mass isotope 1) + (% isotope 2 x mass isotope 2) ÷ 100 e.g. $(25 \times 37) + (75 \times 35) \div 100 = 35.5$

better hope – brighter future

Relative

Partn	ers in excellence									Very hard	ı.	Rigio	l structure.	PIXUscience
	ery large	Solids (H H C=C	→ (H -Ç-	7 \	Each carbon atom is bonded to four others		Very high meltii	ng point.	Strong c	ovalent bonds.	
n	nolecules	tempera	-		н н	\ H	н / _п			Does not cor electricit		No deloca	alised electrons.	
Henally gases or liquids	forces to	nt bonds nolecule ong but between ecules olecular) weak	Do not conduct electricity. Larger molecule have higher melting and boiling points.	internotes b Due mole having electrics Internotes in the s	having weak molecular that easily roken. To them ecules not g an overall ical charge. molecular ncrease with size of the blecules.	perties	AND T	AQA NG, STRUC HE PROPEL F MATTER 2 Giant covale structures	COVALENT BOOMERS	Can be small molecules e.g. ammonit		N H + 2D N—H + Si tog H - It	ot and cross: Show which atom electrons in the bo from All electrons are id with bonds: how which atoms a ether shows the H-C-H b correctly at 90°	ends come lentical are bonded
Graphene	Single	layer of	Excellent conductor.	Contain delocalise electron Contain strong	ed s. s	aphene a		Structures		Atoms snare pe		+ A	ball and stick mode ttempts to show th nd angle is 109.5°	
	graph	nite one n thick	Very strong.	covalen bonds.			Diamono graphite silicon dioxide	welting	Lots of energy needed to break strong, covalent bonds.	Can be gian covalent structures			H H \ C-C-+	
Fiilloropos			Buckminsterfu C ₆₀ First fulleren discovere	e to be	Hexagonal rii of carbon ato with hollow shapes. Can a have rings of (pentagonal) seven (heptagona	oms w also five or				e.g. polyme		Graphite		
304				Ver	carbon atom y conductive.		ed in electi	ronics bor	carbon atom is		Slip	pery.	Layers can slide other.	I .
2041140000			Very thin and long	High	tensile strengt		industry Reinforcin posite ma	ng layer terials.	ners forming s of hexagonal ngs with no			gh melting oint.	Strong covalen	t bonds.
achie		M.C.	cylindrical fullerenes	Large	surface area tolume ratio.		Catalysts a lubricant	and betw	valent bonds veen the layers			conduct tricity.	Delocalised el between la	
								better hope –	brighter future					

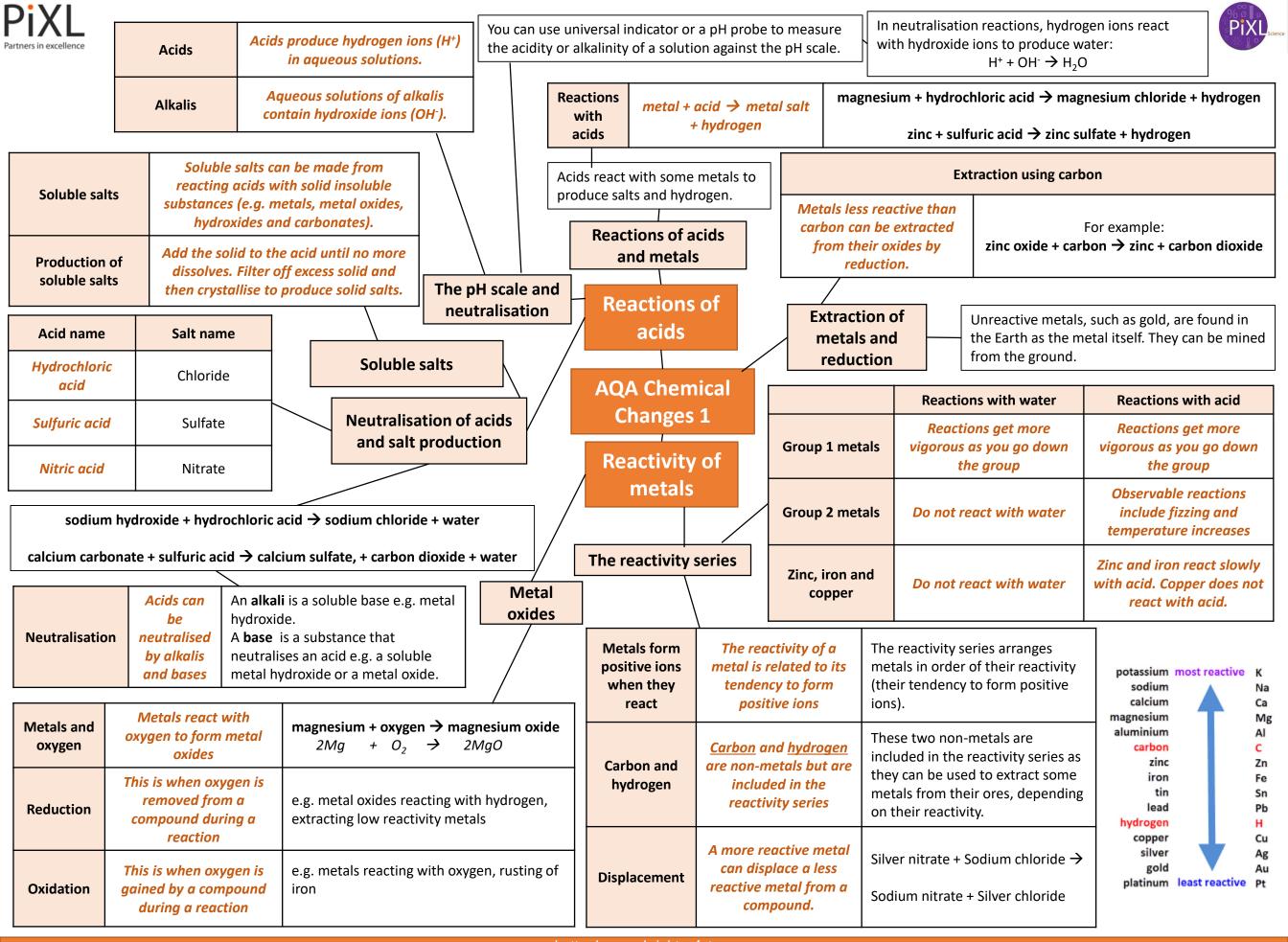
	/1 -									_				
Partners in ex	xcellence	M,	ato ato	e sum of the rel omic masses of oms in the num own in the forr	f the obers	The sum of the M _r of the reactants in the quantit shown equals the sum the M _r of the products the quantities shown		$2Mg + O_2 \rightarrow 2Mg$ 48g + 32g = 80g 80g = 80g						
incre	s appea ease du reactio	ring a	One	e of the reacta	nts	Magnesium + oxygen	→ r	magnesium oxide	mass	Relative	Chemical m	<u> </u>	Whenever a measurement is taken, there is always some uncertainty	v
decr	s appea ease du reactio	iring a		e of the produc s a gas and has escaped		Calcium carbonate → carbo	on d	dioxide + calcium oxide		e formula	measurements		about the result obtained	
					Mass	changes when a reacta	nt o	or product is a gas		<u>a</u>	ents		Concentration of solutions	of
	ervation mass	n	mad	ns are lost or le during a cal reaction		ess of the products equals ne mass of the reactants.		AQA QUANTITATI\			/		Measured in mass per given	
Balanced symbol equations	ch reac have nu aton eleme	epresent themical tions a the sal mber o ms of ea ent on b	nd me f ich	atoms	numbe	Cl ₂ → 2HCl Normal script ers show the number of element to its left. Shows the number of the shows the shows the number of the shows the sho		Conservation of mass and balanced symbol equations					volume of solution (g/dm³)	

molecules.

