SPEED

Q1.

The figure below shows the horizontal forces acting on a car.

(a) Which one of the statements describes the motion of the car?

Tick one box.
It will be slowing down.

It will be stationary.

It will have a constant speed.

It will be speeding up.

(b) During part of the journey the car is driven at a constant speed for five minutes.

Which one of the equations links distance travelled, speed and time?
Tick one box.
distance travelled $=$ speed + time

distance travelled $=$ speed \times time

distance travelled = speed - time

distance travelled $=$ speed \div time

(c) During a different part of the journey the car accelerates from $9 \mathrm{~m} / \mathrm{s}$ to $18 \mathrm{~m} / \mathrm{s}$ in 6 s.

Use the following equation to calculate the acceleration of the car.
acceleration $=\frac{\text { change in velociy }}{\text { time taken }}$
\qquad
\qquad
acceleration $=$ \qquad $\mathrm{m} / \mathrm{s}^{2}$
(d) Which equation links acceleration, mass and resultant force?

Tick one box.

(e) The mass of the car is 1120 kg . The mass of the driver is 80 kg .

Calculate the resultant force acting on the car and driver while accelerating.
\qquad
\qquad
Resultant force $=$ N
(f) Calculate the distance travelled while the car is accelerating.

Use the correct equation from the Physics Equation Sheet.
\qquad
\qquad
\qquad
Distance = m
(g) A car driver sees a fallen tree lying across the road ahead and makes an emergency stop.

The braking distance of the car depends on the speed of the car.
For the same braking force, explain what happens to the braking distance if the speed doubles.

You should refer to kinetic energy in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q2.
A train travels from town \mathbf{A} to town \mathbf{B}.
Figure 1 shows the route taken by the train.
Figure 1 has been drawn to scale.
Figure 1

(a) The distance the train travels between \mathbf{A} and \mathbf{B} is not the same as the displacement of the train.

What is the difference between distance and displacement?
\qquad
\qquad
\qquad
(b) Use Figure 1 to determine the displacement of the train in travelling from \mathbf{A} to \mathbf{B}. Show how you obtain your answer.
\qquad
\qquad
Displacement $=$ \qquad km

Direction $=$ \qquad
(c) There are places on the journey where the train accelerates without changing speed.

Explain how this can happen.
\qquad
\qquad
\qquad
\qquad
(d) Figure 2 shows how the velocity of the train changes with time as the train travels along a straight section of the journey.

Figure 2

Estimate the distance travelled by the train along the section of the journey shown in Figure 2.

To gain full marks you must show how you worked out your answer.
\qquad
\qquad
\qquad
\qquad m

Q3.
Figure 1 shows a set of tuning forks.
Figure 1

A tuning fork has a handle and two prongs. It is made from metal.
When the prongs are struck on a hard object, the tuning fork makes a sound wave with a single frequency. The frequency depends on the length of the prongs.
(a) Use the correct answer from the box to complete each sentence.

direction	loudness	pitch	speed

The frequency of a sound wave determines its \qquad .

The amplitude of a sound wave determines its \qquad .
(b) Each tuning fork has its frequency engraved on it. A student measured the length of the prongs for each tuning fork.

Some of her data is shown in the table.

Frequency in hertz	Length of prongs in $\mathbf{~ c m}$
320	9.5
384	8.7
480	7.8
512	7.5

(i) Describe the pattern shown in the table.
\qquad
\qquad
(ii) Figure 2 shows a full-size drawing of a tuning fork.

Figure 2

Measure and record the length of the prongs.

> Length of prongs =
\qquad cm

Use the data in the table above to estimate the frequency of the tuning fork in Figure 2.

Explain your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
Estimated frequency = \qquad Hz
(c) Ultrasound waves are used in hospitals.
(i) Use the correct answer from the box to complete the sentence.

Ultrasound waves can be produced by \qquad systems.
(ii) The frequency of an ultrasound wave used in a hospital is $2 \times 10^{6} \mathrm{~Hz}$.

It is not possible to produce ultrasound waves of this frequency using a tuning fork.

Explain why.
(d) Figure 3 shows a tuning fork and a microphone. The microphone is connected to an oscilloscope.

Figure 3

© Sciencephotos/Alamy
When the tuning fork is struck and then placed in front of the microphone, a trace appears on the oscilloscope screen.

Figure 4 shows part of the trace on the screen.
Figure 4

Each horizontal division in Figure 4 represents a time of 0.0005 s .
What is the frequency of the tuning fork?

> Frequency =
\qquad Hz

Q4.

(a) Human ears can detect a range of sound frequencies.
(i) Use the correct answers from the box to complete the sentence.

2	20	200	2000	20000

The range of human hearing is from about \qquad Hz to \qquad Hz.
(ii) What is ultrasound?
\qquad
\qquad
(iii) Ultrasound can be used to find the speed of blood flow in an artery.

State one other medical use of ultrasound.
\qquad
(b) The speed of an ultrasound wave in soft tissue in the human body is $1.5 \times 10^{3} \mathrm{~m} / \mathrm{s}$ and the frequency of the wave is $2.0 \times 10^{6} \mathrm{~Hz}$.

Calculate the wavelength of the ultrasound wave.
\qquad
\qquad
Wavelength $=\ldots \mathrm{m}$
(c) When ultrasound is used to find the speed of blood flow in an artery:

- an ultrasound transducer is placed on a person's arm
- ultrasound is emitted by the transducer
- the ultrasound is reflected from blood cells moving away from the transducer
- the reflected ultrasound is detected at the transducer.

