
knowledge organiser

Science: Triple Award

cell site of chemical gel like substance containing reactions in the cell enzymes to catalyse the reactions membrane bacterial not in nucleus floats controls the function of the cell DNA in the cytoplasm **NOT** made of cell wall supports and strengthens the cell cellulose small rings of DNA contain additional genes plasmid controls the movement of semi permeable cytoplasm substances in and out of the cell

PiXL

Bacterial cells are much smaller than plant and animal cells

Prokaryotes simpler organisms

	contains all the parts of animal cells plus extras		
	permanent vacuole	contains cell sap	keeps cell turgid, contains sugars and salts in solution
_	cell wall	made of cellulose	supports and strengthens the cell
	chloroplast	site of photosynthesis	contains chlorophyll, absorbs light energy
	changes and becom	•	Cell differentiation

how a cel Undiffer

animal cell differentiation

early stages of development only for repair and replacement

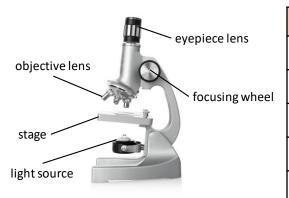
plant cell differentiation

all stages of life cycle the stem cells are grouped together in meristems

Microscopy

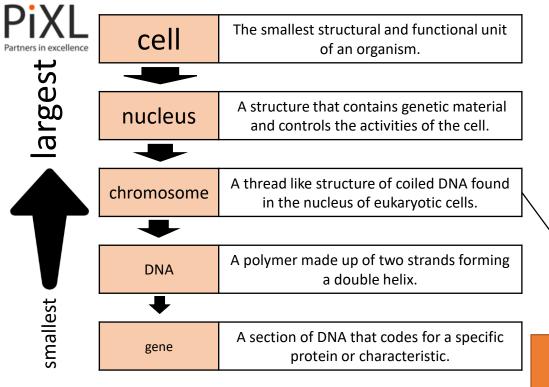
magnification M = size of image I real size of the object A

AQA


specialised animal cells

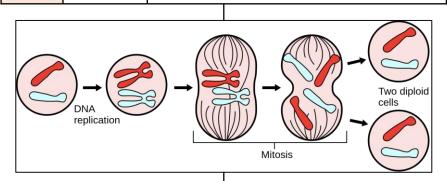
specialised plant cells

Specialised cells


_				
	nerve		carry electrical signals	long branched connections and insulating sheath
	sperm	30	fertilise an egg	streamlined with a long tail acrosome containing enzymes large number of mitochondria
	muscle		contract to allow movement	contains a large number of mitochondria long
_				
			absorb water	hair like projections to increase the

root hair		and minerals from soil	surface area
xylem		carry water and minerals	TRANSPIRATION - dead cells cell walls toughened by lignin flows in one direction
phloem	†	carry glucose	TRANSLOCATION - living cells cells have end plates with holes flows in both directions

Feature	Light (optical) microscope	Electron microscope	
Radiation used	Light rays	Electron beams	
Max magnification	~ 1500 times	~ 2 000 000 times	
Resolution	200nm	0.2nm	
Size of microscope	Small and portable	Very large and not portable	
Cost	~£100 for a school one	Several £100,000 to £1 million plus	


PREFIXES				
Prefix	Multiple	Standard form		
centi (cm)	1 cm = 0.01 m	x 10 ⁻²		
milli (mm)	1 mm = 0.001 m	x 10 ⁻³		
micro (μm)	1 μm = 0.000 001 m	x 10 ⁻⁶		
nano (nm)	1nm = 0.000 000 001 m	x 10 ⁻⁹		

Cells divide in a series of stages. The genetic material is doubled and then divided into two identical cells.

MITOSIS AND THE CELL CYCLE

Stage 1	Growth	Increase the number of sub-cellular structures e.g. ribosomes and mitochondria.
Stage 2	DNA Synthesis	DNA replicates to form two copies of each chromosome.
Stage 3	Mitosis	One set of chromosomes is pulled to each end of the cell and the nucleus divides. Then the cytoplasm and cell membranes divide to form two cells that are identical to the parent cell.

Mitosis occurs during growth, repair, replacement of cells.

Asexual reproduction occurs by mitosis in both plants

& simple animals.

	Small intestines	Villi – increase surface area, Good blood supply – to maintain concentration gradient, Thin membranes – short diffusion distance.
Gills in fish Gill filaments and lamella – increase surfamaintain concentration gradient, Thin men		Alveoli— increase surface area, Good blood supply — to maintain concentration gradient, Thin membranes — short diffusion distance.
		Gill filaments and lamella – increase surface area, Good blood supply – to maintain concentration gradient, Thin membranes – short diffusion distance.
		Root hair cells - increase surface area.
$\left[\right]$	Leaves	Large surface area, thin leaves for short diffusion path, stomata on the lower surface to let O_2 and CO_2 in and out.

ADAPTATIONS FOR DIFFUSSION

The greater the difference in concentrations the faster the rate of diffusion.

Diffusion <i>No</i> energy required	Movement of particles in a solution or gas from a higher to a lower concentration
Osmosis	Movement of water

E.g. O₂ and CO₂ in gas exchange, urea in kidneys. Factors that affect the rate are concentration, temperature and surface area.

E.g. Plants absorb water from the

PiXL

Transport in cells

No energy required to a more concentrated solution

soil by osmosis through their root hair cells. Plants use water for several vital processes including photosynthesis and transporting minerals.

Active
transport
ENERGY
required

Movement of particles from a dilute solution to a more concentrated solution

E.g. movement of mineral ions into roots of plants and the movement of glucose into the small intestines.

Human Embryonic stem cells	Can be cloned and made to differentiate into most cell types	Therapeutic cloning uses same genes so the body does not reject the tissue. Can be a risk of infection
Adult bone marrow stem cells	Can form many types of human cells e.g. blood cells	Tissue is matched to avoid rejection, risk of infection. Only a few types of cells can be formed.
Meristems (plants)	Can differentiate into any plant cell type throughout the life of the pant.	Used to produce clones quickly and economically, e.g. rare species, crop plants with pest /disease resisitance

Treatment with stem cells may be able to help conditions such as diabetes and paralysis. Some people object to the use of stem cells on ethical or religious grounds

AQA

Cell Biology 2

Cell division

STEM CELLS

Undifferentiated cell of

an organism

Divides to form more cells of the

same type, and can differentiate

to form many other cell types.

Enzymes catalyse (increase the rate of) specific reactions in living organisms

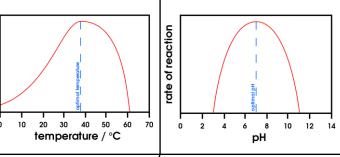
The 'lock and key theory' is a simplified model to explain enzyme action

Enzymes catalyse specific reactions in living organisms due to the shape of their active site

Digestive enzymes speed up the conversion of large insoluble molecules (food) into small soluble molecules that can be absorbed into the bloodstream

The activity of enzymes is affected by changes in temperature and pH

Enzymes activity has an optimum temperature


Temperature too high

rate of reaction

Enzyme activity has an optimum pH

pH too high or too

low

Large changes in temperature or pH can stop

the enzyme from working (denature)

Enzyme changes shape (denatures) the

substrate no longer fits the active site.

Enzymes in digestion

> The human digestive system

AQA GCSE ORGANISATION Part 1

> **Principles of** organisation

An organ system in which organs work together to digest and absorb food.

More energy

consumed in food and drink than used diseases obesity

Non-communicable

Food tests

Linked to increased rates of cardiovascular disease and development of diabetes type 2.

liver stomach

oesophagus

anus

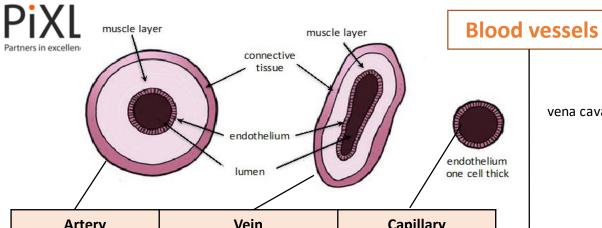
gall bladder pancreas large small intestines intestines

\setminus	Sugars (glucose)	Benedicts' test	Orange to brick red precipitate.
\	Starch	lodine test	Turns black.
	Biuret	Biuret reagent	Mauve or purple solution.

mouth

Made in salivary Break down carbohydrates to Carbohydrases simple sugar (e.g. amylase breaks glands, pancreas, (e.g. amylase) small intestine down starch to glucose). Break down protein to amino Made in stomach, **Proteases** pancreas acids. Made in pancreas Break down lipids (fats) to Lipases (works in small glycerol and fatty acids). intestine) Emulsifies lipids to increase Made in liver, surface area to increase the rate Bile (not an stored in gall of lipid break down by lipase. enzyme) bladder. Changes pH to neutral for lipase to work

The products of digestion are used to build new carbohydrates, lipids and proteins. Some glucose is used for respiration.


organs

Cells, tissues,

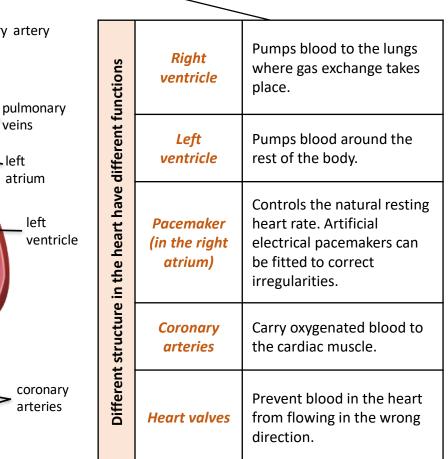
systems

and

The basic building blocks Cells e.g. muscle cells of all living organisms. A group of cells with a e.g. muscle similar structure and **Tissues** tissue function. Aggregations (working together) of tissues **Organs** e.g. the heart performing a specific function. Organs working together e.g. the to form organ systems, Organ circulatory which work together to systems system form an organism.

Artery	Veili	Capillaly
Carry blood away from the heart	Carry blood to the heart	Connects arteries and veins
Thick muscular walls, small lumen, carry blood under high pressure, carry oxygenated blood (except for the pulmonary artery).	Thin walls, large lumen, carry blood under low pressure, have valves to stop flow in the wrong direction, carry deoxygenated blood (except for the pulmonary vein).	One cell thick to allow diffusion, Carry blood under very low pressure.

Blood


The heart is an organ that pumps blood around the body in a double circulatory system

atrium

left

pulmonary artery

AQA GCSE ORGANISATION part 2

Lungs and gas exchange

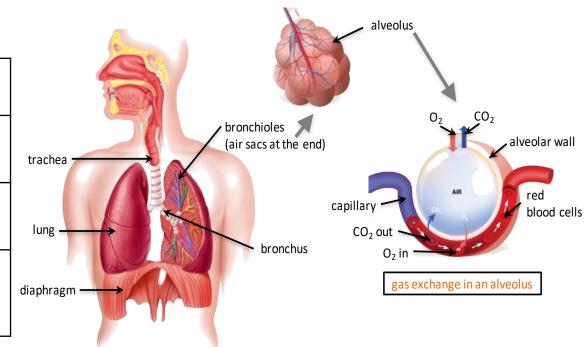
vena cava

right atrium

Heart

right ventricle

The heart pumps low oxygen/high carbon dioxide blood to the lungs


Plasma (55%)	Pale yellow fluid	Transports CO ₂ , hormones and waste.	
Red blood cells (45%)	Carries oxygen	Large surface area, no nucleus, full of haemoglobin.	
White blood cells (<1%)	Part of the immune system	Some produce antibodies, others surround and engulf pathogens.	
Platelets (<1%)	Fragments of cells	Clump together to form blood clots.	

Blood is a tissue consisting of plasma,

in which blood cells, white blood cells

and platelets are suspended

Trachea	Carries air to/from the lungs	Rings of cartilage protect the airway.	
Bronchioles	Carries air to/from the air sacs (alveoli)	Splits into multiple pathways to reach all the air sacs.	
Alveoli	Site of gas exchange in the lungs	Maximises surface area for efficient gas exchange.	
Capillaries	Allows gas exchange between into/out of blood	Oxygen diffuses into the blood and carbon dioxide diffuses out.	

Partners in excel	_	lure can be tr	reated with a tr	ansplant	or artificia	heart	AQA G	CSE	ORGANI	SATION part 3	Plan	ttissues	PIXL
Disease	Cause	Effect	Treatment	an							op layer of the leaf)	Reduces water le	oss from the leaf
ise (CHD)	substances arteries osis)	cannot get :le.	he n it up.	Plant organ	cuticle upper epidermis palisade			chloroplast vacuole nucleus cell wall cytoplasm	Epiderma tissues		s and stomata	control water lo	n and close the stomata to ss and allow for gas en and carbon dioxide).
ıry heart disease	up for fatty ne coronary atheroscler	Oxygen-ated blood ca to the cardiac muscle.	Stents: inserted into the blocked artery to open it Statins: lower harmful cholesterol.		lower epidermis cuticle	cuard cell stoma			Palisade mesophyl	Palis	ade cells	are packed with	p surface of the leaf that chloroplasts that contain n adaptations maximize
Coronary	A build	- ,	Stents: insel blocked arte Statins: low cholesterol.		trai the				Spongy mesophyl	Air spaces in the	e leaf between cells		e area for gas exchange ioxide can diffuse into ng cells.
Faulty heart valves	ves don't op close proper	Blood can leak or flow in the wrong direction	Biological valve transplant or a mechanical valve can be inserted		em and system	one way walls tough with	nened		xylem	lignin add transportatio	strengthened by apted for the n of water in the ation stream		t of water and mineral ots to the stem and the
Cer	Non-con		ole disease	es i	The roots, st plant organ of substanc		xylem		phloem	cell to the next t	from one phloem hrough pores in the d walls	leaves to the res	lved sugars from the et of the plant for or storage (translocation).
Cancer	to uncontro	lled growth	DNA that lead						Meristem tissue	· ·	and shoot tips) are uding root hair cells	area for the upta	ave an increased surface ake of water by osmosis, s by active transport.
Benig tumo	body (u	ed in one are sually by a ane) – not cai			6		phloem		•	ter is used to		Effect of Humidity on Plant Transp	iration
Malign tumo	ant lnvade differer	tissues and sp at parts of the condary tume	oread to e body to		Flow	Leaf	glucose solution cells have end with holes		lost over trans	amount of water cime (rate of piration)	B Rate of Transpiration		centration outside the Effect of Wind Velocity on Plant Transpiration
Some of have grisk fa	enetic i	ncrease the r	d ionising radiat isk of cancer by lamaging DNA		Stem		two way flow		Tran	The rate at which		Humidity	ranspiration Rate
heart and ce can drinl diet,	c factors for /lung diseas ertain types cer include king alcohol, obesity and smoking	fact also the live the of u	ese risks tors can o affect e brain, er and health unborn abies	Ro	nucleus		permanent vacuole cell wall cell membrane		nspiration	water is lost from the leaves of a plant. The transpiration stream is the column of water moving through the roots, stem and leaves	Temperature, humidity, air movement and light intensity affect the rate of transpiration.	Reflect of Transpiration Transpiration Transpiration Transpiration	The shape of the graph for light intensity is the same for temperature (energy)

better hope – brighter future

PIXL Partners in excellence	Phagocytes	Phagocytosis	Phagocytes engulf the pathogens and digest them.		
backfrom phagosome phagosome phagosomes hydrogenes	Lymphocytes	Antibody production	Specific antibodies destroy the pathogen. Thi takes time so an infection can occur. If a pers is infected again by the same pathogen, the lymphocytes make antibodies much faster.		
		Antitoxin production	Antitoxin is a type of antibody produced to counteract the toxins produced by bacteria.		

Identification

Reference using gardening manual

laboratory test for

pathogens, testing

or website,

kit using

monoclonal

antibodies.

Magnesium ions needed

to make chlorophyll -

not enough leads to

chlorosis - leaves turn

Phagocytes	Phagocytosis	them.
Lymphocytes	Antibody production	Specific antibodies destroy the pathogen. This takes time so an infection can occur. If a person is infected again by the same pathogen, the lymphocytes make antibodies much faster.
	Antitoxin production	Antitoxin is a type of antibody produced to counteract the toxins produced by bacteria.

AQA GCSE INFECTION AND RESPONSE part 1

Plants have several ways of defending themselves from pathogens and animals

Physical	Mechanical			
Thick waxy layers, cell walls stop pathogen entry	Thorns, curling up leaves to prevent being eaten			
Chemical				

Antibacterial and toxins made by plant yellow. Bacteria may produce toxins that damage tissues and make us fell ill

Detection

Stunted growth

Spots on leaves

Area of decay

growths

Malformed

stem/leaves

Discolouration

Presence of pests

Nitrate ions needed

for protein synthesis

– lack of nitrate =

stunted growth.

Detection and identification of plant diseases (bio only)

Viruses	Bacteria (prokaryotes)	Protists (eukaryotes)	Fungi (eukaryotes)	
e.g. cold, influenza, measles, HIV, tobacco mosaic virus	e.g. tuberculosis (TB), Salmonella, Gonorrhoea	e.g. dysentery, sleeping sickness, malaria	e.g. athlete's foot, thrush, rose black spot	
DNA or RNA surrounded by a protein coat	No membrane bound organelles (no chloroplasts, mitochondria or nucleus). Cell wall. Single celled organisms	Membrane bound organelles. Usually single celled.	Membrane bound organelles, cell wall made of chitin. Single celled or multi- cellular	

Communicable diseases Pathogens are microorganisms that cause infectious disease **Pathogens** Viruses live and reproduce inside

> cells causing damage

Pathogens are identified by white blood cells by the different proteins on their surfaces ANTIGENS.