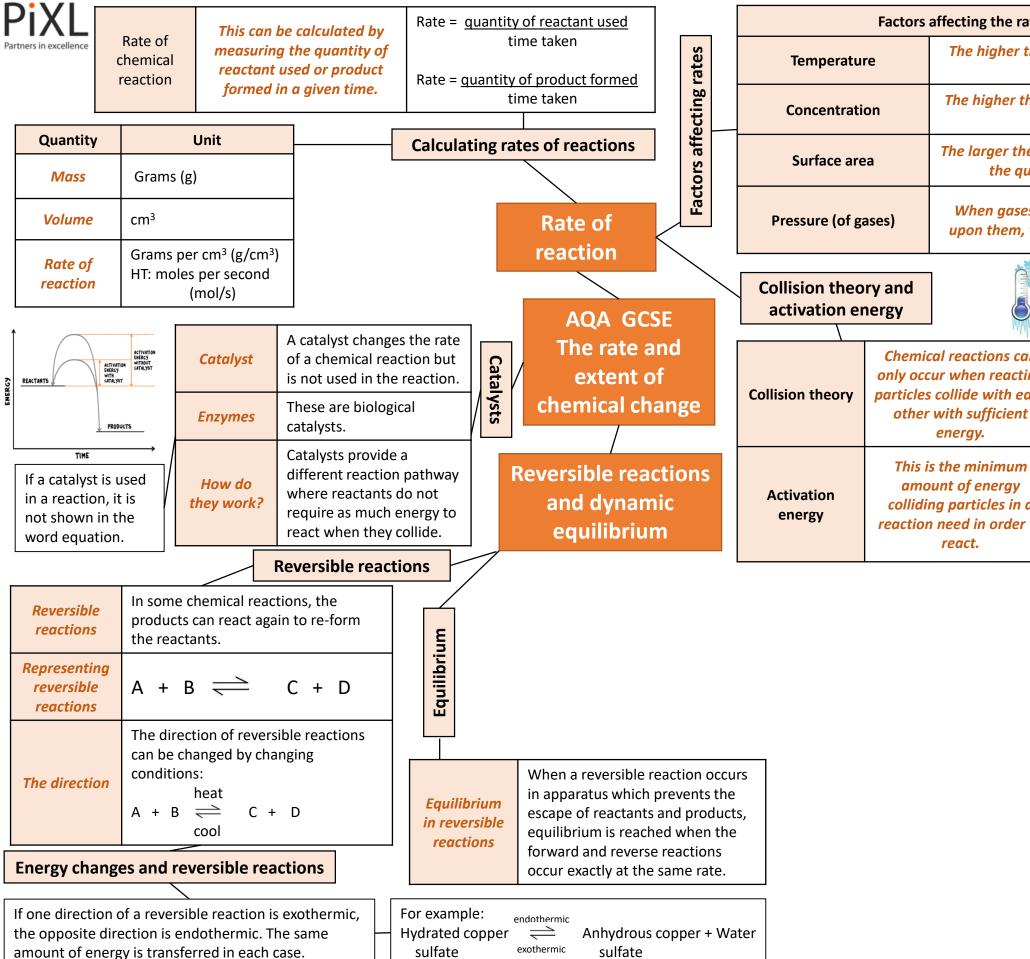
equation

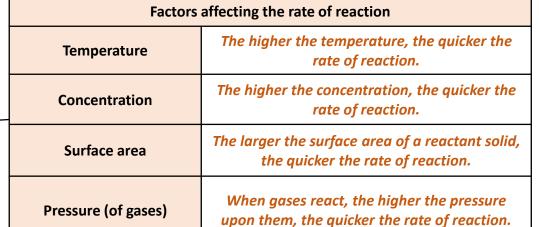
Can determine whether the mean value falls within the range of uncertainty of the result

- 1. Calculate the mean
- 2. Calculate the range of the results
- 3. Estimate of uncertainty in mean would be half the range

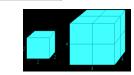

Example:

- 1. Mean value is 46.5s
- 2. Range of results is 44s to 49s = 5s
 - 3. Time taken was 46.5s \pm 2.5s


Conc. = mass(g)volume (dm³)


Greater mass = higher concentration. **Greater volume = lower** concentration.

HT only


PiXL Partners in excellence	solution is electrodes	charged when an aqueous selectrolysed using inert s depend on the relative of the elements involved.	Process of electrolysis	Splitting up using electricity	When an ionic compour water, the ions are free to to conduct electricity a Passing an electric curren the ions to move	move. nd are c t thougl	These are then able alled electrolytes. In electrolytes causes		g		rals can be extracted from molten compounds using electrolysis.	
At the negative electrode	if it is less Hydrogen wi	e produced on the electrode s reactive than hydrogen. Il be produced if the metal is eactive than hydrogen.	Electrode	Anode Cathode	The positive electro	de is cal	led the anode. ed the cathode.		ting metals using electrolvsis	This pr reactiv	rocess is used when the metal is t we to be extracted by reduction w carbon.	
At the positive electrode	Oxygen is for the state of the	ormed at positive electrode. a halide ion (Cl-, l-, Br-) then chlorine, bromine or iodine ned at that electrode.	Where do the ions go?	Cations Anions	Cations are positive io negative Anions are negative io positive	e catho	le. hey move to the		Extracting metals electrolysis	amoun	e process is expensive due to large unts of energy needed to produce the electrical current. mple: aluminium is extracted in this way.	
			Types of reaction		Я	ermic	ction files Activation energy	ha	ppen ollide Activat		or energy that collidir	ng in ed y. gy ne gy
	Endothermic	Energy is taken in from th surroundings so the temperature of the surroundings decreases	• Ine	rmal decomposi ports injury pack		Endoth	Reactants		_		mixture. The temperature of the surroundings decreases because energy is taken in during the reaction.	se
	Exothermic	Energy is transferred to the surroundings so the temperature of the surroundings increases		Combustion Hand warmers Neutralisation		Exothermic	Reactants	×	ene	ation rgy ducts	Products are at a lower energ level than the reactants. Whe the reactants form products, energy is transferred to the surroundings. The temperatur of the surroundings increases because energy is released during the reaction.	n re
							Time					

PiXL

other with sufficient energy.	or	Chemical reactions can nly occur when reacting articles collide with each other with sufficient energy.
----------------------------------	----	---

amount of energy colliding particles in a reaction need in order to react.

Increasing the temperature increases the frequency of collisions and makes the collisions more energetic, therefore increasing the rate of reaction.