Describe the differences between the ultrasound waves emitted by the transducer and the reflected waves detected at the transducer.
\qquad
\qquad
\qquad
\qquad

Q5.
A car has an oil leak. Every 5 seconds an oil drop falls from the bottom of the car onto the road.
(a) What force causes the oil drop to fall towards the road?
\qquad
(b) The diagram shows the spacing of the oil drops left on the road during part of a journey
A
-
-
B

Describe the motion of the car as it moves from \mathbf{A} to \mathbf{B}.

Explain the reason for your answer.
\qquad
\qquad
\qquad
\qquad
(c) When the brakes are applied, a braking force slows down and stops the car.
(i) The size of the braking force affects the braking distance of the car.

State one other factor that affects the braking distance of the car.
\qquad
(ii) A braking force of 3 kN is used to slow down and stop the car in a distance of 25 m .

Calculate the work done by the brakes to stop the car and give the unit.

Work done $=$ \qquad
(Total 8 marks)

Q6.

(a) The diagram shows a microphone being used to detect the output from a loudspeaker.
The oscilloscope trace shows the wave pattern produced by the loudspeaker.

(i) How many waves are produced by the loudspeaker in 0.0001 seconds?
\qquad
(ii) How many waves are produced by the loudspeaker every second?

Assume the input to the loudspeaker does not change.
\qquad
\qquad
(iii) A person with normal hearing cannot hear the sound produced by the loudspeaker.

Explain why.
\qquad
\qquad
\qquad
\qquad
(b) The diagram shows how a very high frequency sound wave can be used to check for internal cracks in a large steel bolt. The oscilloscope trace shows that the bolt
does have an internal crack.

(i) Explain what happens to produce pulse \mathbf{A} and pulse \mathbf{B}.
\qquad
\qquad
\qquad
\qquad
(ii) Use the information in the diagram and the equation in the box to calculate the distance from the head of the bolt to the internal crack.

```
distance = speed }\times\mathrm{ time
```

Speed of sound through steel $=6000 \mathrm{~m} / \mathrm{s}$
Show clearly how you work out your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(a) The diagrams show oscilloscope traces for the same musical note played on two different instruments. The oscilloscope settings are not changed.

Diagram X

Diagram Y
(i) How can you tell, from the diagrams, that it is the same musical note?
\qquad
\qquad
(ii) How can you tell, from the diagrams, that the musical note has been played on different instruments?
\qquad
\qquad
(b) This passage is from an electronics magazine.

Electronic systems can be used to produce ultrasound waves. These waves have a higher frequency than the upper limit for hearing in humans.
Ultrasound waves are partially reflected when they meet a boundary between two different media.
(i) Approximately what is the highest frequency that humans can hear?

State the number and the unit.
\qquad
(ii) What does the word media mean when it is used in this passage?
\qquad
\qquad
(iii) What happens to the ultrasound which reaches the boundary between two different media and is not reflected?
\qquad
\qquad
\qquad

Q8.
(a) The diagram below shows a moving tractor. The forward force from the engine exactly balances the resisting forces on the tractor.

(i) Describe the motion of the tractor.
(ii) The tractor comes to a drier part of the field where the resisting forces are less. If the forward force from the engine is unchanged how, if at all, will the motion of the tractor be affected?
\qquad
\qquad
(b) Two pupils are given the task of finding out how fast a tractor moves across a field. As the tractor starts a straight run across the field the pupils time how long it takes to pass a series of posts which are forty metres apart. The results obtained are shown in the table below.

Distancetravelled (m)	0	40	80	120	160	200
Timetaken (s)	0	8	16	24	32	40

(i) Draw a graph of distance travelled against time taken using the axes on the graph below. Label your graph line A.

(2)
(ii) Calculate the speed of the tractor.
\qquad
\qquad
(3)
(c) In another, wetter field there is more resistance to the movement of the tractor. It now travels at $4 \mathrm{~m} / \mathrm{s}$.
(i) Calculate the time needed to travel 200 m .
(ii) On the graph in part (b) draw a line to represent the motion of the tractor across the second field. Label this line B.
(d) On a road the tractor accelerates from rest up to a speed of $6 \mathrm{~m} / \mathrm{s}$ in 15 seconds.

Calculate the acceleration of the tractor.
\qquad
\qquad
\qquad
\qquad Acceleration = \qquad $\mathrm{m} / \mathrm{s}^{2}$

Q9.
When a gun is fired, a very large force acts on the bullet for a very short time.
The change in momentum of the bullet is given by the following relationship:
force $(\mathrm{N}) \times$ time $(\mathrm{s})=$ change in momentum $(\mathrm{kg} \mathrm{m} / \mathrm{s})$
(a) An average force of 4000 newton acts for 0.01 seconds on a bullet of mass 50 g .

Calculate the speed of the bullet. (Show your working.)
\qquad
\qquad
\qquad
Answer \qquad m/s
(b) The bullet is fired horizontally. In the short time it takes for the bullet to reach its target, its horizontal speed has fallen to 80% of its initial speed.
(i) Explain why the speed of the bullet decreases so quickly.
\qquad
\qquad
(ii) Calculate the percentage of its original kinetic energy the bullet still has when it reaches its target.
(Show your working.)
\qquad
\qquad
\qquad
\qquad