Antigens (surface protein)

Immune system

White blood cells are part of the immune

Human

defence

systems

systems

Non-specific defence

ecific ways getting in	8	Nose	Nasal hairs, sticky mucus and cilia prevent pathogens entering through the nostrils.	
The human body has several non specific ways of defending itself from pathogens getting in	Trachea and bronchus (respiratory system)		Lined with mucus to trap dust and pathogens. Cilia move the mucus upwards to be swallowed.	
an body has sev ding itself from		Stomach acid	Stomach acid (pH1) kills most ingested pathogens.	
The human bo		Skin	Hard to penetrate waterproof barrier. Glands secrete oil which kill microbes	

Pathogens may infect plants or animals and can be spread by direct contact, water or air

	Pathogen	Disease	Symptoms	Method of transmission	Control of spread
	Virus	Measles	Fever, red skin rash.	Droplet infection from sneezes and coughs.	Vaccination as a child.
	Virus	HIV	Initially flu like systems, serious damage to immune system.	Sexual contact and exchange of body fluids.	Anti-retroviral drugs and use of condoms.
	Virus	Tobacco mosaic virus	Mosaic pattern on leaves.	Enters via wounds in epidermis caused by pests.	Remove infected leaves and control pests that damage the leaves.
/	Bacteria	Salmonella	Fever, cramp, vomiting, diarrhoea.	Food prepared in unhygienic conditions or not cooked properly.	Improve food hygiene, wash hands, vaccinate poultry, cook food thoroughly.
	Bacteria	Gonorrhoea	Green discharge from penis or vagina.	Direct sexual contact or exchange of body fluids.	Use condoms. Treatment using antibiotics.
-	Protists	Malaria	Recurrent fever.	By an animal vector (mosquitoes).	Prevent breeding of mosquitoes. Use of nets to prevent bites.
	Fungus	Rose black spot	Purple black spots on leaves.	Spores carried via wind or water.	Remove infected leaves. Spray with fungicide.

Traditionally drugs were extracted from plants and microorganisms Penicillin **Digitalis Aspirin** A painkiller and Discovered by Extracted from anti-Alexander foxglove plants inflammatory Fleming from and used as a that was first the Penicillium heart drug found in willow mould and used bark as an antibiotic

Drugs have to be tested and trialled before to check they are safe and effective

e	Efficacy	Make sure the drug works
drugs a ensively ted for:	Toxicity	Check that the drug is not poisonous
New dexter	Dose	The most suitable amount to take

Most new drugs are synthesised by chemists in the pharmaceutical industry.

Preclinical trials - using cells, tissues and live animals - must be carried out before the drug can be tested on humans.

Clinical trials use healthy volunteers and patients

Stage 1	Stage 2	Stage 3	Stage 4
Healthy volunteers try small dose of the drug to check it is safe record any side effects	A small number of patients try the drug at a low dose to see if it works	A larger number of patients; different doses are trialled to find the optimum dose	A double blind trial will occur. The patients are divided into groups. Some will be given the drug and some a placebo.

Specific to one binding site on the antigen. Can target specific chemicals or cells in the body

Antibiotics and painkillers

Bacteria can mutate

Sometimes this makes them resistant to antibiotic drugs.

Discovery and drug development

AQA INFECTION AND RESPONSE

Antibiotics have greatly reduced deaths from infectious bacterial disease

PiXL

Antibiotics

cannot be

use to

treat viral

pathogens

It is difficult to

develop drugs

to kill viruses

without harming body

tissues

because

viruses live

and

reproduce

inside cells

population is prevented

it's spread in

A person is unlikely to suffer the symptoms of the harmful disease and

Kill infective bacteria inside the body. Specific bacterial antibiotics e.g. penicillin infections require specific antibiotics.

Painkillers e.g. aspirin, Drugs that are used to treat the and other paracetamol, symptoms of a disease. They ibuprofen do not kill pathogens medicines

Vaccination

Used to immunise a large proportion of the population to prevent the spread of a pathogen

Vaccination

A placebo can look identical to the new

drug but contain no active ingredients

Small amount of dead or inactive form of the pathogen

1st infection by pathogen

Re-infection by the same pathogen

White blood cells detect pathogens in the vaccine. Antibodies are released into the blood.

White blood cells detect pathogens. Antibodies are made much faster and in larger amounts.

Created more side effects than expected (fatal in some cases) and are not as widely used as everybody hoped when first developed.

until the end of the trial.

(Biology only HT)

antibodies

Monoclonal

Monoclonal antibodies

Identical copies of one types

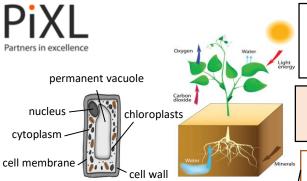
Double blind trial:

patients and scientists do

not know who receives

the new drug or placebo

This avoids bias.


of antibody produced in **laboratory**

- 1. A mouse is injected with pathogen
- 2. Lymphocytes produce antibodies
- 3. Lymphocytes are removed from the mouse and fused with rapidly dividing mouse tumour cells
- 4. The new cells are called hybridomas
- 5. The hybridomas divide rapidly and release lots of antibodies which are then collected

Monoclonal antibodies can be used in a variety of ways

Diagnosis	Detecting pathogens	Detecting molecules	Treatment
e.g. pregnancy test – measure the level of hormones	Can detect very small quantities of chemicals in the blood	Fluorescent dye can be attached so it can be seen inside cells or tissues	Bound to radioactive substance, toxic drug or chemical Cancer cells are targeted to normal body cells are unharmed

better hope – brighter future

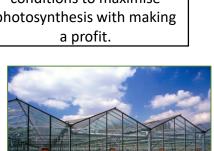
Respiration, stored as insoluble starch, fats or oils for storage, cellulose for cell walls, combine with nitrates from the soil to form amino acids for protein synthesis

Plants use the glucose produced in photosynthesis in a variety of ways

Photosynthetic reaction

The plant manufactures glucose from carbon dioxide and water using energy transferred from the environment to the chloroplasts by light

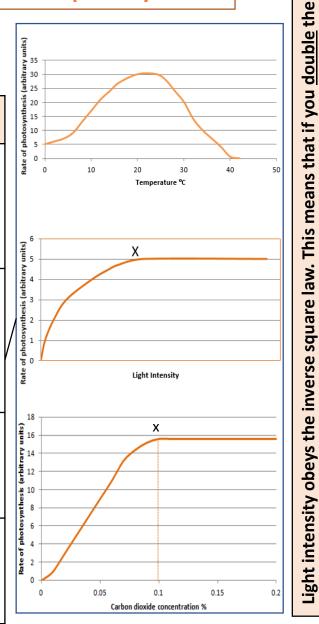
→ Oxygen + Glucose Carbon dioxide + Water


> $\xrightarrow{\text{light}} O_2 + C_6 H_{12} O_6$ H_2O

The rate of photosynthesis is affected by temperature, light intensity, carbon dioxide concentration, and the amount of chlorophyll

	Factor	How the rate is affected	Limiting factors (why the rate stops going up)
Factors affecting the rate of photosynthesis	Temperature	As the temperature of the environment the plant is in increases rate of photosynthesis increases (up to a point) as there is more energy for the chemical reaction.	Photosynthesis is an enzyme controlled reaction. If the temperature increases too much, then the enzymes become denatured and the rate of reaction will decrease and stop
	Light intensity	Light intensity increases as the distance between the plant and the light sources increases. As light intensity increases so does the rate of photosynthesis (up to a point) as more energy is available for the chemical reaction.	At point X another factor is limiting the rate of photosynthesis. This could be carbon dioxide concentration, temperature or the amount of chlorophyll
	Carbon dioxide concentration	Carbon dioxide is needed for plants to make glucose. The rate of photosynthesis will increase when a plant is given higher concentrations of carbon dioxide (up to a point).	At point X another factor is limiting the rate of photosynthesis. This could be light intensity, temperature or the amount of chlorophyll
	Amount of chlorophyll	Chlorophyll is a photosynthetic pigment that absorbs light and allows the reaction between water and carbon dioxide to occur (photosynthesis)	Another factor could limit the rate of photosynthesis. This could be light intensity, temperature or the carbon dioxide concentration

greenhouses to reduce limiting factors can improve crop yields Used to provide optimum Heating temperatures for maximum plant Control conditions in growth. Enhances the natural sunlight **Artificial** especially overnight and on lighting cloudy days. **Extra** Gas can be pumped into the air carbon inside the greenhouse. dioxide


Growers must balance the economics of additional costs of controlling the conditions to maximise photosynthesis with making a profit.

Rate of photosynthesis HT Only

AQA GCSE BIOENERGETICS part

Rate of photosynthesis

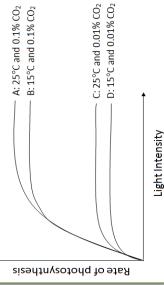
Graph lines C and D:

If temperature is increased by 10°C then a slight increase in rate of photosynthesis occurs.

temperature are increased the Graph lines A and D: If carbon dioxide concentration and point.

> limited by temperature and/or amount of chlorophyll. Plant

distance between the plant and the light source you quarter the light intensity


increases significantly up to a rate of photosynthesis

tissue can be damaged when carbon dioxide concentrations exceed 0.1%

Explain graphs of two or three factors and decide which is the limiting factor

Graph Lines A and B: If carbon dioxide

concentration is increased from 0.01% to 0.1% then a large increase in rate occurs up to a point.

During long periods of vigorous activity muscles become fatigued and stop contracting efficiently


An organism will receive all the energy it needs for living processes as a result of the energy transferred from respiration

For movement

To enable muscles to contract in animals.

cytoplasm

mitochondria

Electron micrograph of a mitochondrion

For keeping warm

For chemical

reactions

To keep a steady body temperature in a cold environment.

To build larger molecules from smaller

animal cell

Cellular respiration is an exothermic

reaction which is continuously

occurring in all living cells

Respiration

AQA GCSE BIOENERGETICS part 2

Anaerobic respiration

plant cell

Respiration when oxygen is in short supply. Occurs during intensive exercise

During hard exercise, muscle cells are respiring so fast that blood cannot transport enough oxygen to meet their needs.

Glucose is partially oxidised to produce lactic acid which builds up in muscle tissue causing them to become painful and fatigued.

glucose -> lactic acid

Anaerobic respiration releases a much smaller amount of energy than aerobic respiration.

The incomplete oxidation of glucose causes a build up of lactic acid and creates an oxygen debt

Aerobic respiration

Respiration with oxygen. Occurs inside the mitochondria continuously

Glucose is oxidised by oxygen to transfer the energy the organism needs to perform it's functions.

carbon dioxide + water H_2O CO_2 0 glucose + oxygen $C_6H_{12}O_6$

Aerobic respiration releases a large amount of energy from each glucose molecule

Response to exercise

During exercise the human body reacts increased demand

for energy

Metabolism

Heart rate increases

Top pump oxygenated blood faster to the muscle tissues and cells.

Breathing rate and breath volume increase

This increases the amount of oxygen entering the blood stream.

Metabolism is the sum of all the reactions in a cell or the body

Metabolism

The energy transferred by respiration in cells is used by the organism for the continual enzyme controlled processes of metabolism.

Conversion of glucose to starch, glycogen and cellulose.

The formation of lipid molecules from a molecule of glycerol and three molecules of fatty acid.

The use of glucose and nitrate ions to form amino acids which in turn are used to synthesise proteins.

Respiration

Breakdown of excess proteins to form urea for excretion.

The extra amount of oxygen required to remove all lactic acids from cells is called the oxygen debt

Lactic acid builds up in the muscles cells during exercise

Blood flows through the muscle cells and transports the lactic acid to the liver

The liver oxidises the lactic acid and converts it back to glucose

exercise Response 트 only

called fermentation glucose \longrightarrow ethanol + carbon dioxide

Anaerobic respiration in plant and yeast cells

The end products are ethanol and carbon

dioxide. Anaerobic respiration in yeast cells is

This process is economically important in the manufacture of alcoholic drinks and bread.

Partners in excellence		light in dim conditions	
	Retina	Light sensitive cell layer.	
	Optic nerve	Carries impulse to brain.	
e eye	Sclera	Protects the eye.	
es of th	Cornea	Transparent layer that covers the pupil and iris.	
Structures of the eye	Iris	Pigmented layer, controls size of pupil.	
	Ciliary muscles	Controls thickness of lens.	
	Suspensory ligaments	Connects lens to ciliary muscles.	

The iris can dilate the pupil

(aperture) to let in more

Sense organ containing receptors sensitive to light intensity and colour

Cells called Human control systems include Detect stimuli (changes in environment). receptors **Coordination** e.g. brain, spinal cord and pancreas that receive information from receptors. centres Muscles or glands, which bring about **Effectors** responses to restore optimum levels.

Enables humans to react to their surroundings and to co-ordinate their behaviour

The Eye (Bio only)

cerebellun

The brain has different regions that

AQA GCSE HOMEOSTASIS AND RESPONSE part 1

The Brain

behaviour. It is made of billions of interconnected

neurones.

Largest part of the

thinking skills e.g.

human brain. Higher

speech, decision making.

Balance and voluntary

Involuntary (automatic)

body functions e.g.

breathing, heart rate.

muscle function e.g.

walking, lifting.

cerebral cortex

medulla

Cerebral

cortex

Cerebellum

Medulla

The human nervous system

Information from receptors passes along cells (neurones) as electrical impulses to the central nervous system (CNS)

The CNS is the brain and the spinal cord.

Coordinates the response of effectors; muscles contracting or glands secreting hormones

(Bio only) dendrites cell body The brain controls complex

direction of impulse

neurotransmitter

neurotransmitter receptors

axon with insulating sheath

axon terminal

Synaptic cleft

Typical motor neurone

Synapse (gap where two

neurones meet).

axon

Stimulus

Receptor

Coordinator

Effector

Response

Lights switch on

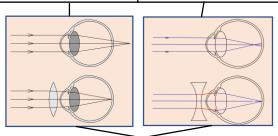
Cells in retina

CNS

Muscles

connected to iris

Pupils get smaller


Accommodation is the process of changing the shape of the lens to focus

Near object	Far object
Ciliary muscles contract, suspensory ligaments loosed, lens get thicker, light is more refracted.	Ciliary muscles relax, suspensory ligaments pulled tight, lens pulled thin, light is only slightly refracted.

Hyperopia (long Myopia (short sightedness) sightedness)

Treated using a convex lens so the light is focused on the retina.

Treated using a concave lens so light is focused on the retina.

New technologies now include hard/soft contact lens, laser surgery to change the shape of the cornea and a replacement lens in the eye.

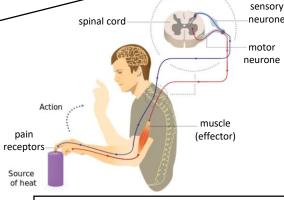
to map regions of the brain by studying patients with brain damage, electrical stimulation and MRI.

suspensory ligament

ciliary muscles

Neuroscientists

have been able


disease

Treating brain e.g. Lobotomy

Benefit: thought to alleviate the symptoms of some mental illnesses.

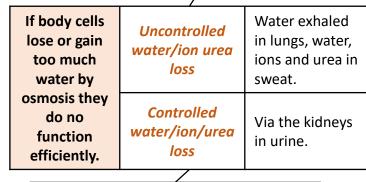
 cutting part of the brail cortex Risks: bleeding in the brain, seizures. loss of brain function. Procedure was abandoned in the 1950s due to risk.

Receptor Detect stimuli. Long axon carries impulse from receptor to Sensory neurone spinal cord. Gap where neurones meet. Chemical Reflex arc **Synapse** message using neurotransmitter. Allows impulses to travel between sensory Relay neurone and motor neurones in the spinal cord. Long axon carries impulse from receptor to Motor neurone effector. **Effector** Muscle or gland that carries out response.

Reflex actions are automatic and rapid; they do not involve the conscious part of the brain and can protect humans from harm.

Blood glucose concentration **Controls** in the **Body** human temperature body

These automatic control systems may involve nervous responses or chemical responses.


The regulation of internal conditions of a cell or organism to maintain optimum conditions for function.

Water levels

Homeostasis maintains optimal conditions for enzyme action and all cell functions.

Homeostasis

Water and nitrogen balance (Biology only)

Kidney failure is treated by organ transplant or dialysis.

Kidney function

Maintain water balance of the body.

Produce urine by filtration of the blood and selective reabsorption of glucose, ions and water.

A dialysis machine removes urea from the blood by diffusion while maintaining ion and glucose levels.

(HT only) **ADH**

Acts on kidney tubules to control water levels. Released by pituitary gland when blood is too concentrated. Water is reabsorbed back into the blood from the kidney tubules (NEGATIVE FEEDBACK).

Thermoregulatory

centre (hypothalamus)

AQA GCSE

HOMEOSTASIS

AND RESPONSE

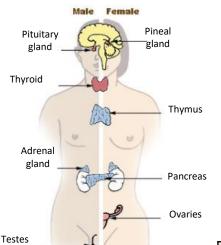
PART 2

Control of body

temperature

(Biology only)

Monitoring body temperature **Thermoregulatory** Contains receptors sensitive to the temperature centre of the blood. Contains temperature receptors, sends nervous Skin impulses to the thermoregulatory centre.