Increasing the concentration, pressure (gases) and surface area (solids) of reactions increases the frequency of collisions, therefore increasing the rate of reaction.

PiXI						isplay formula fo	r first four	alkanes		Т			ch fraction co	ntains	PIXL Science
Partners in excellence Crude oil	A finite resource	planktor in the m	ng mainly of n that was buried ud, crude oil is ains of ancient	and alkanes	Si,	H H—C—H H H 1ethane (CH ₄)	H	H -C-H H He (C ₂ H ₆)	Fractions	S	The hydrocarbons crude oil can be sp into fractions	in nu the do	olecules with umber of carb em. The proconthis is called stillation.	a similar on atoms in ess used to	Science
Hydrocarbons	These make up the majority of the compounds in crude oil	Most of hydroca alkanes.	these rbons are called		rbons H-	H H H -C-C-C-H H H H ropane (C ₃ H ₈)	H—C—C I I H H Butane	H H C-C-C-H H H E (C ₄ H ₁₀)	Using fractions		Fractions can be processed to produce fuels and feedstock for petrochemical industry	the an Ma	e depend on ese fuels; pet od kerosene. any useful made by the pedustry; solver	rol, diesel aterials are	
General formula for alkanes	<i>C_nH_{2n+2}</i>	For exar	nple: ${\sf C_2H_6}$ ${\sf C_6H_{14}}$		Carbon compounds as fuels and feedstock AQA GCSE				Fractional distillation and petrochemicals				20 °C	Butane & Propane	
Alkanes to alkenes	Long chain alkanes chain	are crack alkenes.	ed into short		Carbon compounds as fuels and feedstock				nts Inc	in lots of different lengths. The boiling point of the chain Source Kerose				Kerosene	
Alkenes	Alkenes are hydrod bond (some are cracking		uring the			as fuels and feedstock			separate at different tempe due to this.			boil and		<u>ጥ ጥ ጥ ጥ </u> 370 °C <u>ጥ ጥ ጥ ጥ </u>	
Properties of alkenes	Alkenes are more and react with browster changes from in the prese	mine wat n orange	er. Bromine to colourless		Cracking /	racking and alkenes			During th hydrocarbor the fuels a	the fuels are oxidised releasing carbon				Lubricating oil, Parrafin Wax, Asphalt	
Cracking	Cracking hydrocarbons into various methods including			dioxide, water and energy. Complete combustion of methane Methane + oxygen \rightarrow carbon dioxide + water $C_5H_{12} + C_3H_6 + C_2H_4$ $C_5H_{12} + C_3H_6 + C_2H_4$ $C_7H_4 (g) + 2O_2 (g) \rightarrow CO_2 (g) + 2$			e + water + en	· ·							
Catalytic crackin	g heated u			ot catalyst ; more useful		Alkenes and uses as polymers	nd uses starting material other chemicals		sed as the Is of many s, such as		Boiling point (temperature a which liquid bo	at	increases, k	rocarbon chail poiling point in	ocreases.
Steam cracking	After vaporisation, the vapour is mixed with steam and heated to Mathematical Content of the			many of the	Viscosity (how easily it flows) As the hydrocarbon of increases, viscosity				_						

wasted as there is not much

demand for these as for the

shorter chains.

Flammability

(how easily it burns)

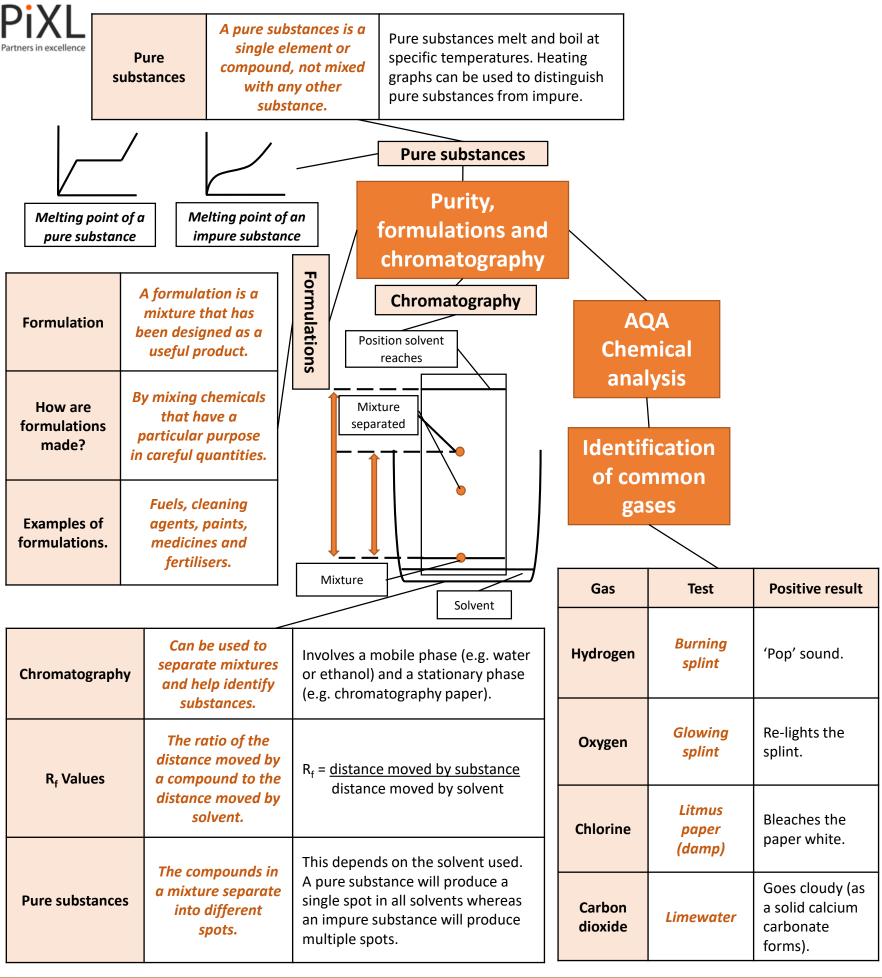
As the hydrocarbon chain length

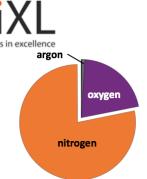
increases, flammability decreases.

long

chains?

a very high temperature forming


smaller, more useful


hydrocarbons.

Steam cracking

heated until

vaporised

Reducing

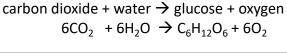
carbon

dioxide in

the

atmosphere

Gas	Percentage
Nitrogen	~80%
Oxygen	~20%
Argon	0.93%
Carbon dioxide	0.04%


Proportions of atmosphere gases in the

The

Earth's early atmosphere

Algae and plants

 $6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$

Over the next billion years plants evolved to

increased to a level that enabled animals to

gradually produce more oxygen. This gradually

	1	AIGC
Volcano activity 1 st Billion years	Billions of years ago there was intense volcanic activity	This released gases (mainly CO ₂) that formed to early atmosphere and water vapour that condensed to form the oceans.
Other gases	Released from volcanic eruptions	Nitrogen was also released, gradually building up in the atmosphere. Small proportions of ammonia

When the

oceans formed,

carbon dioxide

dissolved into it

Atmospheric pollutants from fuels

and methane also produced. This formed carbonate precipitates, forming sediments. This reduced the levels of carbon dioxide in the

atmosphere.