Blood vessels dilate (vasodilation), temperature Too sweat produced from sweat high glands. Blood vessels constrict Too

Body (vasoconstriction), sweating stops, low muscles contract (shivering).

(HT) Thermal energy is lost from blood near the surface of the skin, sweat evaporates transferring thermal energy.

(HT) Thermal energy loss at the surface of the skin is reduced, respiring muscles cells transfer chemical to thermal energy.

Human endocrine system

Composed of glands which secrete chemicals called hormones directly into the bloodstream.

The blood carries the hormone to a target organ where is produces an effect. Compared to the nervous system effects are slower but act for longer.

Pituitary gland

system

'Master gland'; secretes several hormones into the blood

Too high

Pancreas produces

the hormone insulin,

glucose moves from

the blood into the

cells. In liver and

muscle cells excess

glucose is converted

to glycogen for

storage.

Stimulates other glands to produce hormones to bring about effects.

Negative feedback (HT only)	Adrenaline	Produced in adrenal glands, increases breathing/heart rate, blood flow to muscles, conversion glycogen to glucose. Prepares body for 'fight or flight'.
Negative fe	Thyroxine	Produced in the thyroid gland, stimulates the basal metabolic rate. Important in growth and

development.

Increasing thyroxine levels prevent the release of thyroid stimulating hormone which stops the release of thyroxine.

Control of

blood glucose

concentration

Diabetes Type 1 Type 2 Pancreas fails to produce sufficient Obesity is a risk factor. Body cells no insulin leading to uncontrolled longer respond to insulin. Common blood glucose levels. Normally treatments include changing by diet treated by insulin injection. and increasing exercise.

Blood glucose concentration

Monitored and controlled by the pancreas

(HT only) Too low Pancreas produces the hormone glucagon that causes glycogen to be converted into glucose and released into the blood.

(HT) Rising glucose levels inhibit the release of glucagon in a

<u>negative feedback</u> system. Insulin is released to reduce glucose levels and which cause the pancreas to release glucagon

FSH and LH are used as 'fertility drugs' to help someone become pregnant in the normal way

In Vitro Fertilisation (IVF) treatment.

Involves giving a mother FSH and LH to stimulate the maturation of several eggs

The eggs are collected from the mother and fertilised by sperm from the father in a laboratory.

The fertilised eggs develop into embryos.

At the stage when they are tiny balls of cells, one or two embryos are inserted into the mother's uterus

Hormones are used in modern reproductive technologies to treat infertility

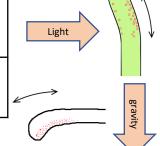
hormones to coordinate and control growth Plants produce

Plant responses using hormones (auxins)

Light (phototropism)

Gravity

(geotropism or gravitropism)


Light breaks down auxins and they become unequally distributed in the shoot. The side with the highest concentration of auxins has the highest growth rate and the shoot grows toward the light.

Gravity causes an unequal distribution of auxins. In roots the side with the lowest concentration has the highest growth rate and the root grows in the direction of gravity.

In new shoots from a seedling the unequal distribution of auxins causes the shoot to grow away from gravity.

(HT only) Gibberellins are important in initiating seed germination.

(HT only) Ethene controls cell division and ripening of fruits.

(womb).

The use of hormone to treat infertility (HT only)

Contraception

Contain hormones to inhibit FSH

production so that no eggs

hormones **Plant**

hormones (HT only) plant of

hormones are used in agriculture and Plant growth horticulture

Auxins promoting growth in tissue culture. Control ripening of fruit during Ethene storage and transport.

> End seed dormancy, promote flowering, increase fruit size.

Weed killers, rooting powders,

Potential disadvantages of IVF

Emotional and physical stress.

Success rates are not high.

Oral contraceptives

Multiple births risk to mother and babies.

AQA GCSE HOMEOSTASIS AND RESPONSE PART 3

Hormones in human reproduction

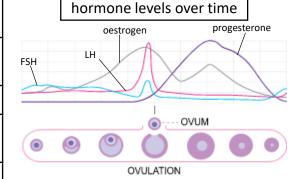
Gibberellins

During puberty reproductive hormones cause secondary sexual characteristics to develop

Oestrogen (main female reproductive hormone)

Produced in the ovaries. At puberty eggs being to mature releasing one every 28 days ovulation.

(HT only) a graph of


Testosterone (main male reproductive hormone)

Produced in the testes stimulation sperm production.

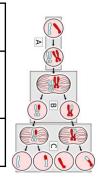
Female Pituitar Thyroid Testes

Fertility can be controlled by hormonal and non hormonal methods

		mature.
e	Injection, implant, skin patch	For slow release of progesterone to inhibit the maturation and release of eggs for months or years.
, H	Barrier methods	Condoms or diaphragms which prevent sperm reaching the egg.
	Intrauterine devices	Prevent implantation of an embryo or release a hormone.
	Spermicidal agents	Kill or disable sperm.
	Abstaining	Avoiding intercourse when an egg may be in the oviduct.
	Surgery	Male or female sterilisation.

al cycle	Follicle stimulating hormone (FSH)	Causes maturation of an egg in the ovary.	(HT) FSH stimulates ovaries to produce oestrogen.
Menstrual	Luteinising hormone (LH)	Stimulates release of an egg.	(HT) Oestrogen stops FSH production and
Me	Oestrogen and progesterone	Maintain uterus lining.	stimulates LH production in pituitary gland.

Meiosis halves the number of chromosomes


Gametes are made in reproductive organs (in animals ovaries and testes)

Cells divide by meiosis to form gametes

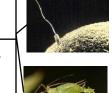
Copies of the genetic information are made.

The cell divides twice to form four gametes each with single set of chromosomes.

All gametes are genetically different from each other.

Sexual reproduction involves the fusion of male and female gametes.

Asexual reproduction involves only one parent and no fusion of gametes.


Sperm and egg in animals.

Pollen and egg cells in flowering plants.

e.g. cloning of females only in an aphid population.

Produced by meiosis. There is mixing of genetic information which leads to a variety in the offspring.

Only mitosis is involved. There is no mixing of genetic information. This leads to genetically identical clones.

Advantages and disadvantages of sexual and asexual reproduction (Biology only)

Gametes join at fertilisation to restore the number of chromosomes

Meiosis

The new cell divides by mitosis. The develops cells differentiate.

Meiosis leads to non-identical cells being

formed while mitosis leads to identical cells

being formed

number of cells increase. As the embryo

When the protein chain is complete it folds to form a unique shape. This allows proteins to do their job as enzymes, hormones or new structures such as collagen.

Some change the shape and affect the function of proteins e.g. and enzyme active site will change or a structural protein loses its strength

Protein

synthesis

(HT only)

nucleotide consists of a common

sugar, phosphate group

different nucleotides. Each

and one C, G & T

Most do not alter the protein so that its appearance or function is not changed.

In DNA the

complementa

ry strands C,

A, T, G always

link in the

same way. C

always linked

to G on the

opposite

strand and A

to T.

Mutations occur

continuously (HT only)

(HT) Making new proteins (protein synthesis)

Composed of chains of amino acids. A sequence of 3 bases codes for a particular amino acid.

DNA in the nucleus unravels.

Enzymes make a copy of the DNA strand called mRNA.

mRNA moves from the nucleus to ribosome in the cytoplasm.

Ribosomes translate each 3 bases into amino acids according to mRNA template

Ribosomes link amino acids brought by carrier proteins.

A long chain of amino acids form. Their specific order

forms a specific protein.

A sequence of 3 bases is the code for a particular amino acid. The order of bases controls the order in which each amino acid is assemble to produce a specific protein.

Reproduction advantages/disadvantages

Asexual Sexual Needs two Only one parent needed (quicker). parents. **Produces variation** Identical offspring (no variation). in the offspring. If the environment Vulnerable to changes variation rapidly changing gives a survival conditions due to advantage by lack of variation. natural selection. Negative **Negative mutation** mutations are not can affect all always inherited. offspring. Natural selection Food/medicine can by speeded up using selective production can be breeding to extremely quick. increase food

DNA and

the genome

Genetic material in the

nucleus is composed of

a chemical called DNA.

DNA structure

Polymer made up of two

strands forming a

double helix.

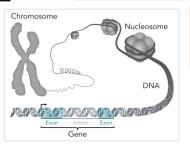
Contained in structures

called chromosomes. A

gene is a small section of

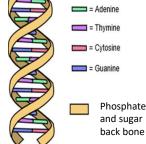
DNA on a chromosome.

Each gene codes for a


sequence of amino acids

to make a specific

protein.


Sexual and asexual reproduction

AQA GCSE INHERITANCE, **VARIATION AND EVOLUTION Part 1**

The genome is the entire genetic material of an organism.

DNA structure (Biology only)

(HT only) Not all parts code for genes on and off. Mutations may affect how genes are expressed.

proteins. Non-coding parts can switch

The whole human genome has now been

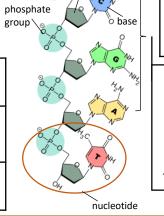
It is of great importance for future medical developments Searching for genes linked to different types of disease.

made from four

DNA is polymer

Understanding and treatment of inherited disorders.

Some the circumstances


Malarial parasites

Plants

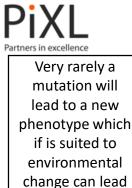
Fungi

Produce seeds sexually, asexually by runners in strawberry plants, bulbs division in daffodils.

of 4 different bases A, Repeating nucleotide units.

organisms use both methods depending on

production.


Asexually in the human host but sexually in a mosquito.

Asexually by spores, sexually to give variation.

studied.

Tracing migration patterns from the past.

better hope – brighter future

Embryo screening: small piece of developing placenta removed to check for presence of faulty genes

Gene therapy: replacing the faulty allele in somatic cells with a normal allele

Mother (

Amy

Embryo	Economic	Costly and not 100% reliable.
screening /gene	Social	Not available to everyone (due to cost).
therapy issues	Ethical	Should only 'healthy' embryos be implanted following screening.

Mutations occur continuously

characteristics of individuals in a population may be due to Variation: difference in the

to rapid change

in the species.

Genetic causes

(inheritance)

Environmental

causes (condition

they have

developed in)

A combination of

genes and

environment

All genetic variation arises in mutation, most

have no effect on phenotype, some influence

but very few determine phenotype.

There is usually extensive genetic variation within the population of a species e.g. hair colour, skin colour, height that can also be affected by

environment e.g.

nutrition, sunlight.

all of the offspring would have the disorder. He must be heterozygous was homozygous dominant then III of the offspring would have the a family tree: If the father

gene therapy may alleviate suffering

Father

Sam

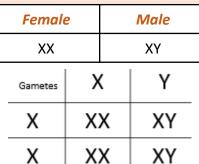
Some disorders are inherited. They are caused by the inheritance of certain alleles

Embryo screening and

Polydactyly	Cystic fibrosis
Caused by inheriting a dominant allele.	Caused by inheriting a recessive allele (both parents have to at least carry it).
Causes a person/anim al to have	A disorder of the cell membrane. Patients

extra toes or

fingers.


pairs of chromosomes

23

Ordinary human body cells contain

determination Sex

One pair of chromosomes carry the genes that determine sex

PiXL

of female child is 6. The ratio is 1:1 The probability of a male c 50%.

Using a punnet square (using mouse fur colour as an evample)

colour as an example)				
Parent	Black fur	White fur		
phenotype				
Parent genotype	BB	bb		
	In each egg	In each sperm		
What gametes are present	B	b		

Gametes	b	b
В	>Bb	Bb
В	Bb	Bb

The probability of black fur offspring phenotype is 100%. All offspring genotypes are heterozygous (Bb).

Crossing two heterozygous mice (Bb)

Gametes	В	b
В	ВВ	Bb
b	Bb	bb

The probability of black fur is 75% and white fur 25%. The ratio of black to white mice is 3:1

Variation

AQA GCSE INHERITANCE, **VARIATION AND EVOLUTION PART 2**

Peter

Inherited disorders

Female without disorder

Female with disorder

Male without disorder

Male with disorder

The genome and its interaction with the environment influence the development of phenotypes

Sex cells produced in meiosis. **Gamete** Chromosome A long chain of DNA found in the nucleus. Define terms linked to genetics Gene Small section of DNA that codes for a particular protein. Allele Alternate forms of the same gene. A type of allele – always expressed if only one copy present **Dominant** and when paired with a recessive allele. A type of allele – only expressed when paired with another Recessive recessive allele. Pair of the same alleles, dominant or recessive. **Homozygous** Two different alleles are present 1 dominant and 1 recessive. Heterozygous Alleles that are present for a particular feature e.g. Bb or bb Genotype Physical expression of an allele combination e.g. black fur, **Phenotype** blonde hair, blue eves.

Some characteristics are controlled by a single gene e.g. fur colour, colour blindness.

The alleles present, or genotype operate at a molecular level to develop characteristics that can be expressed as a phenotype.

Most characteristics are as a result of multiple genes interacting.

Genetic inheritance

The concept of probability in predicting results of a single gene cross.

cannot

control the

viscosity of

their mucus.

Dominant and recessive allele combinations

Dominant	Recessive
Represented by a capital letter e.g. B.	Represented by a lower case letter e.g. b.

3 possible combinations: Homozygous dominant BB Heterozygous dominant Bb Homozygous recessive bb

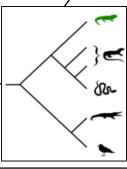
Over time this results in the formation of new species.

Scottish Blackface (Cytoplasmic Donor)

Species of all living things have The evolved theory of from simple evolution life forms by natural that first selection. developed 3 billion years ago.

Through natural selection of variants (genotypes) that give rise to phenotypes best suited to their environment or environmental change e.g. stronger, faster. This allows for variants to pass on their genotype to the next generation.

If two populations of one species become so different in phenotype that they can no longer interbreed to produce fertile offspring they have formed two new species.



Classification of living organisms

Use current classification data for living organisms and fossil data for extinct organisms

Humans have been doing this for thousands of years since they first bred food from crops and domesticated animals.

Choosing characteristics

Evolutionary trees are a method

used by scientists to show how

organisms are related

Desired characteristics are chosen for usefulness or appearance

Disease resistance in food crops.

Animals which produce more meat or milk.

Domestic dogs with a gentle nature.

Large or unusual flowers.

PiXL

Selective breeding can lead to 'inbreeding' where some breeds are particularly prone to disease or inherited defects e.g. British Bulldogs have

breathing difficulties.

Concern: effect of GMO on wild populations of flowers and insects.

Genes from the chromosomes of humans or other organisms can be 'cut out' and transferred to the cells of other organisms.

Genetically modified crops (GMD)

Crops that have genes from other organisms

more resistant to insect attack or herbicides.

To become

To increase the yield of the crop.

A change in the inherited characteristics of a population over time through the process of natural selection.

> **Cloning** (Biology only)

> > Direct Current Pulse

Finn-Dorset

Evolution

AQA GCSE INHERITANCE VARIATION AND **EVOLUTION** PART 3

The process by which humans breed plants/animals for

particular genetic

characteristics

Selective breeding

Genetic engineering

Modern medical is exploring the possibility of GM to over come inherited disorders e.g. cystic fibrosis

Cloning techniques in plants/animals

Tissue culture

Small groups of cells to grow new plants. Important for preservation of rare plants and commercially in nurseries.

Cuttings

Part of a plant is cut off and grown into full plant.

Embryo transplants

Splitting apart cells from animals embryo before they become specialised. New clone embryos are inserted into womb of adult female.

Concern: some people have ethical objections to adult cell cloning e.g. welfare of the animals.

Genetic engineering process (HT only)

Selective breeding

Choosing parents with the desired

characteristics from a mixed

population

Chosen parents are bred together.

From the offspring those with

desired characteristics are bred

together.

Repeat over several generations

until all the offspring show the

desired characteristics.

Concern: effect of GMO on human

health not fully explored

- 1. Enzymes are used to isolate the required gene.
- 2. Gene is inserted into a vector bacterial plasmid or virus.
- 3. Vector inserts genes into the required cells.
- 4. Genes are transferred to plants/animals/microbes at an early stage of development so they develop the required characteristics.

Adult cell cloning

- 1. Nucleus is removed from an unfertilised egg.
- 2. Nucleus from body cell is inserted into egg cell.
- 3. An electric shock stimulates the egg to divide into an embryo
- 4. Embryo cells are genetically identical to adult cells.
- 5. When embryo has developed into ball of cells it is inserted into host womb.

better hope – brighter future

have plasmids with the foreign

Charles **Darwin**

Theory of evolution by natural selection.

Individual organisms within a particular species show a wide range of variation for a characteristic.

Individual most suited to the environment are more likely to breed successfully.

Characteristics enable individuals to survive are then passed on to the next generation.

Theory of

evolution

(Biology

only)

Carl Woese

3 domain based on

chemical analysis.

Evidence from around the world, experimentation, geology, fossils, discussion with other scientists (Alfred Wallace) lead to:

Charles Darwin 'On the Origin of the Species' (1859)

Published the theory of evolution by natural selection

Slowly accepted; challenged creation theory (God), insufficient evidence at time, mechanism of inheritance not vet known.

Other theories e.g. Lamarckism are based on the idea that changes occur in an organism during its lifetime which can be inherited. We now know that in the vast majority of cases this cannot occur.

The full human

classification

~	Kingdom	Animalia					
classified ings	Phylum	Chordata					
	Class	Mammalia					
	Order	Primates					
Linnaeus Iiving th	Family	Hominidae					
Carl I	Genus	Ното					
0	Species	sapiens					

Classification of living organisms

Due to improvements in microscopes, and the understanding of biochemical processes, new models of classification were

Archaea (primitive bacteria), true proposed. bacteria, eukaryota.

Organisms are named by the binomial system of genus and species. Humans are Homo sapiens

Fossils and antibiotic resistance in bacteria provide evidence for evolution.

Mutations Antibiotic resistant produce antibiotic resistant strains which can spread

Resistant strains are not killed.

Strain survives and reproduces.

People have no immunity to strain and treatment is ineffective.

Extinction

When no members of a species survive

Due to extreme geological events, disease, climate change, habitat destruction, hunting by humans.

Fossils tell scientists how much or how little different organisms have changed over time.

Developed since its proposal from information gathered by other scientists.

Speciation (Biology only)

AQA GCSE INHERITANCE VARIATION AND EVOLUTION PART 4

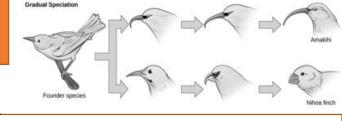
evolution

Evidence for

Alfred Wallace

Published joint writings with Darwin in 1858.

Did much pioneering work on


speciation but more evidence

over time has lead to our

current understanding.

Worked worldwide gathering evidence.

Best know for work on warning colouration in animals and his theory of speciation.

The understanding of genetics (biology only)

Independently

proposed the

theory of

evolution by

natural

selection

Gregor Mendel

In the mid 19th century carried out breeding experiments on plants

Inheritance of each characteristic is determined by units that are passed on to descendants unchanged.

Fossils

'remains' of ancient organisms which are found in rocks

Parts of organism that have not decayed as necessary conditions are absent.

Parts of the organism replaced by minerals as they decay.

Preserved traces of organisms such as footprints, burrows and rootlet traces.

Early forms of life were soft bodied and cannot be certain about how life began few traces are left behind and have been destroyed by geological activity,

Led to gene theory being developed but not until long after Mendel died.

Allows biologists to understand the diversity of species on the planet.

PiXL

Speciation

Due to isolation of a population of a species e.g. species are split across far apart islands.

Environmental conditions differ for populations e.g. types of food available, habitat.

Individuals in each population most suited to their environments are more likely to breed successfully.

Over long periods of time each population will have greater differences in their genotype.

If two populations of one species become so different in phenotype that they can no longer interbreed to produce fertile offspring they have formed two new species.

Further understanding of genetics

Improving technology allowed new observations.

Late 19th century: behaviour of chromosomes in cell division.

Early 20th century: chromosomes and Mendel's 'units' behave in similar ways. 'units' now called genes must be located on chromosomes.

Mid 20th century: structure of DNA determined. Mechanism of gene function worked out.

Evolution is widely accepted. Evidence is now available as it has been shown that characteristics are passed on to offspring in genes.

	_					
		Environment	The conditions surrounding an organism; abiotic and biotic.			
٦	stem	Habitat	Place where organisms live e.g. woodland, lake.		200	and
	Ecosystem	Population	Individuals of a species living in a habitat.	7	, init	iving
	_	Community	Populations of different species living in a habitat.		3	S Z Z
			Organisms require a supply of materials from their	_		

Organisms require a supply of materials from their surroundings and from the other living organisms.

Dead organisms decayed by bacteria

and fungi releasing carbon.

Materials are recycled to provide the

building blocks for future organisms

CARBON CYCLE

Bacteria respire when breaking down dead organisms releasing CO2.

CO₂ taken in

during photosynthesis. **Decomposition and** material cycling

> organisation **Levels of**

reproducing

Competition

Interdependence

and territory. Species depend on each other for food, shelter, pollination, seed dispersal etc. Removing a species can affect the whole community

Animals compete with each other for food, mates

Plants in a community or habitat compete with each other for light, space, water and mineral ions.

> **EXAMPLE:** climate change is leading to more dissolved CO₂ in oceans lowering the pH of the water affecting organisms living there.

greys also carry a pathogen food for red squirrels. The increased competition for EXAMPLE: Introduction of

Biotic

Interdependence and competition

ECOLOGY PART 1

Adaptations Organisms

AQA GCSE

adaptations enable them to survive in conditions where they normally live.

> Adaptations may be structural, behavioural or functional.

Abiotic and biotic

factors.

Non-living factors Living factors that that affect a affect a community community Living intensity.

Availability of food. Temperature.

Moisture levels.

Abiotic

content.

Soil pH, mineral

Wind intensity and direction.

Carbon dioxide

levels for a plant.

Oxygen levels for aquatic organisms. New pathogens. One species

New predators

arriving.

outcompeting so numbers are no longer sufficient to breed

Factors affecting rate of decay

conditions for making

Farmers optimise

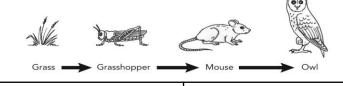
compost for use as

Anaerobic decay in biogas

generators produces

methane gas, used as a fuel.

Temperature, water, oxygen

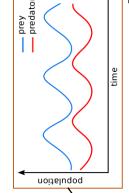

Increase the rate of decay. In enzyme controlled reactions raising the temperature too high will denature the enzymes.

organisms releases Breakdown of dead mineral ions can

Feeding relationships in a community

Food chains

Tertiary Primary Secondary Producer consumer consumer consumer


All food chains begin with a producer e.g. grass that is usually a green plant or photosynthetic algae.

Consumers that kill and eat other animals are predators and those eaten are prey.

Organisms respire

releasing

Photosynthetic organisms are the producers of biomass for life on Earth

In a stable community the numbers of predators and prey rise and fall in cycles.

extreme cold artic desert

No leaves to reduce water loss, wide deep roots for absorbing water.

Plants

Cactus in dry, hot

Adaptations

Animals

Polar bear in

Hollow hairs to trap laver of heat. Thick layer of fat for insulation.

Extremophiles

Deep sea vent

bacteria

Populations form in thick layers to protect outer layers from extreme heat of vent.

Factors affecting food security

Enough food is needed to feed

a changing population

Increasing birth rate.

Changing diets in developing countries.

New pests and pathogens affecting farming.

Environmental changes e.g. famine when rains fail.

Cost of agriculture input.

Conflicts (war) affecting water of food availability

Farming techniques

Increasing efficiency of food production

Reduce energy waste, limiting movement, control temperature, high protein diet to increase growth.

Global warming

Levels of CO₂ and methane in the atmosphere are increasing.

Decreased land availability from sea level rise, temperature rise damages delicate habitats, extreme weather events harm populations of plants and animals. There is a global consensus about global warming and climate change based on systematic reviews of thousands of peer reviewed publications.

Global Warming Predictions

Global warming

Food production (biology only)

2070-2100 Prediction vs. 1960-1990 Average Based on HadCM3

0 1 2 3 4 5 6 7 8 Temperature Increase (°C)

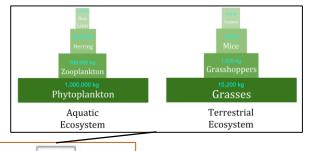
AQA GCSE ECOLOGY PART 2

Maintaining biodiversity

Sustainable fisheries

Fish stocks in oceans are declining

By Gellining


Lish stocks in oceans are declining

Maintain/grow fish stocks to a sustainable level where breeding continues or certain species may disappear. By controlling net size, fishing quotas.

Trophic levels and biomass (biology only)

Some people have concerns about the treatment of animals.

Level 4
Level 3
Level 2
Level 1

Human activity can have a positive impact on biodiversity

Scientists and concerned citizens

Put in place programmes to reduce the negative impacts of humans on ecosystems and biodiversity

Breeding programmes for endangered species.

Protection and regeneration of rare habitats.

Reintroduction of field margins and hedgerows in agricultural areas where farmers grow only one type of crop.

Reduction of deforestation and CO₂ emissions by some governments.

Recycling resources rather than dumping waste in landfill.

Some of the programmes potentially conflict with human needs for land use, food production and high living standards.

Biotechnology

Meeting the demands of a growing population

Fungus *Fusarium* to produce mycoprotein. Requires glucose syrup, aerobic conditions. Biomass is harvested and purified.

GM bacterium produces insulin to treat diabetes.

GM crops to provide more/nutritional food (golden rice).

Decomposers break down dead plants and animal matter by secreting enzymes. Small soluble food molecules than diffuse into the microorganism.

Transfer of biomass

Biomass is lost between the different trophic levels

Producers transfer about 1% of the incident energy from light for photosynthesis.

Approximately 10% of the biomass from each trophic level is transferred to the level above.

Large amounts of glucose is used in respiration, some material egested as faeces or lost as waste e.g. CO₂, water and urea in urine.

Trophic levels can be represented by numbers and biomass in pyramids.

Trophic levels are numbered sequentially according to how far the organisms is along the food chain.

Level 1	Producers	Plants and algae.
Level 2	Herbivores	Primary consumers.
Level 3	Carnivores	Secondary consumers.
Level 4	Carnivores	Tertiary consumers.

Apex predators are carnivores with no predators.

Maintain a great biodiversity

Ensures the stability of ecosystems

human

species

By reducing the dependence on one species on another for food, shelter, maintenance of the physical environment.

Many human activities are reduction **Future of** biodiversity and only recently measures have been taken to stop it.

Human activity can have a negative impact on biodiversity

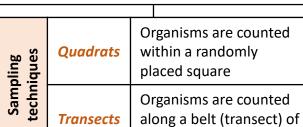
Pollution kills plants and animals which can reduce biodiversity.

Biodiversity is the variety of all different species of organisms on Earth, or within an ecosystem

Biodiversity

Biodiversity and the effect of human interaction on the ecosystem

Rapid growth in human population and higher standard of living


More resources used and more waste produced.

Pollution in water; sewage, fertiliser or toxic chemicals.

Pollution in air; smoke or acidic gases.

Pollution on land; landfill and toxic chemicals.

Experimental methods are used to determine the distribution and abundance of a species.

AQA GCSE ECOLOGY PART 3

Waste, land use and deforestation

Waste management

Land use

Humans reduce the amount of land and habitats available for other plants, animals and microorganisms.

Building and quarrying.

Farming for animals and food crops.

Dumping waste.

Destruction of peat bogs to produce cheap compost for gardeners/farmers to increase food production.

Processing data Median Middle value in a sample. Most occurring value in a sample. Mode The sum of all the value in a sample Mean divided by the sample number.

the ecosystem.

Impact of environmental change (Biology HT only)

Large scale deforestation

In tropical areas (e.g. rain forest) has occurred to:

Provide land for cattle and rice fields, grow crops for biofuels.

Deforestation reduces biodiversity

and removes a sink for increasing

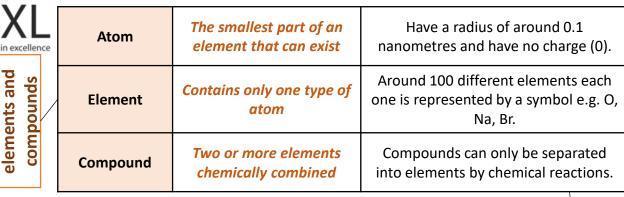
the amount CO₂ in the atmosphere.

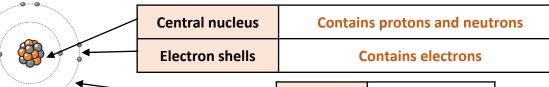
This conflicts with conserving peat bogs and peatlands as habitats for biodiversity and reduce CO₂ emissions.

The decay or burning of peat release CO₂ into the atmosphere.

changes affect the distribution of

Temperature


Availability of water


Composition of atmospheric gases

These changes might be seasonal, geographic or caused by human interaction.

Example: Several species of bird migrate from cold winter conditions to warmer conditions closer to the equator.

•		
Name of Particle	Relative Charge	Relative Mass
Proton	+1	1
Neutron	0	1
Electron	-1	Very small

Atoms,

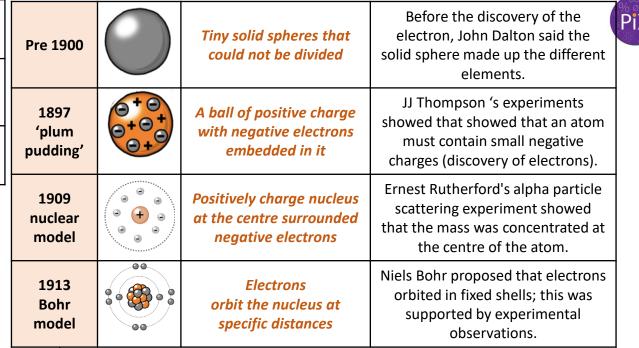
Electronic shell	Max number of electrons
1	2
2	8
3	8
4	2

Relative electrical charges of subatomic particles

7	Mass number	•	ons and neutrons in the icleus
Li 3 ←	Atomic number	The number of protons in the atom	Number of electrons = number of protons

Two or more elements or compounds **Mixtures** not chemically combined together

Can be separated by physical processes.


Electronic structures

AQA GCSE

and periodic

table part 1

Method	Description	Example				
Filtration	Separating an insoluble solid from a liquid	To get sand from a mixture of sand, salt and water.				
Crystallisation	To separate a solid from a solution	To obtain pure crystals of sodium chloride from salt water.				
Simple distillation	To separate a solvent from a solution	To get pure water from salt water.				
Fractional distillation	Separating a mixture of liquids each with different boiling points	To separate the different compounds in crude oil.				
Chromatography	Separating substances that move at different rates through a medium	To separate out the dyes in food colouring.				

The development of the model of the atom

James Chadwick

Provided the evidence to show the existence of neutrons within the nucleus

Atomic structure

A beam of alpha particles are Rutherford's scattering directed at a very thin gold foil experiment

Most of the alpha particles passed right through. A few (+) alpha particles were deflected by the positive nucleus. A tiny number of particles reflected back from the nucleus.

Chemical equations

Show chemical reactions - need reactant(s) and product(s) energy always involves and energy change

Uses words to show reaction

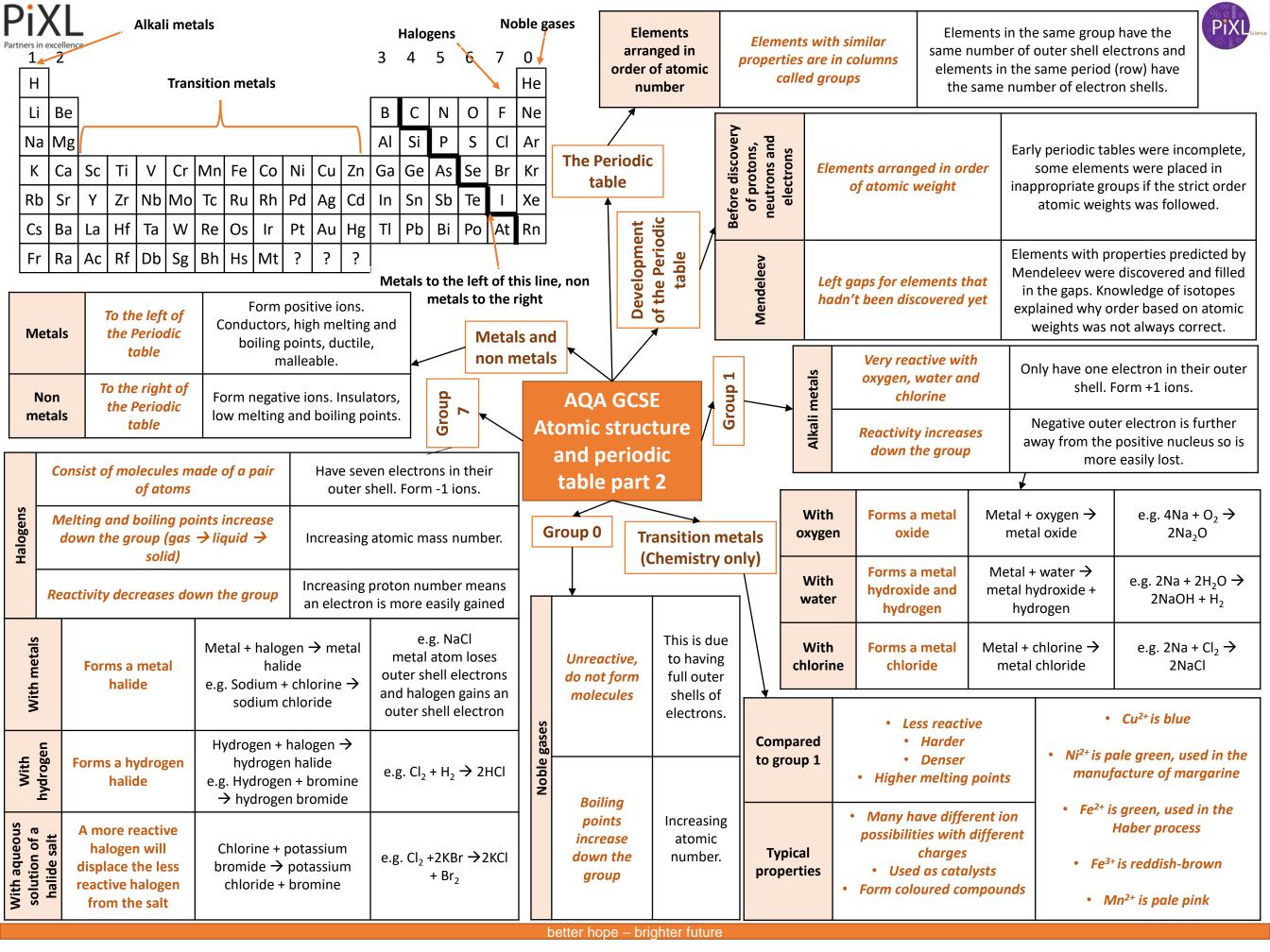
Law of conservation of mass states the total mass of products = the total mass of reactants.