How oxygen increased

Oxygen in the

atmosphere

How carbon dioxide decreased

Composition and evolution of the atmosphere

AQA GCSE Chemistry of the atmosphere

Common atmospheric pollutants

Reducing carbon dioxide in the atmosphere

First produced by algae 2.7 billion

years ago.

Formation of sedimentary rocks and fossil fuels

Algae and plants

evolve.

These are made out of the remains of biological matter, formed over millions of years

These gradually reduced the carbon dioxide levels in the atmosphere by absorbing it for photosynthesis.

Remains of biological matter falls to the bottom of oceans. Over millions of years layers of sediment settled on top of them and the huge pressures turned them into coal, oil, natural gas and sedimentary rocks. The sedimentary rocks contain carbon dioxide from the biological matter.

CO₂ and methane as greenhouse gases

Carbon footprints

The total amount of greenhouse gases emitted over the full life cycle of a product/event. This can be reduced by reducing emissions of carbon dioxide and methane.

Greenhouse gases

Carbon dioxide, water vapour and methane

Examples of greenhouse gases that maintain temperatures on Earth in order to support life

The greenhouse effect

change

Global climate

change

Radiation from the Sun enters the Earth's atmosphere and reflects off of the Earth. Some of this radiation is re-radiated back by the atmosphere to the Earth, warming up the global temperature.

Human activities and greenhouse gases

Combustion of fuels	Source of atmospheric pollutants. Most fuels may also contain some sulfur.
Gases from burning fuels	Carbon dioxide, water vapour, carbon monoxide, sulfur dioxide and oxides of nitrogen.
Particulates	Solid particles and unburned hydrocarbons released when burning fuels.

Toxic, colourless and odourless Carbon monoxide gas. Not easily detected, can kill. Sulfur Cause respiratory problems in dioxide and humans and acid rain which oxides of affects the environment. nitrogen Cause global dimming and health **Particulates** problems in humans.

Properties and effects of

atmospheric pollutants

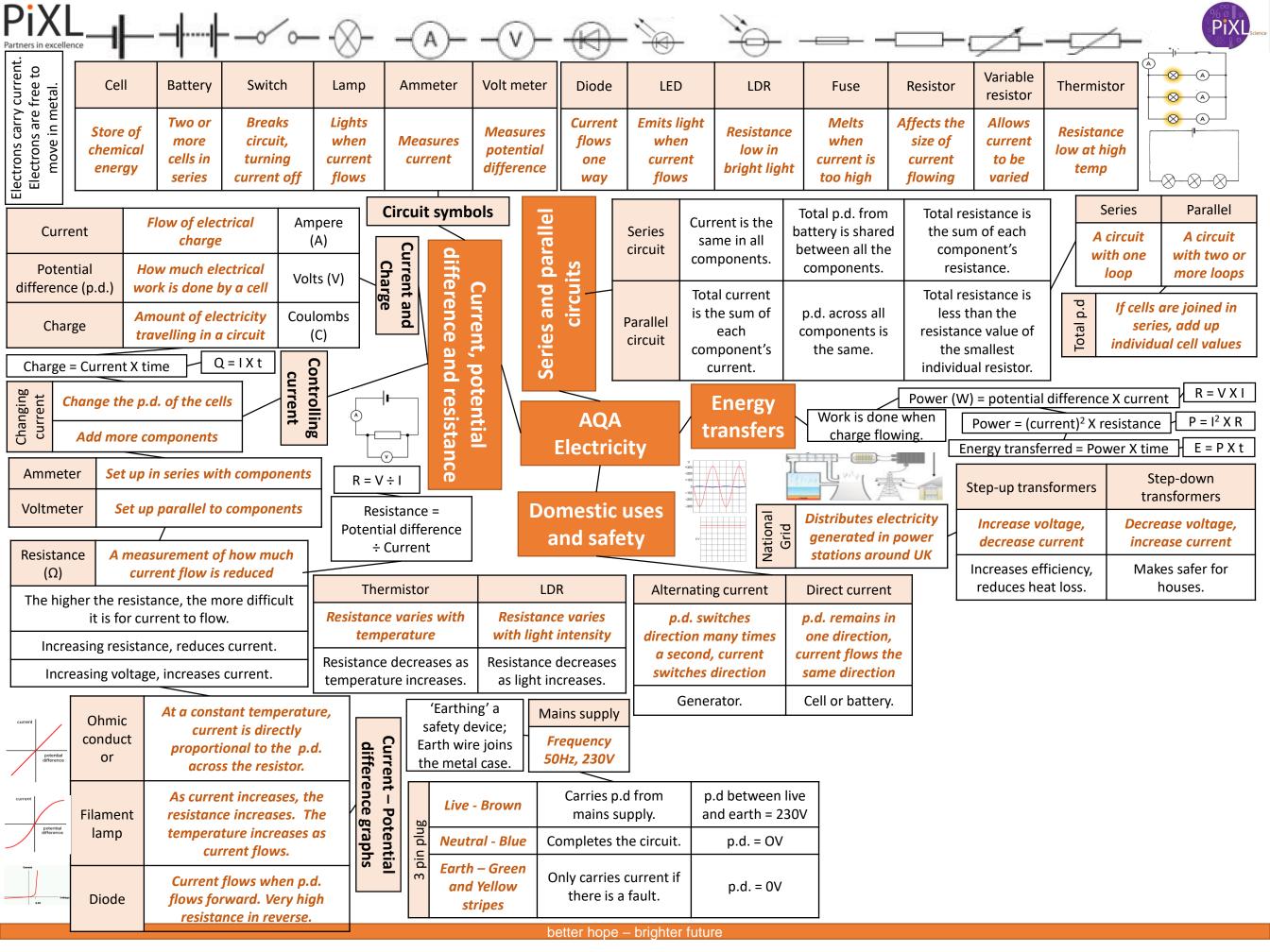
Effects of climate change Rising sea levels Extreme weather events such as severe storms Change in amount and distribution of rainfall Changes to distribution of wildlife species with some