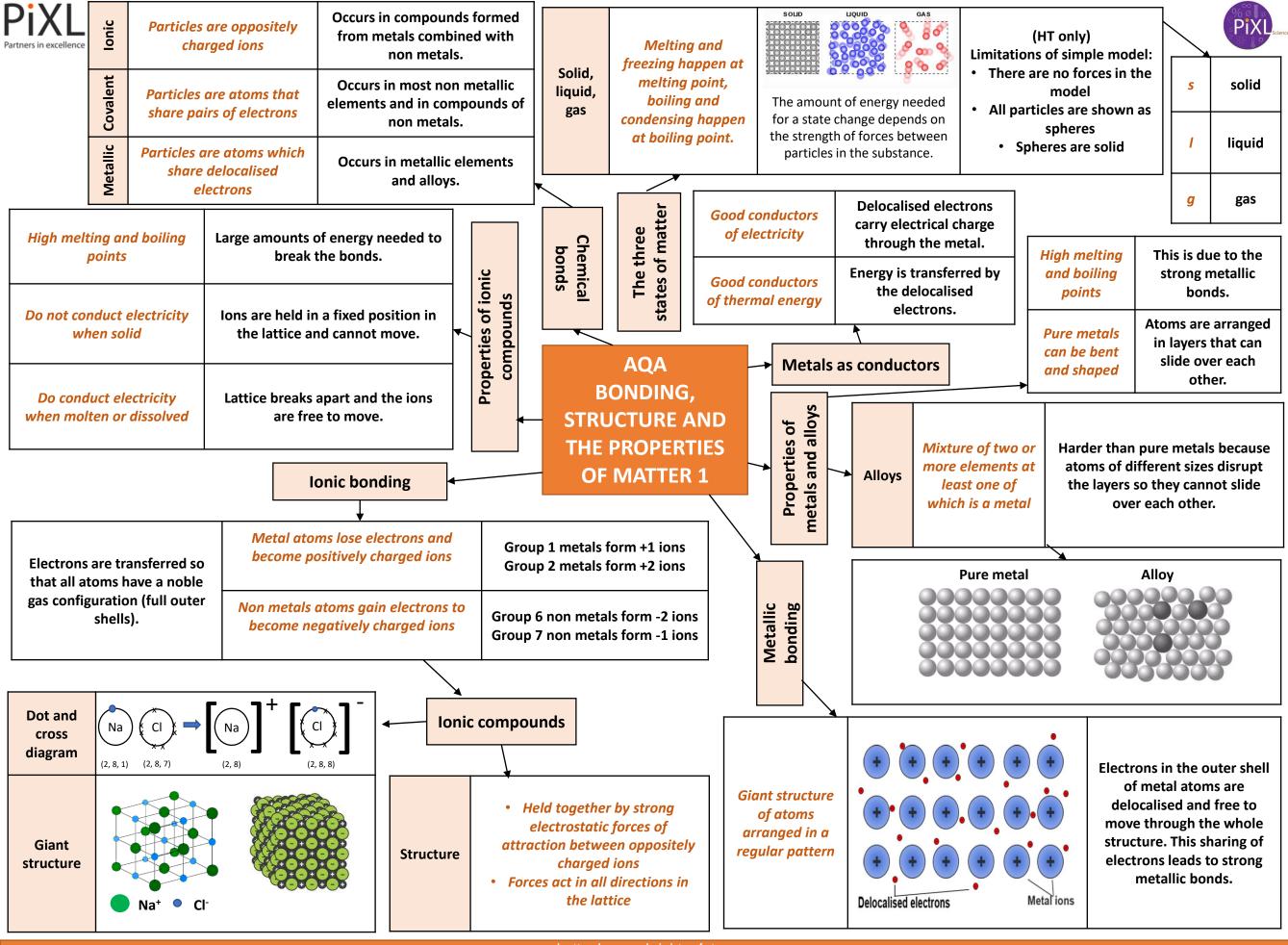
> Does not show what is happening to the atoms or the

> > number of atoms.

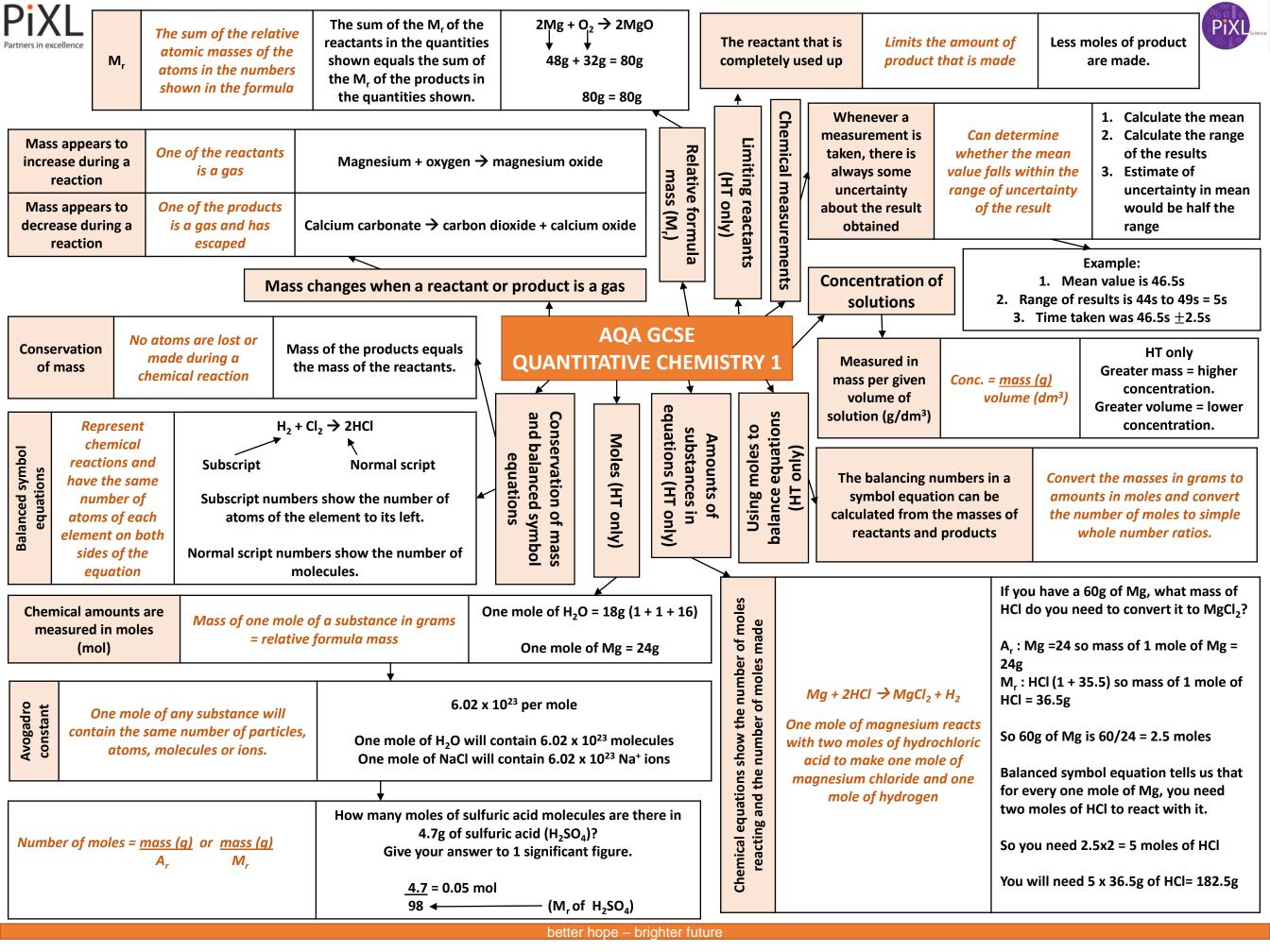
Shows the number of atoms and

molecules in the reaction, these need to be balanced.


	(_	Vord uations	n	reactants → production production reactants reactants → magnes								
	(•	mbol uations		Uses symbols to show reaction reactants → products 2Mg + O ₂ → 2MgO								
00000	atomic mass		Isotope	es	Atoms of the same element with the same number of	35 ((% isoto							
	atollii		•		protons and different numbers of neutrons	e.g. (


³⁵Cl (75%) and ³⁷Cl (25%)

Relative abundance = (% isotope 1 x mass isotope 1) + (% isotope 2 x mass isotope 2) ÷ 100 e.g. $(25 \times 37) + (75 \times 35) \div 100 = 35.5$


better hope – brighter future

Relative

Partne	tners in excellence						1	•	<u></u>		Very hai	d.	Rig	id structure.	PiXL
	ery large	Solids o	1 -		H_H_ C=C	(H H)	Each carl atom is bo to four ot	nded		,	Very high melti	ng point.	Strong	covalent bonds.	
m	olecules	temperature bonds.						Does not co electrici		No delo	No delocalised electrons.				
liquids	Covaler	nt bonds	Low melting and boiling points.	inter forces	having weak rmolecular s that easily proken.	Polym	ers Di	iamond	ant covalent structures	gra	Diamond, aphite, silicon dioxide	Very high	_	ots of energy neede strong, covalent b	
gases or	are stre forces b mole	nolecule ong but between ecules olecular)	but electricity.		e to them ecules not g an overall rical charge.		AND THE PROPERTIES				H		Dot and cross: + Show which atom electrons in the bo		
Usua	(intermolecular) are weak		Larger molecules have higher melting and boiling points.	forces i	molecular increase with size of the olecules.	Size of particles and their properties (Chemistry only) Size of particles and their properties (Chemistry only) 1 nanometre (1 nm)					Can be smo		2 ¹	All electrons are identical O with bonds: Show which atoms are bonded gether	
ane	eua		Excellent conductor.	Contain delocalis electron	sed o	oparticles	= 1 x 10 ⁻⁹ metres					nia	Ĥ - ¹	It shows the H-C-H b incorrectly at 90°	ond
Graphene	graph	layer of nite one n thick	Very strong.	electrons. Contains strong covalent bonds.		Na	Use of nanoparticles		f a metre).	Atoms share			+	3D ball and stick model + Attempts to show the bond angle is 109.5°	
						- Hoals	theare								
Fullerenes			Buckminsterful C ₆₀ First fullerene		Hexagonal rings of carbon atoms with hollow shapes. Can also have rings of five	cosm sun c cata	Healthcare, cosmetics, sun cream, catalysts, deodorants, Nanoparticles may be toxic to people. They may be able to enter the brain from the bloodstream and cause harm.				Can be gia covalent structures e.g. polyme	: s		$\begin{pmatrix} H & H \\ -C & -C \\ H & H \end{pmatrix}_n$	
Ful			discovere		(pentagonal) or seven (heptagonal) carbon atoms.		Г						Graphite	2	
								Each carbon atom				Sli	ppery.	Layers can slide o	over each
tubes		77000	7		ry conductive.		electronics ustry.	bonded to three others forming				Vom h	gh melting	1	
nano			Very thin and long	High	tensile strength.		forcing e materials.	layers of hexagon rings with no				-	ooint.	Strong covalent	t bonds.
Carbor	Carbon nanotubes		fullerenes	fullerenes Large surface area to Catal		rsts and icants.	covalent bonds between the layers					conduct	Delocalised ele between la		
							better ho	ope – brighter futur	e						

A measure of the amount of starting materials that end up as useful products

Atom economy = Relative formula mass of desired product from equation x 100

Sum of relative formula mass of all reactants from equation

High atom economy is important or sustainable development and economic reasons

Calculate the atom economy for making hydrogen by reacting zinc with hydrochloric acid:

$$Zn + 2HCl \rightarrow ZnCl_2 + H_2$$

$$M_r$$
 of $H_2 = 1 + 1 = 2$
 M_r of $Zn + 2HCl = 65 + 1 + 1 + 35.5 + 35.5 = 138$

Atom economy =
$$\frac{2}{138} \times 100$$

= $\frac{2}{138} \times 100 = 1.45\%$

This method is unlikely to be chosen as it has a low atom economy.

 $CaCO_3 \rightarrow CaO + CO_2$ M_r of $CaCO_3 = 40 + 12 + (16x3) = 100$

100g of CaCO2 would make 56 g of CaO

 M_{\star} of CaO = 40 + 16 = 56

So 200g would make 112g

Concentration of a solution is the amount of solute per volume of solution

Concentration = $\frac{amount (mol)}{(mol/dm^3)}$ volume $\frac{amount (mol)}{(dm^3)}$

What is the concentration of a solution that has 35.0g of solute in 0.5dm³ of solution?

$$35/0.5 = 70 \text{ g/dm}^3$$

Using concentrations of solutions in mol/dm³ (HT only, chemistry only)

AQA
QUANTITATIVE
CHEMISTRY 2

Percentage

yield

If the volumes of two solutions that react completely are known and the concentrations of one solution is known, the concentration of the other solution

can be calculated.

 $2NaOH(aq) + H₂SO₄(aq) \rightarrow Na₂SO₄(aq) + 2H₂O(I)$

It takes 12.20cm³ of sulfuric acid to neutralise 24.00cm³ of sodium hydroxide solution, which has a concentration of 0.50mol/dm³.

Calculate the concentration of the sulfuric acid in mol/dm³:

0.5 mol/dm 3 x (24/1000) dm 3 = 0.012 mol of NaOH The equation shows that 2 mol of NaOH reacts with 1 mol of H $_2$ SO $_4$, so the number of moles in 12.20cm 3 of sulfuric acid is (0.012/2) = 0.006 mol of sulfuric acid

Calculate the concentration of sulfuric acid in mol/ dm³ 0.006 mol x (1000/12.2) dm³ = 0.49mol/dm³

Use of amount of substance in relation to volumes of gases (HT only, chemistry only)

Calculate the concentration of sulfuric acid in g/dm³: $H_2SO_4 = (2x1) + 32 + (4x16) = 98g$ $0.49 \times 98g = 48.2g/dm³$

Yield is the amount of product obtained

It is not always
possible to obtain
the calculated
amount of a
product

The reaction may not go to completion because it is reversible.

Atom economy

Some of the product may be lost when it is separated from the reaction mixture.

Some of the reactants may react in ways different to the expected reaction.

Equal amounts of moles or gases occupy the same volume under the same conditions of temperature and pressure

The volume of one mole of any gas at room temperature and pressure (20°C and 1 atmospheric pressure) is 24 dm³

No. of moles of gas = $\underline{\text{vol of gas (dm}^3)}$ 24dm³

Percentage yield is comparing the amount of product obtained as a percentage of the maximum theoretical amount

% Yield = <u>Mass of product made</u> x 100 Max. theoretical mass

HT only:

200g of calcium carbonate is heated. It decomposes to make calcium oxide

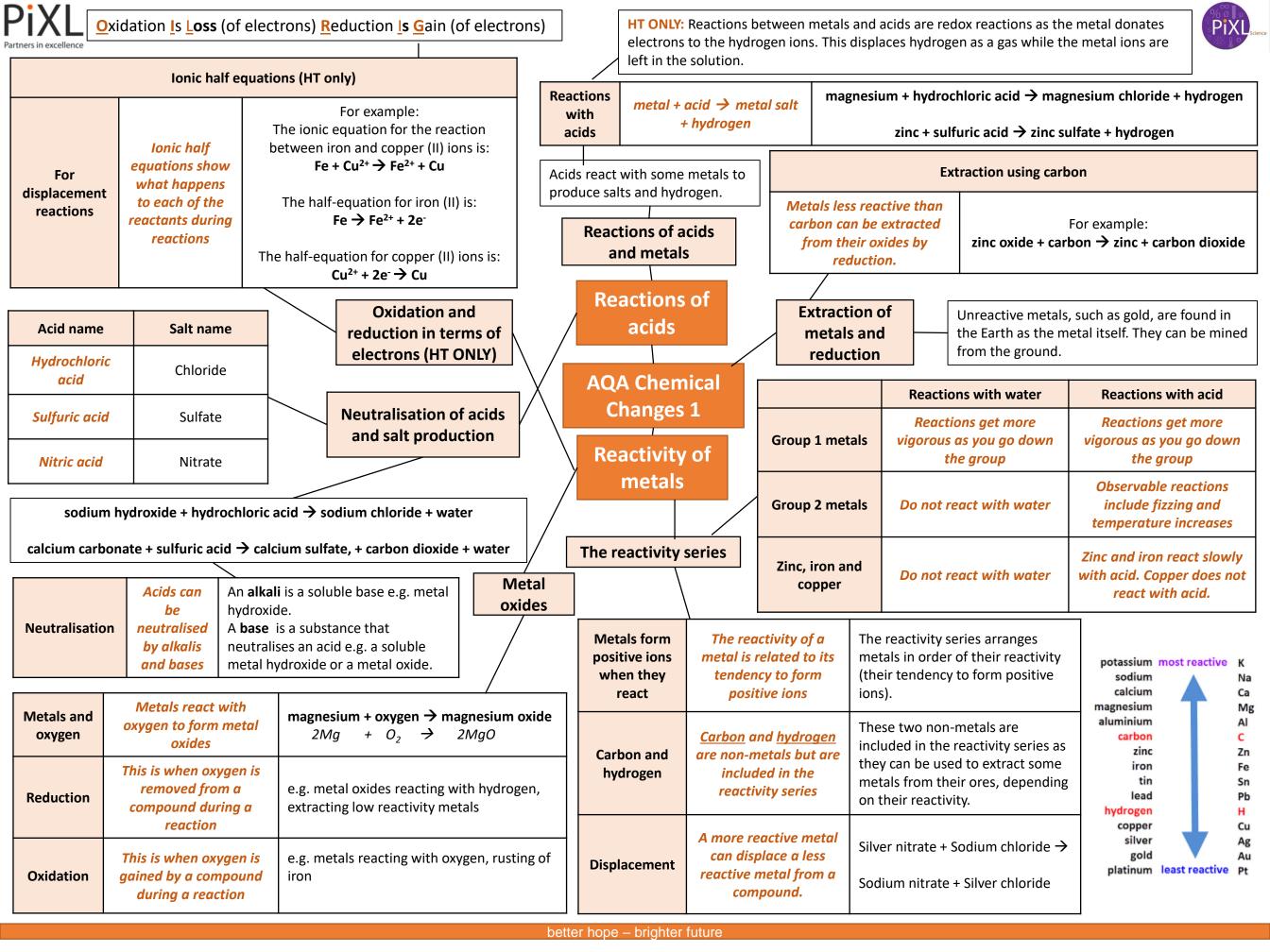
and carbon dioxide. Calculate the theoretical mass of calcium oxide made.

A piece of sodium metal is heated in chlorine gas. A maximum theoretical mass of 10g for sodium chloride was calculated, but the actual yield was only 8g.

Calculate the percentage yield.

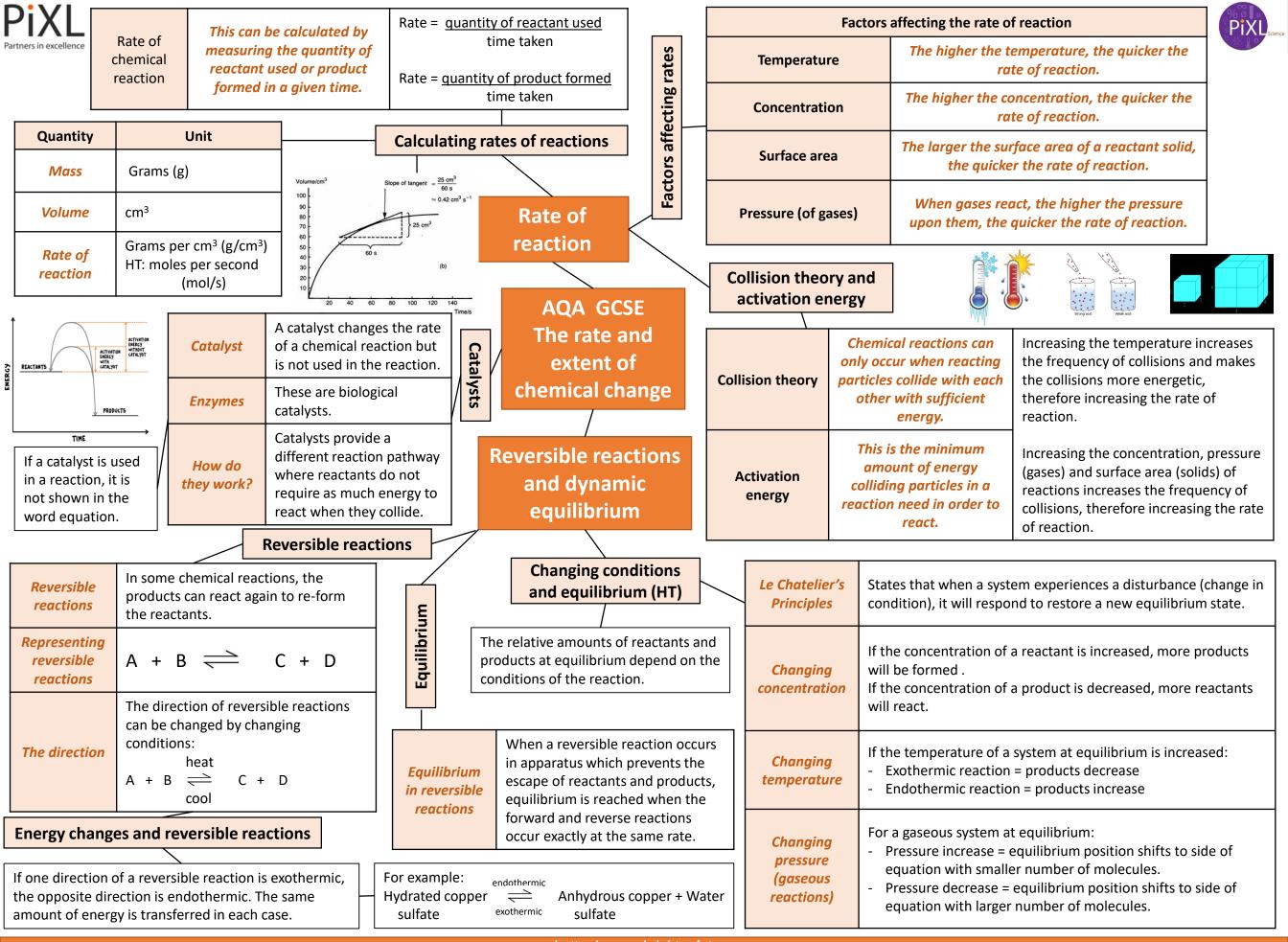
Percentage yield = 8/10 x 100 = 80%

What is the volume of 11.6 g of butane (C_4H_{10}) gas at RTP?


$$M_r$$
: $(4 \times 12) + (10 \times 1) = 58$

Volume = $0.20 \times 24 = 4.8 \text{ dm}^3$

6g of a hydrocarbon gas had a volume of 4.8 dm³. Calculate its molecular mass.


$$M_r = 6 / 0.2 = 30$$

If 6g = 0.2 mol, 1 mol equals 30 g

Partners in exc	cellence	Endothe	rmic	Energy is taken in from t surroundings so the temperature of the surroundings decrease		Sports injury packs				1 0 4 1					e: ₂ O (I) +	- 4e ⁻	Pos O ₂ (g) + 2H	PIXL																	
		Exother	mic	Energy is transferred to to surroundings so the temperature of the surroundings increases		Combustion Hand warmers Neutralisation			Hand warmers				Combustion Hand warmers				Combustion Hand warmers				Hand warmers				en fuel cells	hydro	ogen -	+ <i>ox</i>	quation: ygen ->		r		2H ₂ +	ol equation: $O_2 \rightarrow 2H_2O$ dvantages:	
	Reaction profiles Show the overall energy change of a reaction						Туре			Hydrogen	-	Advantages: No pollutants produced Can be a range of sizes					Hydro Hydro																		
		nds in reac		Endothermic process Exothermic process		chan react	reac energy age of tions	AQA Energy				React	ion	ells (Ch		Cher	nical reaction		The minimum of energy that	colliding															
energy change a reaction	Ехо	thermic	bo	rgy released making new ands is greater than the ergy taken in breaking existing bonds.	(HT only) Cells and ba (Chemistry]				Activation energy	col	energy Ord			order to react is called the activation energy.															
Overall ene	Endo	othermic	bo	y needed to break existing nds is greater than the gy released making new bonds.	╛┝	metals in cor electr		g two different contact with an ectrolyte		crease the voltage by creasing the reactivity	e	mic				Activation		Products are at a higher endered than the reactants. The reactants form products, is transferred from the second s		s. As the s, energy															
	Cal	1	orward	energy change for the I reaction 2 ⇌ 2NH ₃	Consist of two or more cells connected together in series to provide a greater voltage.					difference etween the wo metals.		Elidoniei	Reactants				miz sur		s transferred from the surroundings to the reaction nixture. The temperature of turroundings decreases becaue energy is taken in during the reaction.																
Bond energy calculation	Bond Bond		nd energies (in kJ/mol): H-H 436, H-N 391, N≡N 945 nd breaking: 945 + (3 x 436) = 945 + 1308 =			Stop when one of the reactants has been used up				Alkaline batteries						energy leve		oducts are at a lower energy el than the reactants. When he reactants form products,																	
Bond ene	Overa	2253 kJ/mol Bond making: 6 x 391 = 2346 kJ/mol verall energy change = 2253 - 2346 = -93kJ/mol				Rechargeable cells	Can be recharged because the chemical reactions are reversed when an external electrical current is		1	echargeabl batteries	e signature	EXOCUELLE	Reactants			ene surro of th		rgy is transferred to the undings. The temperature e surroundings increases ause energy is released during the reaction.																	
	Tł	erefore re	action i	s exothermic overall.		Rec	S	better hope	e – bi	orighter futu	ure				Time																				

PiXI					Crud	isplay formula fo	r first four	alkanes		Т			ch fraction co	ntains	PIXL Science
Partners in excellence Crude oil	A finite resource	Consisting mainly of plankton that was buried in the mud, crude oil is the remains of ancient				H H—C—H H H 1ethane (CH ₄)	H	H -C-H H He (C ₂ H ₆)	Fractions	S	The hydrocarbons crude oil can be sp into fractions	in nu the do	olecules with umber of carb em. The proconthis is called stillation.	a similar on atoms in ess used to	Science
Hydrocarbons	These make up the majority of the compounds in crude oil	Most of hydroca alkanes.	these rbons are called		oil, hydrocarbons H H H H H H H H H H H H H H H H H H H		H H H H H-C-C-C-C-H H H H H Butane (C ₄ H ₁₀)		Using fractions		Fractions can be processed to produce fuels and feedstock for petrochemical industry	the an Ma	e depend on ese fuels; pet od kerosene. any useful made by the pedustry; solver		
General formula for alkanes	<i>C_nH_{2n+2}</i>	For exar	nple: ${\sf C_2H_6}$ ${\sf C_6H_{14}}$			and feeds	stock CSE				stillation and nemicals	an	nd polymers.	20 °C	Butane & Propane
Alkanes to alkenes	3					Garle or company of a				in lots of different lengths. The boiling point of the chain 300°C					Petrol
Alkenes	Alkenes are hydrod bond (some are cracking		uring the		as fuels and feedstock				sepa	ctior arat	nal distillation, they te at different tempo due to this.	boil and		<u>ጥ ጥ ጥ ጥ </u> 370 °C <u>ጥ ጥ ጥ ጥ </u>	
Properties of alkenes	Alkenes are more and react with browster changes from in the prese	mine wat n orange	er. Bromine to colourless		Cracking and alkenes Combustion				hydrocarbor the fuels a	the o	complete combustic the carbon and hydi oxidised, releasing c	rogen in carbon	The oil is heated in a furnace		Lubricating oil, Parrafin Wax, Asphalt
Cracking	long cha hydrocarbor	The breaking down of long chain hydrocarbons into smaller chains The smaller chain useful. Cracking covarious methods catalytic cracking cracking.		can be s includi	ncluding		pentane + propene + etl $C_5H_{12} + C_3H_6 + C_6$		hane	Methane + oxygen			e combustion of methane: \Rightarrow carbon dioxide + water + energy $H_2(g) \Rightarrow CO_2(g) + 2 H_2O(I)$		
Catalytic crackin	g heated u	The heavy fraction is heated until vaporised After vaporisation passed over a horizontal forming smaller, hydrocarbons.		ot cataly	yst	Alkenes and uses as polymers	Used to produce p They are also used starting materials other chemicals, alcohol, plastic		sed as the ils of many s, such as		Boiling point (temperature at which liquid boils)		As the hydrocarbon chain increases, boiling point in		ocreases.
Steam cracking		After vaporisation, t mixed with steam ar			neated to	Why do we crack		detergent t cracking, n drocarbons	nany of the (how easily it flows)			ws)	As the hydi	_	

wasted as there is not much

demand for these as for the

shorter chains.

Flammability

(how easily it burns)

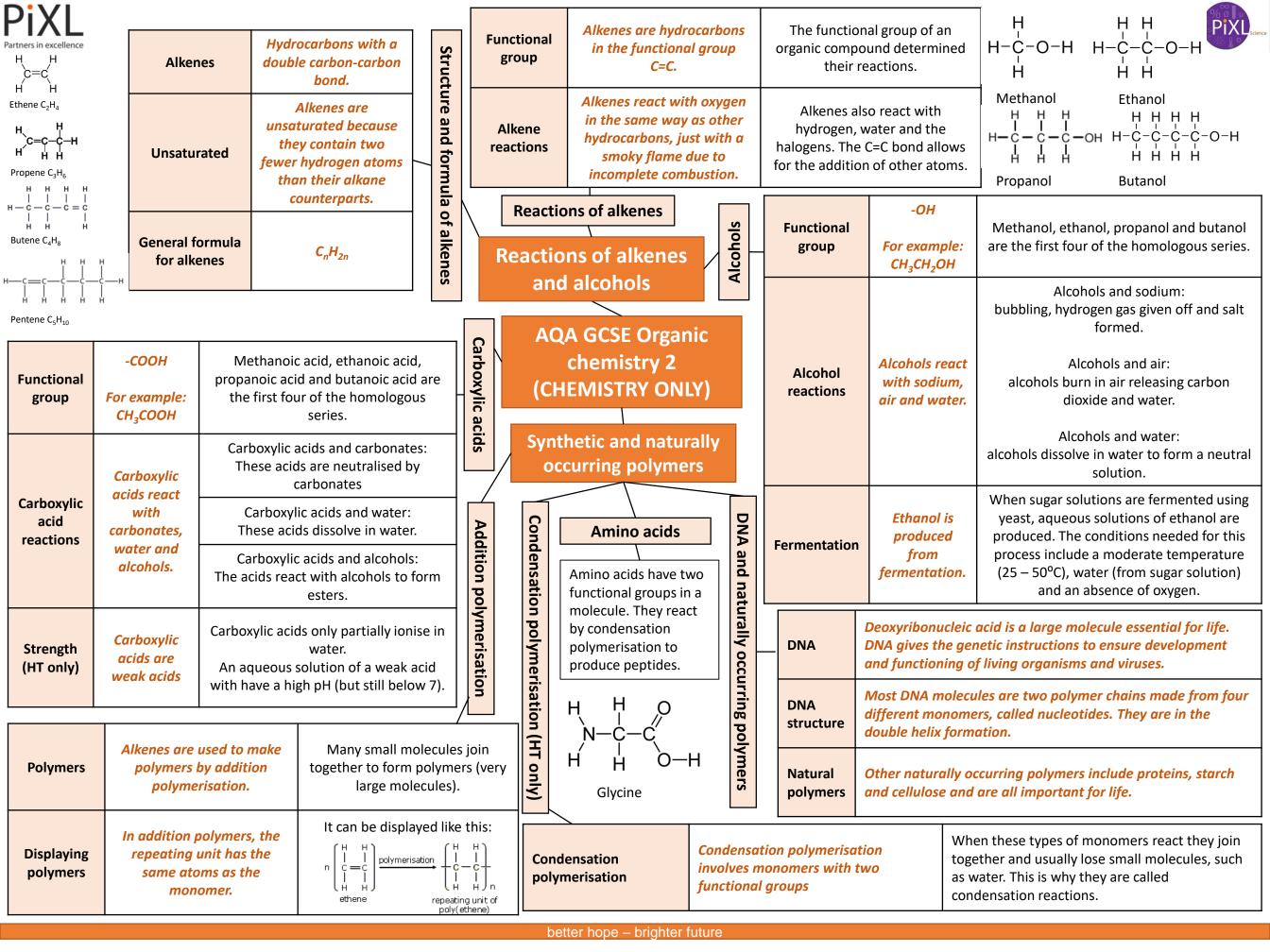
As the hydrocarbon chain length

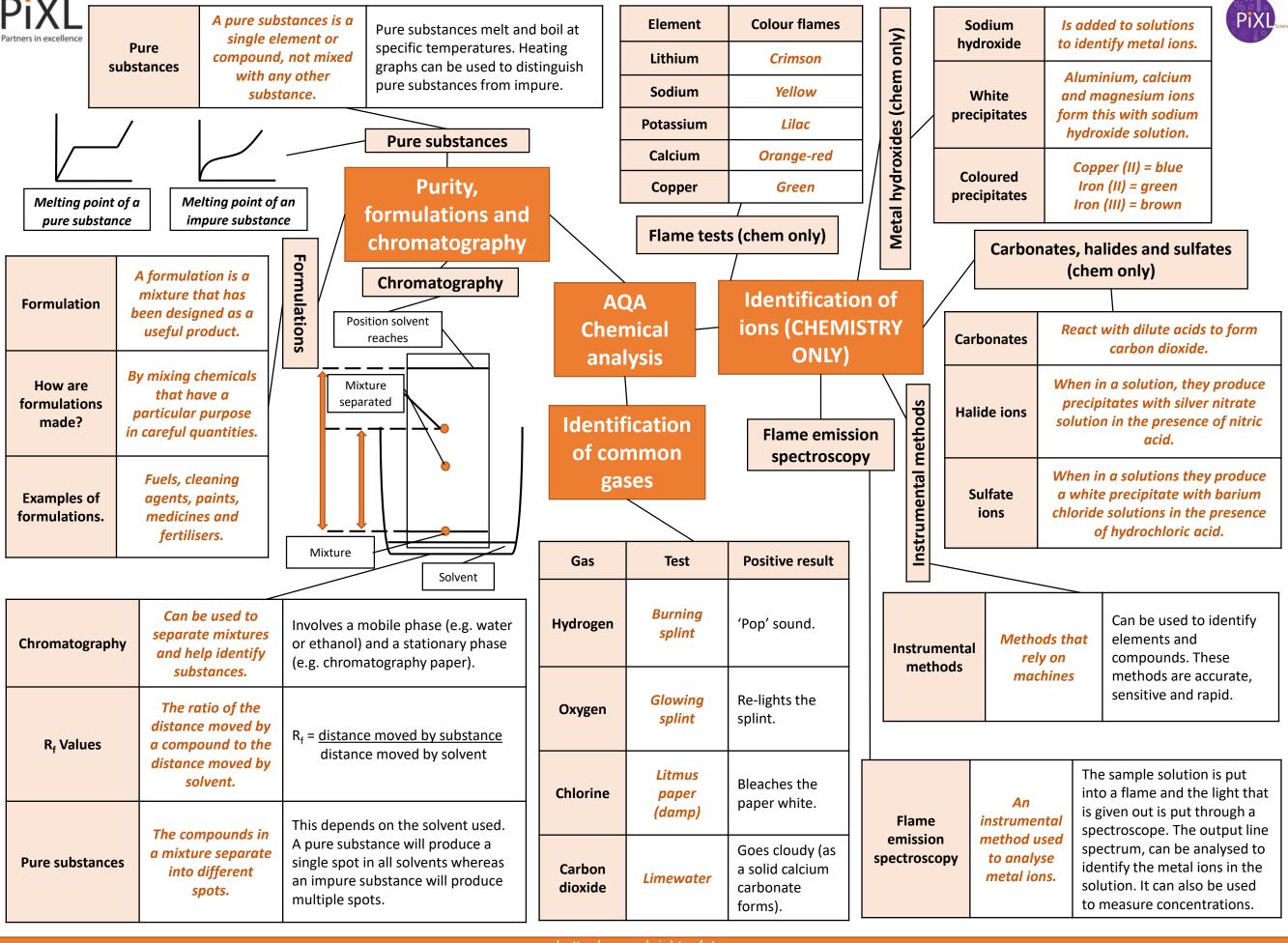
increases, flammability decreases.