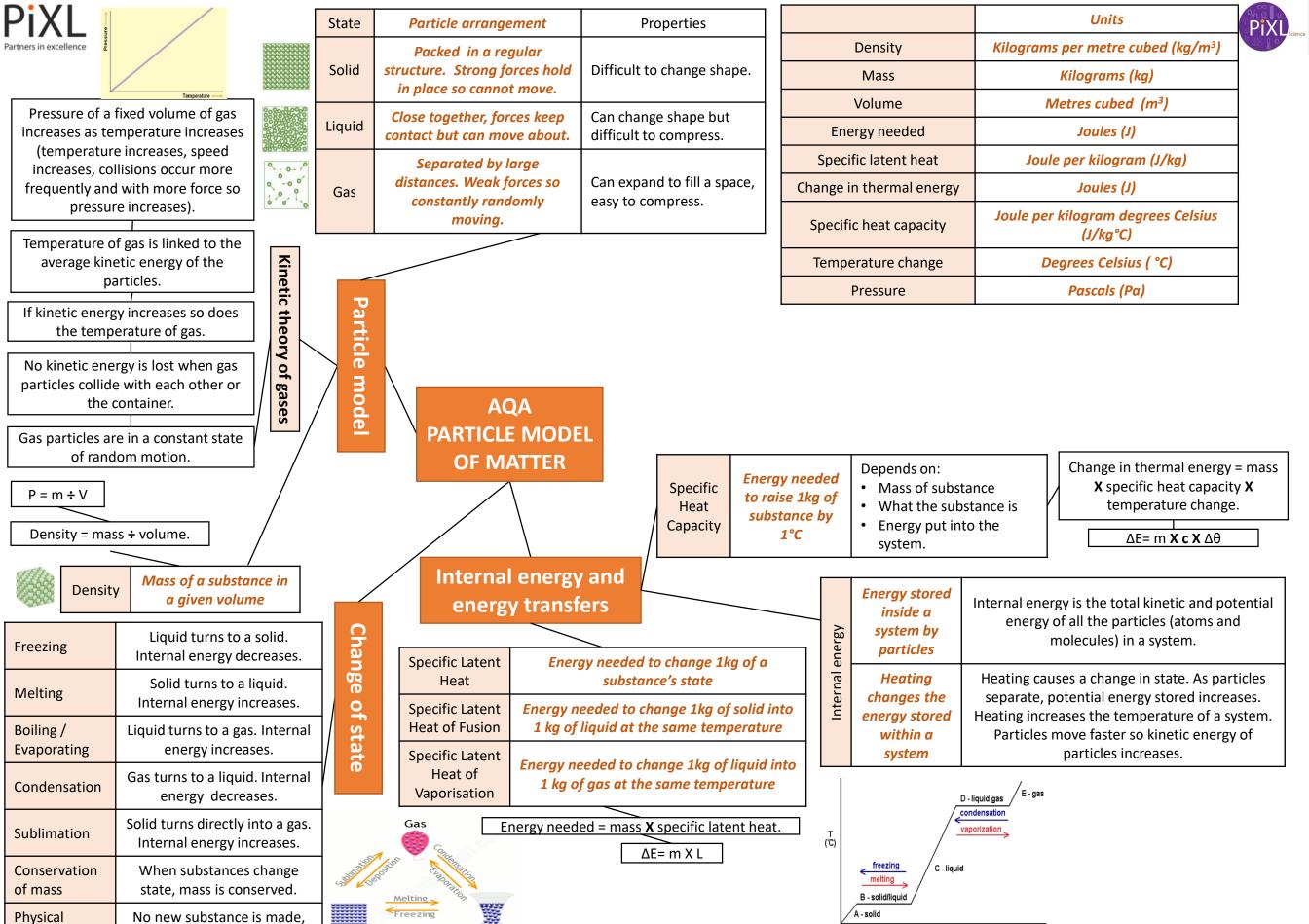
becoming extinct

Human activities that increase carbon Carbon dioxide levels include burning fossil fuels dioxide and deforestation. Human activities that increase methane levels include raising livestock (for food) Methane and using landfills (the decay of organic matter released methane). There is evidence to suggest that human Climate activities will cause the Earth's atmospheric temperature to increase and

cause climate change.

DiVI						
Partners in excellence					Sterilising agents include chlorine, ozone and UV light.	Po
Earth's		to provide th, shelter,	Natural resources and from agriculture provi food, clothing and fue	de: timber,	e er	
resources	food ar	nd transport humans	Finite resources from oceans and atmosphe processed to provide o	re are	aldenietsns and sustainable searth botable water	UK
Chemistry and resources	techniq agricu	earch and wes improve ultural and ial processes	These improvements products and improve sustainability.	•	Using the Earth's	Desa
Plastics	using e	nally made ethene from rude oil	However, the raw mat can also be obtained f ethanol, which can be during fermentation. I are now starting to us renewable crop for the	rom produced ndustries e a	resources and obtaining potable water AQA GCSE Using	
LCAS	Life cycle assessments carried out assess th environmen impact of products	s are - Ext t to ma e - Ma ntal - Uso of life	are assessed at these sta raction and processing ra terials inufacturing and packaging a and operation during time posal	Life cycle ass	Life cycle assessment and recycling	
Values	Allocatin numerical vo to polluta effects is difficult	values Value the ef	judgments are allocated fects of pollutants so LCA purely objective process.	A is	Ways of reducing the use of resources	
_			gy reduces the use of ited resources	· '	re, reduces energy sources being s waste (landfill) and reduces al impacts.	
			netals, glass, building ls, plastics and clay ceramics	comes from li materials fror	energy required for these processes imited resources. Obtaining raw methe Earth by quarrying and mining onmental impacts.	
Religing and recycling			be recycled by melting casting/reforming	melted to ma	can be reused. They are crushed ar lke different glass products. Product e reused are recycled.	

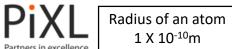

Potable water	Water of an appropriate quality is essential for life	Human drinking water should have low levels of dissolved salts and microbes. This is called potable water.					
UK water	Rain provides water with low levels of dissolved substances	This water collects in the ground/lakes/rivers. To make potable water an appropriate source is chosen, which is then passed through filter beds and then sterilised.					
Desalination	Needs to occur is fresh water is limited and salty/sea water is needed for drinking	This can be achieved by distillation or by using large membranes e.g. reverse osmosis. These processes require large amounts of energy.					


Waste water treatment

Waste water	Produced from urban lifestyles and industrial processes	These require treatment before used in the environment. Sewage needs the organic matter and harmful microbes removed.
Sewage treatment	Includes many stages	 Screening and grit removal Sedimentation to produce sludge and effluent (liquid waste or sewage). Anaerobic digestion of sludge Aerobic biological treatment of effluent.