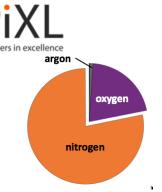
long

chains?

a very high temperature forming


smaller, more useful

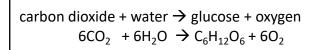

hydrocarbons.


Steam cracking

heated until

vaporised

Gas	Percentage
Nitrogen	~80%
Oxygen	~20%
Argon	0.93%
Carbon dioxide	0.04%


Proportions of atmosphere gases in the

The

Earth's

early atmosphere

nd plants	These produced the oxygen that is now in the atmosphere, through photosynthesis.
-----------	--

Oxygen in the	First produced by algae 2.7 billion
atmosphere	years ago.

Over the next billion years plants evolved to gradually produce more oxygen. This gradually increased to a level that enabled animals to evolve.

Volcano activity 1 st Billion years	Billions of years ago there was intense volcanic activity	This released gases (mainly CO ₂) that formed to early atmosphere and water vapour that condensed to form the oceans.
Other gases	Released from volcanic eruptions	Nitrogen was also released, gradually building up in the atmosphere. Small proportions of ammonia and methane also produced.
Reducing carbon dioxide in the atmosphere	When the oceans formed, carbon dioxide dissolved into it	This formed carbonate precipitates, forming sediments. This reduced the levels of carbon dioxide in the atmosphere.

How carbon dioxide decreased

How oxygen increased

Algae ar

Composition and evolution of the atmosphere

AQA GCSE Chemistry of the atmosphere

Common

atmospheric

pollutants

Toxic, colourless and odourless

gas. Not easily detected, can kill.

Cause respiratory problems in

humans and acid rain which

affects the environment.

problems in humans.

CO₂ and methane as greenhouse gases

Reducing carbon

dioxide in the

atmosphere

Formation of

sedimentary rocks

and fossil fuels

Carbon footprints

The total amount of greenhouse gases emitted over the full life cycle of a product/event. This can be reduced by reducing emissions of carbon dioxide and methane.

Algae and plants

These are made out of the remains of biological matter, formed over millions of years

photosynthesis. Remains of biological matter falls to the bottom of oceans. Over millions of years layers of sediment settled on top of them and the huge pressures turned them into

These gradually reduced the carbon dioxide

levels in the atmosphere by absorbing it for

coal, oil, natural gas and sedimentary rocks. The sedimentary rocks contain carbon dioxide from the biological matter.

Atmospheric pollutants from fuels

Combustion of fuels	pollutants. Most fuels may also contain some sulfur.
Gases from burning fuels	Carbon dioxide, water vapour, carbon monoxide, sulfur dioxide and oxides of nitrogen.
Particulates	Solid particles and unburned hydrocarbons released when burning fuels.

Properties and effects of atmospheric pollutants

Carbon monoxide

Sulfur

dioxide and

oxides of

nitrogen

Particulates

Effects of climate change Rising sea levels Extreme weather events such as severe storms Change in amount and

distribution of rainfall

becoming extinct

Cause global dimming and health Changes to distribution of wildlife species with some **Greenhouse gases**

Carbon dioxide, water vapour and methane

Examples of greenhouse gases that maintain temperatures on Earth in order to support life

The greenhouse effect

change

Global climate

change

Radiation from the Sun enters the Earth's atmosphere and reflects off of the Earth. Some of this radiation is re-radiated back by the atmosphere to the Earth, warming up the global temperature.

Human activities and greenhouse gases

Carbon dioxide	Human activities that increase carbon dioxide levels include burning fossil fuels and deforestation.
Methane	Human activities that increase methane levels include raising livestock (for food) and using landfills (the decay of organic matter released methane).
Climate	There is evidence to suggest that human activities will cause the Earth's

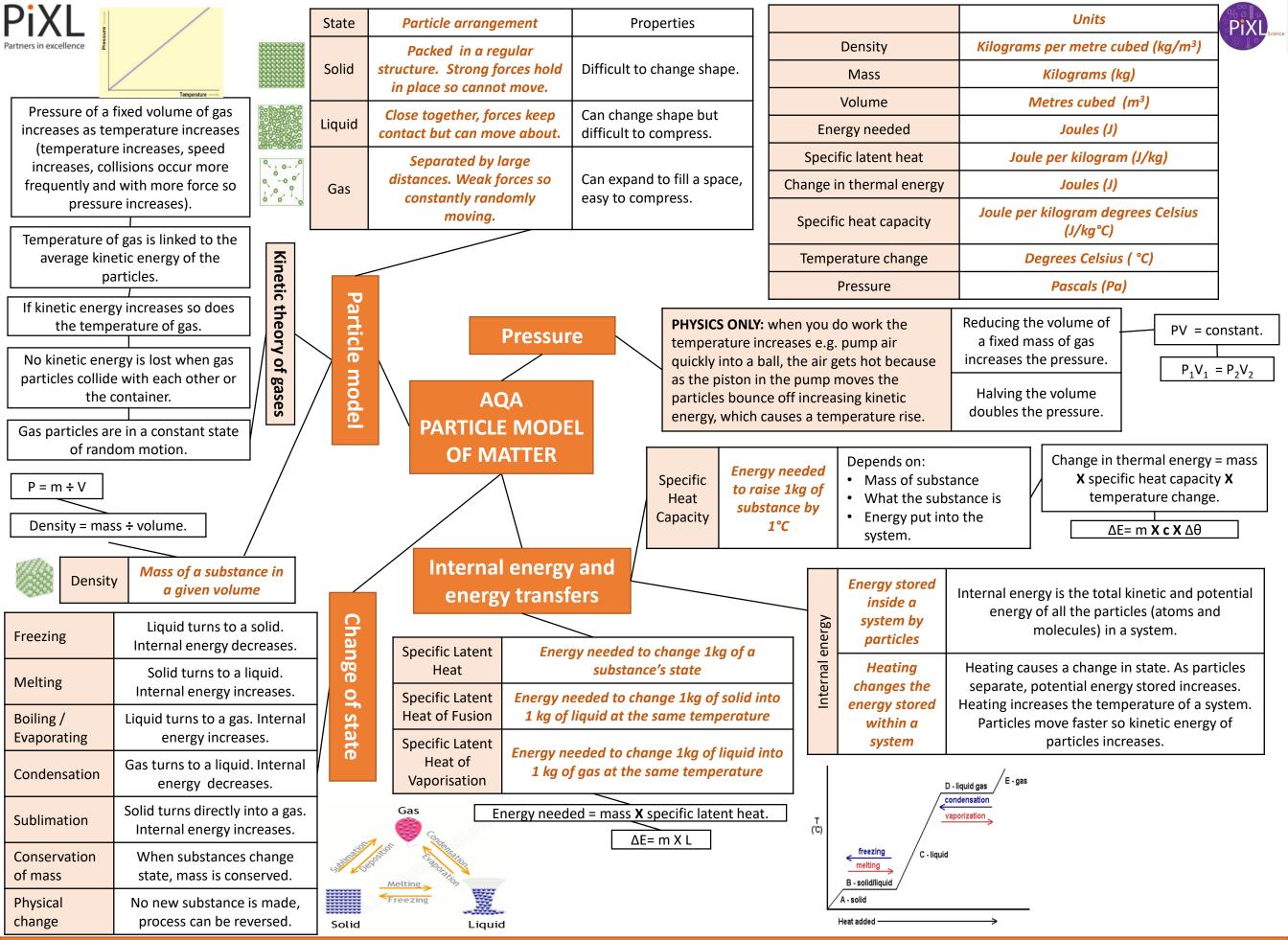
atmospheric temperature to increase and

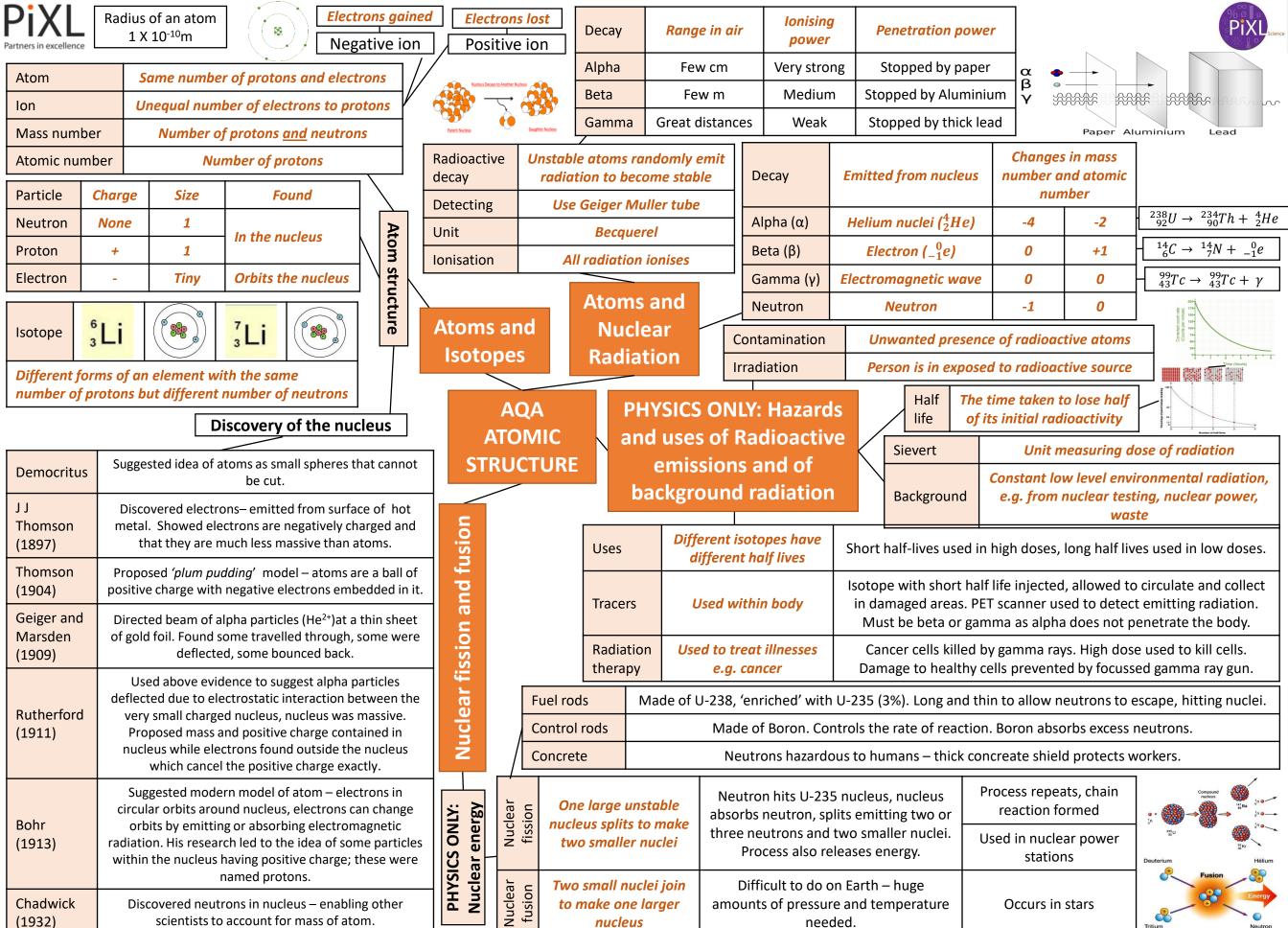
cause climate change.