PiXI	L N	1echanical	Ford	ce acts up	on an obj	ect	\\	Char	nge in the	ermal energy = r	mass X sp	ecific heat c	apacity X tempe	rature chang	ge ΔE:	= m X c X Δθ PiXL science
Partners in excelle	ence	Electrical	Ε	Electric cu	rrent flow	Specific Heat		ic Fne	ergy needed	Depend	s on, mass o	of substance,			≥ ® Î o	
		Heat	Temperatur	re differe	nce betwe	en objects	Energy pathways	Heat		raise 1kg of	what the	e substance	is and			
	F	Radiation	Electro	magnetic	waves or	sound		Capaci	ty subs	stance by 1°C	energy p	out into the	system.		Efficiency =	Useful power output
Kinet	ic	Energy store	od hy a		1/4 Y m	ass X (spee	<u>ا</u>	_	l	/	/ \	Derroteler	30 Windows	L		Total power input
ener		moving of	•		/2 X III	$\frac{1}{2}$ mv ²	u)					Alback		Efficienc		output energy transfer put energy transfer
Elast	ic	Energy store	ed in a	1/2 >	Spring co	nstant X (ex	xtension) ²								Totarn	
Poten		stretched specific be	-	cuming the	limit of pro	½ ke²	as not been exce	odod)	T	Energy				[Efficiency	How much energy is usefully transferred
energ Gravitat		Energy gain		sulling the	iiiiiit or proj	portionality ii	as not been exce	eueu)		stores		u o				
Poten		an object r	-	Mass X	gravitatio		ength X height		/	and		ati		To scatter		en energy is 'wasted',
ener	gy	above the g	round			mgh] /	change	S	Dissipation	Dissipate	all direction or to us	l l	dissipates into the roundings as internal
Systo	ım.	An obje	ct or group of	of objects t	that	EG: Vottlo	boiling water.					Dis		wasteful		(thermal) energy.
Syste	111		interact toge	ether		LG. KELLIE	boiling water.			AQA		and	*			
Enorgy	rtoros		hemical, inte	-	• • •	Energy is g	ained or lost			ENERGY -				Vays to reduce	Energy	Insulation, streamline design,
Energy s	stores	_	al potential, e etic, electrosta	-	-	from the o	bject or device	. /		part 1		.0 359	A COD	vasted'	ransferred usefully	lubrication of
Ways	to	Light, soun	d, electricity,	, thermal,	kinetic	EG: electri	cal energy			_		rvation	5%	energy	usejuny	moving parts.
trans		-	ys to transfer from one store to			transfers chemical energy			Closed	No change	1 /		Dringinlo	The a	mount	Energy cannot be
ener		and	nother store of energy.			into thermal energy to heat water up.			system	total energ	- 1/	no:	Principle conservati	on of el		created or destroyed,
Uni	τ		Joules (J)	<u>')</u>		water up:			Open	Energy co	an		of energ	V I *	-	only changed from one store to another.
		ing work fers energy	By applying force to me	- 1	Work do	nne = Force	X distance mov	,ed	system	n dissipate	е	nergy			L	
Work		one store to	object the		WOIR GO	W =			Electrical	Light energy (10 %)		E				Units
	a	ınother	store is cha	nanged.					Electrical energy (100%)				Energy (KE	, EPE, GPE,		Joules (J)
	Th	e rate of	1 Joule of 6	energy	Powe	er = energy t P = E	transfer ÷ time		•				ther	mal)		Joules (J)
Power		gy transfer	per secon watt of p	I .	Pov		. ເ done ÷ time,			Thermal energy (90%)			Velo	city	Met	res per second (m/s)
			wattorp	Jowei		P = W	′÷t						Spring o	onstant	New	ton per metre (N/m)
				Units		Useful	Energy to	ansfer	red	l			Exter	nsion		Metres (m)
C	fiellest	Congoit	Joules per l	Kilogram	degree	energy	and	used	/				Ma	ass		Kilogram (Kg)
II Specific Heat Capacity I		ius (J/Kg°C	_	Wasted	•						Gravitational	field strengtl	h Newto	n per kilogram (N/Kg)		
Temperature change Degrees Celsius		es Celsius ((°C)	energy	stored le	s usej	ully				Hei	ght		Metres (m)		
,	Work do	one	Jo	oules (J)		Prefix	Multiple	- 1	ndard							
	Force	<u> </u>	Ne	ewton (N)		TICHA	waitiple	_	orm							
Dis	stance n	noved	M	letre (m)		Kilo	1000	-	10 ³							
	Power Watts		/atts (W)		Mega	1000 000	_	10 ⁶								
	Time		Sec	conds (s)		Giga	100 000 000		10 ⁹							

Partners in excellence Using renewable	Transport	Petrol, diesel, kerosene produced from oil	Used in cars, trains and planes.		ntion – NB: You nee resource is burnt t			_	> n0n n1	Science	
energy will need to increase to meet demand.	Heating	Gas and electricity Most generated by fossil fuels	Used in buildings. Used to power most devices.	Power station	Generates electricity	Fuel burn releasing thermal ene	Water boils into steam	Steam turns turbine	Turbine turns generator induces voltage		
Renewable makes up abou	ut 20% of	reserves are i	ergy demand is ncreasing as lation increases.	National Grid	Transports electricity across UK	Power stati	on Step-up transformer	Pylons	Step-down House, factory		
Non-renewable energy resource	Non-renewable These will run out. It is a e.g. Foss finite reserve. It cannot be oil and g		I fuels (coal, es) and nuclear Usir	ng fuels Global Energy		EN	AQA JERGY –	National			
Renewable energy resource	is an infinit	te reserve. It Wind, Ge	otnermal.	nergy sources	Resources		part 2 Grid				
Energy resource	F	How it works Uses Positive					Negative				
Fossil Fuels (coal, oil and gas)		ase thermal energy used ater into steam to turn turbines	Generating electricity, heating and transport	· · · · · · · · · · · · · · · · · · ·		act. mix	Non-renewable. Burning coal and oil releases sulfur dioxide. When mixed with rain makes acid rain. Acid rain damages building and kills plants. Burning fossil fuels releases carbon dioxide which contributes to global warming. Serious environmental damage if oil spilt.				
Nuclear	Nucle	ear fission process	Generating electricity	_	enhouse gases produced from samounts of fuel.	small or v	vater. Nuclear sites i	need high levels of	iterials being released into ain f security. Start up costs and waste needs careful storing.		
Biofuel	Plant matter	burnt to release thermal energy	Transport and generating electricity	remove	able. As plants grow, t carbon dioxide. They 'carbon neutral'.		od not grown. Emit	_	rops. Habitats destroyed and when burnt thus adding to bal warming.		
Tides		tides rise and fall, so n of electricity can be predicted	Generating electricity	Renewable. Predictable due to consistency of tides. No greenhouse gases produced.			Expensive to set up. A dam like structure is built across an estuary, altering habitats and causing problems for ships and boats.				
Waves	Up and dow	n motion turns turbines	Generating electricity	Renew	rable. No waste produc	cts. Can	Can be unreliable depends on wave output as large waves can stop the pistons working.				
Hydroelectric	Falling water spins a turbine		Generating electricity	Renew	rable. No waste produc	cts.	Habitats destroyed when dam is built.				
Wind	Movement causes turbine to spin which turns a generator		Generating electricity	Renewable. No waste products.		cts. U	Unreliable – wind varies. Visual and noise pollution. Dangerous to migrating birds.				
Solar	•	ts objects in solar panels captured in photovoltaic cells	Generating electricity and some heating	Renew	Renewable. No waste products.		Making and installing solar panels expensive. Unreliable due to light intensity.				
Geothermal		under the ground heats produce steam to turn turbine	Generating electricity and heating		ble. Clean. No greenh gases produced.	ouse Limit		er of countries. Ge use earthquake tr	eothermal power stations car emors.	n	
				better hope	e – brighter future						

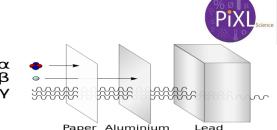

Heat added

change

process can be reversed.

Solid

Liquid


Electrons gained

Negative ion

Atom structure

Electrons lost								
Positi	ve ion							

1	Decay	Range in air	lonising power	Penetration power
	Alpha	Few cm Very strong		Stopped by paper
	Beta	Few m	Medium	Stopped by Aluminium
	Gamma	Great distances	Weak	Stopped by thick lead

Atom	Same number of protons and electrons	
Ion	Unequal number of electrons to protons	
Mass number	Number of protons <u>and</u> neutrons	
Atomic number	Number of protons	

Particle	Charge	Size	Found
Neutron	None	1	In the nucleus
Proton	+	1	in the nucleus
Electron	1	Tiny	Orbits the nucleus

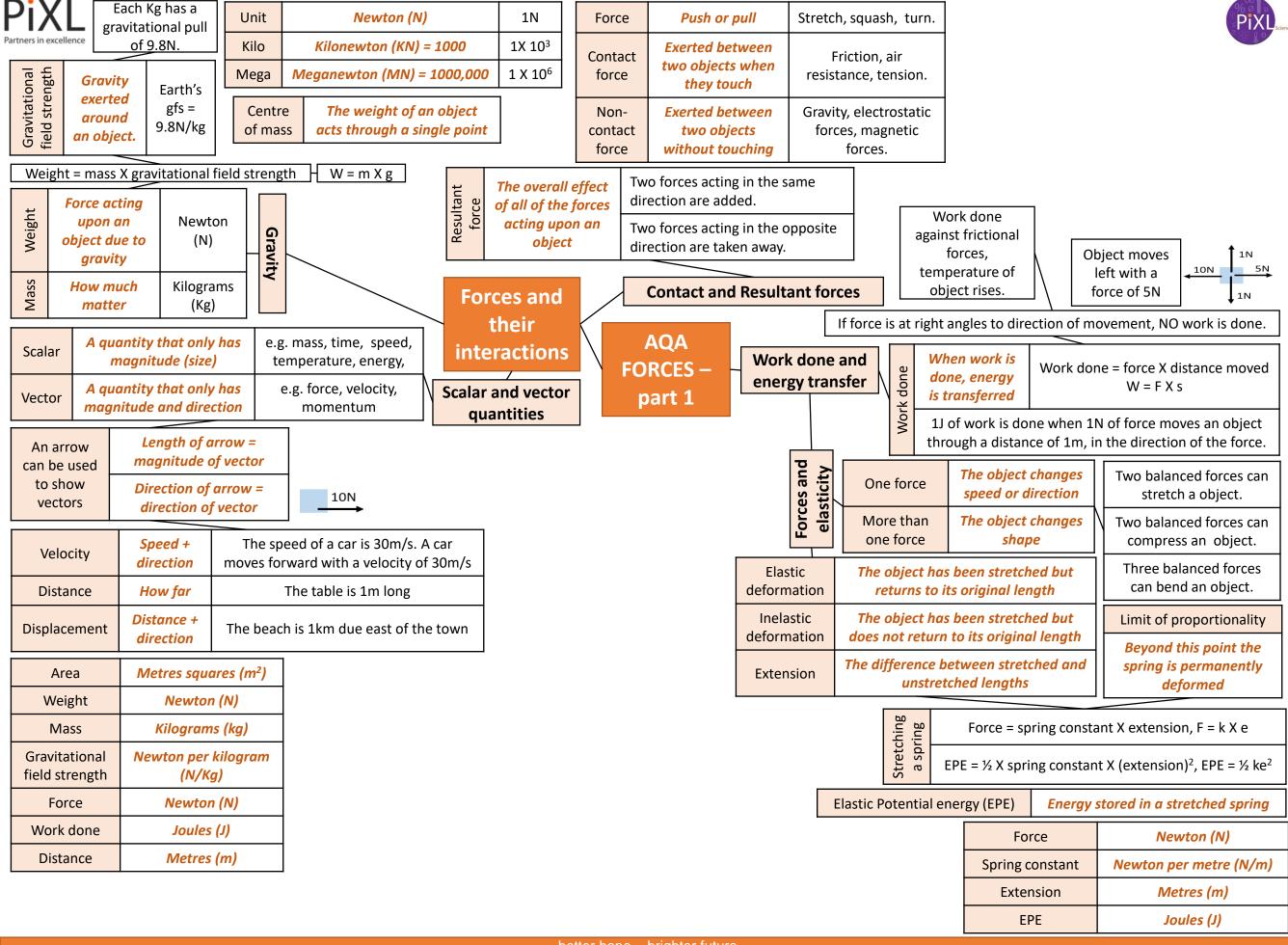
		!	_	
Isotope	⁶ ₃ Li		⁷ ₃ Li	
Different forms of an element with the same				

Different forms of an element with the same number of protons but different number of neutrons

Discovery of the nucleus

Democritus	Suggested idea of atoms as small spheres that cannot be cut.	
J J Thomson (1897)	Discovered electrons— emitted from surface of hot metal. Showed electrons are negatively charged and that they are much less massive than atoms.	
Thomson (1904)	Proposed 'plum pudding' model – atoms are a ball of positive charge with negative electrons embedded in it.	
Geiger and Marsden (1909)	Directed beam of alpha particles (He ²⁺)at a thin sheet of gold foil. Found some travelled through, some were deflected, some bounced back.	
Rutherford (1911)	Used above evidence to suggest alpha particles deflected due to electrostatic interaction between the very small charged nucleus, nucleus was massive. Proposed mass and positive charge contained in nucleus while electrons found outside the nucleus which cancel the positive charge exactly.	
Bohr (1913)	Suggested modern model of atom – electrons in circular orbits around nucleus, electrons can change orbits by emitting or absorbing electromagnetic radiation. His research led to the idea of some particles within the nucleus having positive charge; these were named protons.	
Chadwick (1932)	Discovered neutrons in nucleus – enabling other scientists to account for mass of atom.	