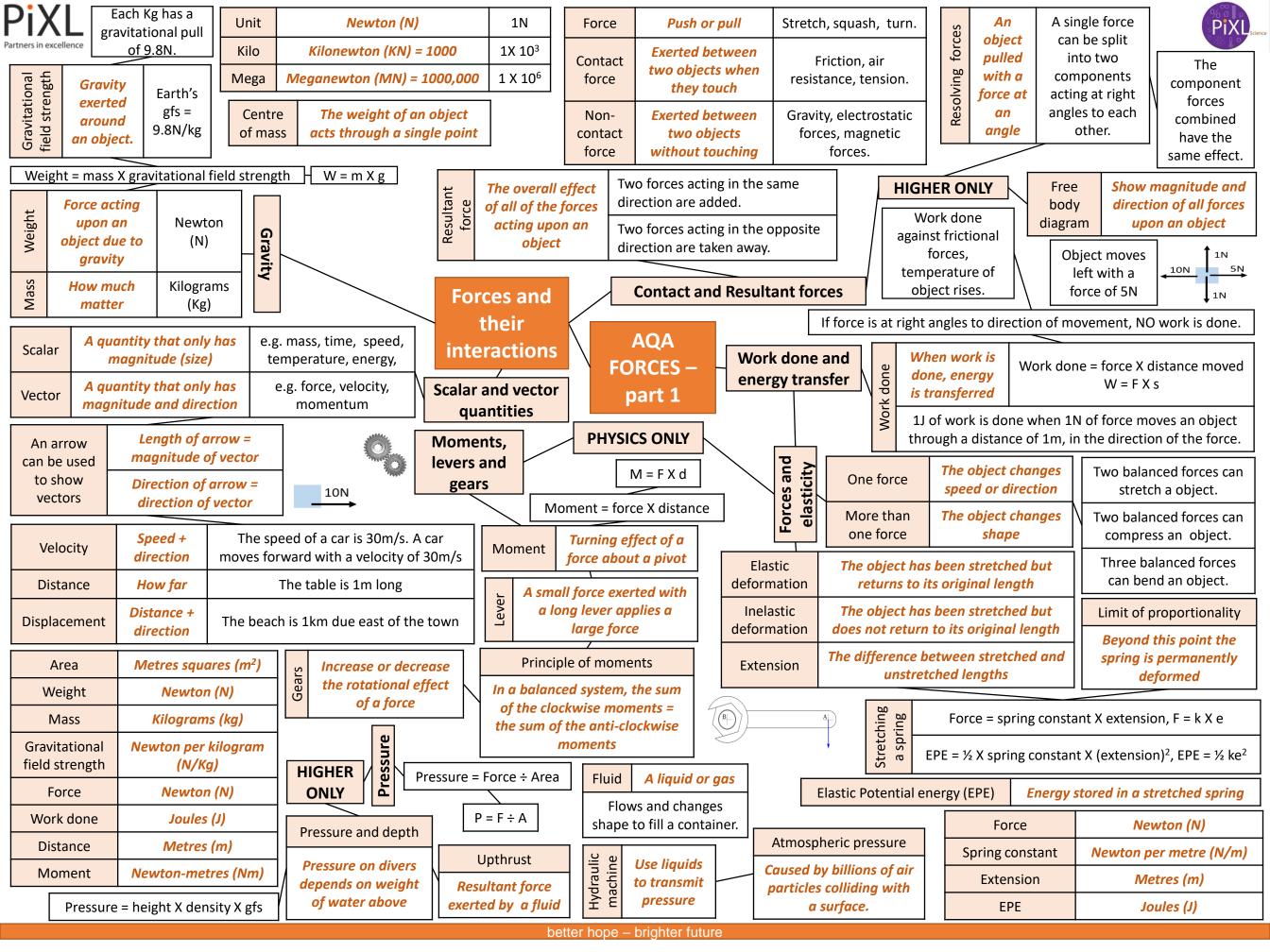
better hope – brighter future

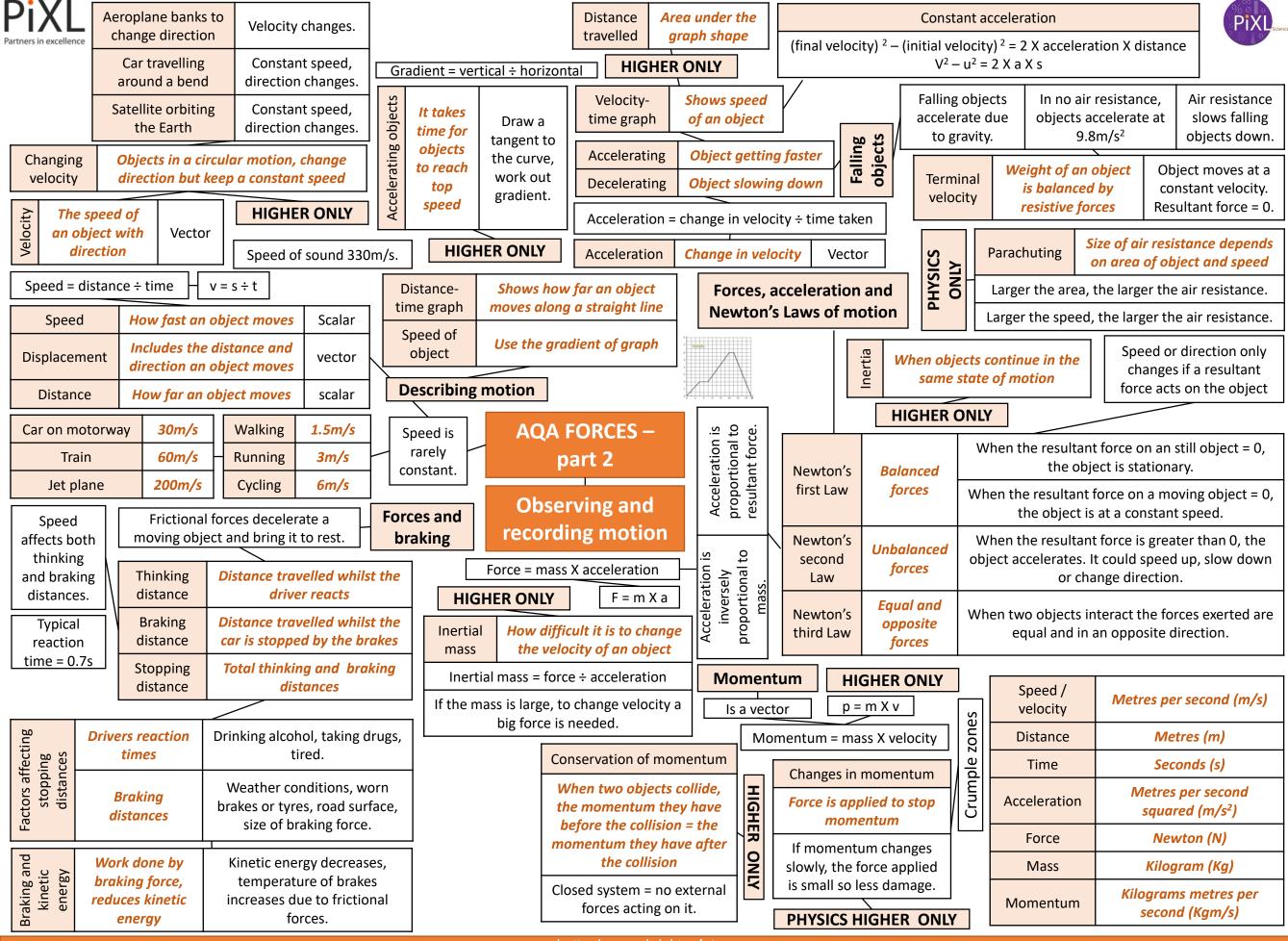
Partners in excellence	e e				- 1	Sterilising agents include chlorine, ozone and UV light.		able		appropri	er of an ate quality tial for life	low le	evels of disso bes. This is c	ater should have lved salts and alled potable	PiXLsc
Earth's resource			helter,			sns osau Buisn		wate	with low		vides water v levels of	groun	This water collects in the ground/lakes/rivers. To make potable water an appropriate source is		
resource		humans	Finite resources from the Earth, oceans and atmosphere are processed to provide energy and			the E traina				dissolved substances Needs to occur is		chosen, which is then passed thro filter beds and then sterilised.		n sterilised.	
Chemistry and resources Research and techniques improve agricultural and		These improvements provide new products and improve sustainability.			Using the Earth's	Desal	inati	ion	fresh limit salty/se	water is ed and a water is for drinking	by usi	ing large mer se osmosis. T	ed by distillation or mbranes e.g. hese processes unts of energy.		
	industri	ial processes	However, the raw mat	erial ethene	$\frac{1}{2}$	resources and					Waste w	ater ti	reatment		
Plastics using ethene from crude oil		can also be obtained from ethanol, which can be produced during fermentation. Industries are now starting to use a renewable crop for this process.			obtaining potable water AQA GCSE Using		ᆂᅵᅵ		Waste water	Produced f urban lifest and indust processe	tyles trial	the environ	se require treatment before used in environment. Sewage needs the nic matter and harmful microbes oved.		
LCAS	Life cycle assessments are carried out to They are assessed at these stages: - Extraction and processing raw materials			resources 1 Life cycle assessment and recycling	Alternative methods of	extracting metals		Sewage eatment	Includes m stages	- Sedimen effluent - Anaerob		g and grit removal tation to produce slud liquid waste or sewag c digestion of sludge piological treatment of	ge).		
Values	Allocating numerical votation to pollutal effects is	g alues Value nt the e	e judgments are allocated of pollutants so LCA purely objective process.	A is		Ways of reducing the	`	Meta		s ores	These resou		re becomextrac	Copper ores especially are becoming sparse. New ways of extracting copper from low-grade ores are being developed.	
	difficult		purery objective process.			use of resources			hytom	nining	Plants absorb metal compounds		and bu	These plants are then harvested and burned; their ash contains the metal compounds.	
-	, reuse and ecycle		egy reduces the use of nited resources		ces v	ore, reduces energy sources being es waste (landfill) and reduces tal impacts.				Bacteria is used to		The m	The metal compounds can be processed to obtain the metal		
Limited raw materials		Used for metals, glass, building materials, plastics and clay ceramics		comes from lir materials from		energy required for these processes limited resources. Obtaining raw m the Earth by quarrying and mining		Biolea		ching	solutions the	produce leachate solutions that contai metal compounds		from it e.g. copper can be obtained from its compounds by displacement or electrolysis.	
Reusing and recycling Metals can be recycled by melting melted to		Glass bottle melted to m	es ca	onmental impacts. s can be reused. They are crushed and ake different glass products. Products be reused are recycled.											

	:VI																%° 1				
Parti	ners in excellence						_]		Alloys	A mixt	_		_			pper and zinc.				
		The destruction of materials by	An exa	imple of this is iro with oxygen from	Corrosion	s	700	n :: 1	-	-	-	-			nc. The carat of the jewellery is gold, 24 carat is 100% gold.						
	Corrosion	chemical reaction with substances i	iron o	kide (rust) water not for iron to rust.			sion	materials								and other m					
		the environment	t '				an	<u>E</u>		<u>s</u>						strong but br					
	Preventing corrosion	Coatings can be added to metals t	and el	lles of this are gre ectroplating. Alun coating that prote	inium h	nas an	and its prevention	nseful		Steels	Steel	containing				er and easily nless) are ha	shaped. ord and corrosion resistant.				
	011031011	act as a barrier		urther corrosion.	ots the i	Tictai	ever	are						Aluminiu	m alloys (are low dens	ity.				
	Sacrificial corrosion	When a more reactive metal is used to coat a les	with th	ne air and not the	is that the coating will react ir and not the underlying example of this is zinc used to				t the underlying			Alloys			Cerar	rs and			Thern	nosetting	polymers that do not melt when they are heated.
		reactive metal		ise iron.						/ L	compo	osites		Polymers	Thermosoftening		polymers that melt when they are heated.				
	NPK fertilisers	These contain nitrogen, phosphorous	salts conta percentag			Produc		Using material AQA GCSE Usi								_	da-lime glass, made by heating sand, sodium rbonate and limestone.				
_		and potassium Potassium chloride,	treated w	e rock needs to be th an acid to	<u>@</u> 3			resources 2 (CHEM ONLY					A mixtu materia togethe	ls put r for a		glass, made from sand and boron elts at higher temperatures than lass.					
	Fertiliser examples	potassium sulfate and phosphate rock	which is th	oduce a soluble salt ich is then used as a tiliser. Ammonia can be		uses of ers				Haber proc		ess		specific p e.g. stre	ength	MDF wood resin)	MDF wood (woodchips, shavings, sawdust and esin)				
		are obtained		anufacture		f NPK				rtilise						Concrete (c	ement, sand and gravel)				
		by mining	acid.	m salts and nitric		×						Ceran mater		Made fro	om clay	=	aping wet clay and then heating in a mmon examples include pottery and				
				The Haber	process	– conditio	ns and	equili	briu	um	SSS						rs affect the properties of the				
	Pl	hosphate rock			The re	pactants si	de of ti	he eau	atio	on has	100			Mar	าง		w density (LD) polymers and high				
	Treatment Products The acid is neutralised		if proceure is in						ns that	Haber process	Polym	ers	monome make po	1	density (HD ethene. The) polymers are produced from see are formed under different					
		with ammoni		Pressure		ifts toward	-			_	Ha					conditions.					
	Nitric acid	produce ammonium phosphate, a NPK			The second secon			atelier's principle eds to be as high ossible.			The	The Hab		Used to manufacture ammonia			Ammonia is used to produce fertilisers Nitrogen + hydrogen = ammonia				
fertiliser.									-					Both of	Both of these gases are purified before						


Calcium phosphate and Sulfuric acid calcium sulfate (a single superphosphate). Phosphoric Calcium phosphate (a acid triple superphosphate).


ine Haber	process – conditions and equilibrium
Pressure	The reactants side of the equation has more molecules of gas. This means that if pressure is increased, equilibrium shifts towards the production of ammonia (Le Chatelier's principle). The pressure needs to be as high as possible.
Temperature	The forward reaction is exothermic. Decreasing temperature increases ammonia production at equilibrium. The exothermic reaction that occurs releases energy to surrounding, opposing the temperature decreases. Too low though and collisions would be too infrequent to be financially viable.


PiXI		Mechanical	Force acts u	pon an obj	iect	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Change i	therma	l energy = mas	s X specific heat	capacity X tempe	rature change	ΔE= m X c X	Δθ PIXL Science
Partners in excelle	ence	Electrical	Electric c	urrent flow	/	Energy	pecific	Energy	needed De	epends on: mass	of substance,		R: efficiency can	
		Heat	Temperature differ	ence betw	een objects Heat				5 ,	nat the substance			sed using machin	
		Radiation	Electromagnet	c waves or	sound		apacity	substand	ce by 1°C en	ergy put into the	e system.	Eff	iciency = <u>Useful p</u> Total po	ower output ower input
Kinet energ		Energy store moving of	-	½ X n	nass X (spee ½ mv²	d) ²	Efficiency =	Efficiency = <u>Useful output energy transfer</u> Total input energy transfer						
Potent	Potential stretched spring,				½ ke²	tionality has not been exceeded)							CIENCVI	uch energy is y transferred
Potent	Gravitational Potential energy an object raised above the ground Energy gained by an object raised above the ground			X gravitatio	onal field stro mgh	ength X height			and changes	Dissipation	Dissipate	To scatter in all directions or to use	it dissipate	y is 'wasted', es into the s as internal
Syste	·m	An obje	ct or group of objects interact together	that	EG: Kettle	boiling water.		/	AQA			wastefully	(thermal	l) energy.
Energy s	Energy stores Kinetic, chemical, internal (thermal), gravitational potential, elastic potential, magnetic, electrostatic, nuclear			otential,		gained or lost object or device.		EN	ERGY – part 1	ition and	re 'w	asted' trai	isferred lubric	nline design, ation of
transfer are ways		are ways	d, electricity, therma to transfer from one s other store of energy.	store to	transfers of into therm	lectrical energy fers chemical energy chermal energy to heat			No change in otal energy in system	Conservation	Principle of conservation	or ener	created of	or destroyed,
Uni	t		Joules (J)		water up.			pen	Energy can		of energy	always	·	nged from e to another.
		oing work sfers energy	By applying a force to move an	Work de	ono – Forco	V distance move	sy	stem	dissipate	Energy				
Work	from	one store to	object the energy	VVOIKU		e = Force X distance moved W = Fs			Light energy (10 %)	Ë			Uni	its
		another	store is changed. 1 Joule of energy	Powe	• •	transfer ÷ time	energy (100%)				Energy (KE, therr		Joule	s (J)
Power	l	he rate of rgy transfer	per second = 1	Por	P = E wer = work	÷ t done ÷ time,		Thermal ener	ay		Velo	city	Metres per se	econd (m/s)
			watt of power		P = W	•			_	: When an	Spring co	onstant	Newton per n	metre (N/m)
			Units		Useful	Energy tro	ınsferred	$\neg /$	1 -	ransferred by	Exten	sion	Metre	s (m)
	_		Joules per Kilogran	n dearee	energy		-	/	1 0,	g work.	Ma	ss	Kilograi	m (Kg)
Specif	fic Heat	t Capacity	Celsius (J/Kg	_	Wasted						Gravitational f	ield strength	Newton per kild	ogram (N/Kg)
Temp	eratur	e change	Degrees Celsius	(°C)	energy	stored less	susefully			ne = Force X	Heig	Height		s (m)
	Work d	lone	Joules (J)		Prefix	Prefix <i>Multiple</i> Sta		d	distanc	ce moved				
	Ford	e	Newton (N)		-	form	_			i -			
Dis	stance	moved	Metre (m)		Kilo	1000	103	4		forces cause transferred as	_	_	neels, applying	
	Pow	er	Watts (W)		Mega	1000 000	106	_	thermal er	nergy. This is		n. Reducing air ng slowly, strea		
Time Seconds (s)				Giga	100 000 000	109		wa	sted.			۰۵'		


Partners in excellence Using renewable	Transport	Petrol, diesel, kerosene produced from oil	Used in cars, trains and planes.		ntion – NB: You nee resource is burnt t		-	_			
energy will need to increase to meet demand.	Heating	Gas and electricity Most generated by fossil fuels	Used in buildings. Used to power most devices.	Power station	Generates electricity	Fuel buri releasin thermal en	Water boils into steam	Steam turns turbine	Turbine turns generator induces voltage		
Renewable makes up abou	ut 20% of	reserves are i	ergy demand is ncreasing as llation increases.	National Grid	Transports electricity across UK	Power stat	Step-up transformer	Pylons	Step-down House, factory		
Non-renewable energy resource	finite reserve	-	I fuels (coal, es) and nuclear Usir	ng fuels	Global	E	AQA NERGY –	National			
Renewable energy resource	is an infinit	e reserve. It Wind, Ge	otnermal.	nergy sources	Resources		part 2	Grid	7人萬年		
Energy resource	F	How it works	Uses		Positive			Negative			
Fossil Fuels (coal, oil and gas)		ase thermal energy used Iter into steam to turn turbines	Generating electricity, heating and transport	Large ro Used i	es most of the UK ener eserves. Cheap to extr in transport, heating a electricity. Easy to trans	act. mi nd plan	Non-renewable. Burning coal and oil releases sulfur dioxide. When mixed with rain makes acid rain. Acid rain damages building and kills plants. Burning fossil fuels releases carbon dioxide which contributes to global warming. Serious environmental damage if oil spilt.				
Nuclear	Nucle	ar fission process	Generating electricity	_	enhouse gases produced from samounts of fuel.	small or	Non-renewable. Dangers of radioactive materials being released into air or water. Nuclear sites need high levels of security. Start up costs and decommission costs very expensive. Toxic waste needs careful storing.				
Biofuel	Plant matter	burnt to release thermal energy	Transport and generating electricity	remove	able. As plants grow, t carbon dioxide. They 'carbon neutral'.	· ·	ood not grown. Emit	_	rops. Habitats destroyed and when burnt thus adding to bal warming.		
Tides		tides rise and fall, so n of electricity can be predicted	Generating electricity	cor	vable. Predictable due nsistency of tides. No nhouse gases produce	E	Expensive to set up. A dam like structure is built across an estuary, altering habitats and causing problems for ships and boats.				
Waves	Up and dow	n motion turns turbines	Generating electricity	Renew	rable. No waste produc	cts. Can	Can be unreliable depends on wave output as large waves can stop the pistons working.				
Hydroelectric	Falling w	vater spins a turbine	Generating electricity	Renew	rable. No waste produc	cts.	Habitats destroyed when dam is built.				
Wind		causes turbine to spin turns a generator	Generating electricity	Renew	Renewable. No waste products.		Unreliable – wind varies. Visual and noise pollution. Dangerous to migrating birds.				
Solar	•	ts objects in solar panels captured in photovoltaic cells	Generating electricity and some heating	Renew	rable. No waste produc	cts. M	aking and installing s	olar panels expensity.	sive. Unreliable due to light		
Geothermal		nder the ground heats produce steam to turn turbine	Generating electricity and heating		ble. Clean. No greenh gases produced.	ouse Limi		er of countries. Ge use earthquake tr	eothermal power stations can emors.		
				better hope	e – brighter future						