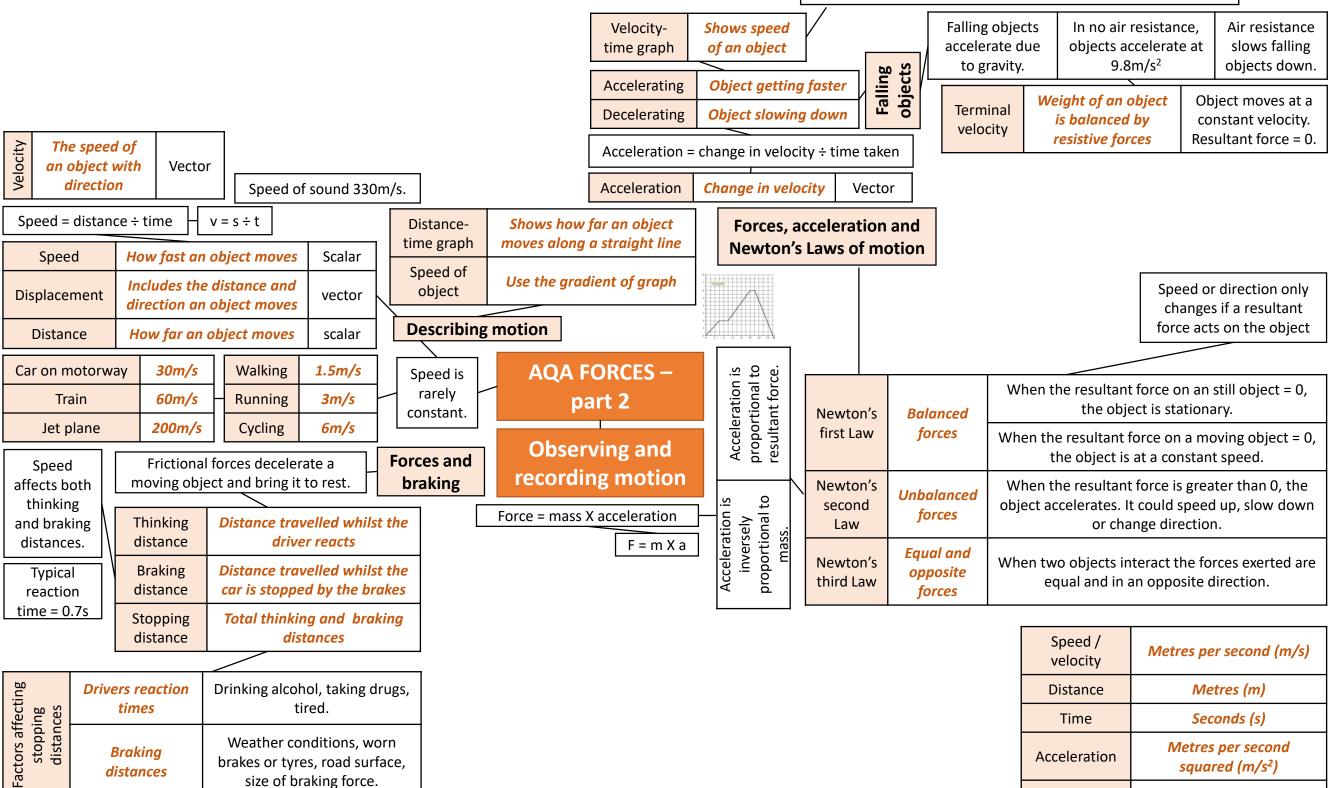
Radioactive decay	Unstable atoms randomly emit radiation to become stable
Detecting	Use Geiger Muller tube
Unit	Becquerel
Ionisation	All radiation ionises


Atoms and Isotopes

Atoms and Nuclear Radiation

AQA ATOMIC

STRUCTURE


Tapel Alamman Zeau				
Decay	Emitted from nucleus	number a	in mass nd atomic nber	
Alpha (α)	Helium nuclei (⁴ ₂ He)	-4	-2	$^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}He$
Beta (β)	Electron $\binom{0}{-1}e$	0	+1	$\begin{array}{c} {}^{14}C \rightarrow {}^{14}N + {}^{0}_{-1}e \end{array}$
Gamma (γ)	Electromagnetic wave	0	0	$\begin{array}{c} 997c \rightarrow 997c + \gamma \end{array}$
Neutron	Neutron	-1	0	

Constant acceleration (final velocity) ² – (initial velocity) ² = 2 X acceleration X distance $V^2 - u^2 = 2 X a X s$ Falling objects In no air resistance,

Speed / velocity	Metres per second (m/s)		
Distance	Metres (m)		
Time	Seconds (s)		
Acceleration	Metres per second squared (m/s²)		
Force	Newton (N)		
Mass	Kilogram (Kg)		

Weather conditions, worn

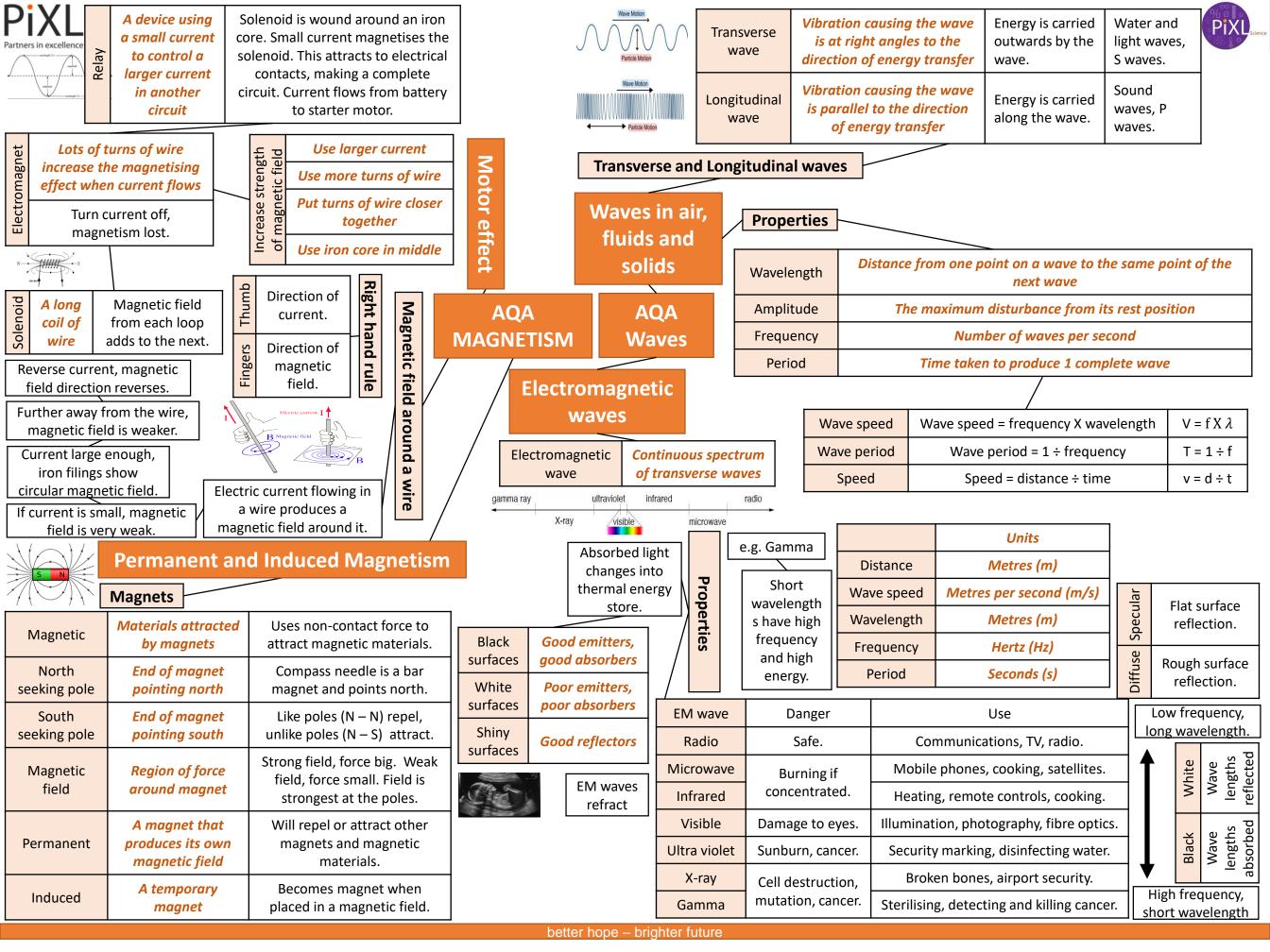
brakes or tyres, road surface,

size of braking force.

Kinetic energy decreases,

Braking

distances


Work done by

braking force,

reduces kinetic

energy

Braking and kinetic

