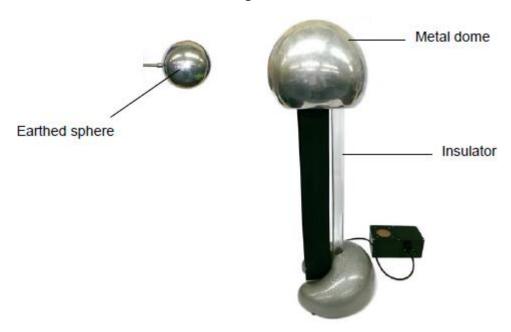
STATIC ELECTRICITY

Q1.

A student rubs an acetate rod with a cloth.


Figure 1 shows the charges on the acetate rod and cloth before and after rubbing.

(a)	Explain how rubbing an acetate rod with a cloth causes the rod and cloth to become charged.	
		4)
(b)	After charging them, the student moves the acetate rod and the cloth closer together.	
	Which statement is correct?	
	Tick one box.	
	There is no force between the acetate rod and the cloth.	
	There is a force of attraction between the acetate rod and the cloth.	
	There is a force of repulsion between the acetate rod and the cloth.	

Oive a reason for your answ		

(c) **Figure 2** shows a Van de Graaff generator, which is used to generate static electricity.

Figure 2

© Michael Priest

The longer the Van de Graaff generator is switched on, the more charge is stored on the metal dome.

Use an answer from the box to complete the sentence.

decrease	increase	stay the same
----------	----------	---------------

The amount of charge on the metal dome is increased, which causes the potential difference between the metal dome and the earthed sphere to

(d) When the potential difference between the Van de Graaff generator and the earthed sphere is 60 kV, a spark jumps between the metal dome and the earthed sphere.

The spark transfers 0.000025 coulombs of charge to the earthed sphere.

The equation which links charge, energy and potential difference is:

energy transferred = charge x potential difference

Calculate the energy transferred by the spark.

(1)

(2)

 	
Energy transferred =	J
	(2)
	(Total 9 marks)
Energy transferred =	J (2) (Total 9 marks)

Q2.

Figure 1 shows a Van de Graaff generator that is used to investigate static electricity.

Before it is switched on, the metal dome has no net charge.

After it is switched on, the metal dome becomes positively charged.

Figure 1

© Michael Priest

Explain how an uncharged object may become positively charged.			

(b) **Figure 2** shows a plan view of the positively charged metal dome of a Van de Graaff generator.

(3)

Draw the electric field pattern around the metal dome when it is isolated from its surroundings.

Use arrows to show the direction of the electric field.

Figure 2

(2)

(c) Another positively charged object is placed in the electric field.

Look at Figure 3.

Figure 3

ŗ

Ķ

Q

ş

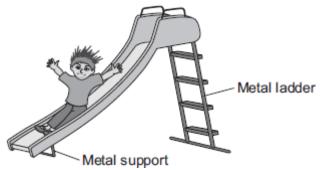
In which position would the object experience the greatest force?

Tick one box.

Ρ

Q

R


S

(1)

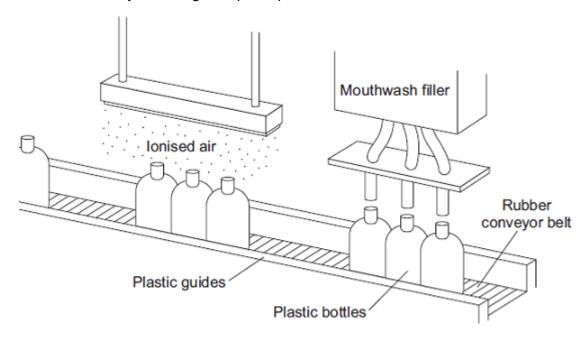
(Total 6 marks)

Q3.

The figure below shows a slide in a children's playground.

A c	nild of mass 18 kilograms goes down the slide.
The	vertical distance from the top to the bottom of the slide is 2.5 metres.
	culate the decrease in gravitational potential energy of the child sliding from the to the bottom of the slide.
Gra	vitational field strength = 10 N / kg
	Decrease in gravitational potential energy =
The	slide is made of plastic.
(i)	The child becomes electrically charged when he goes down the slide.
	Explain why.
(ii)	Going down the slide causes the child's hair to stand on end.
	What conclusion about the electrical charge on the child's hair can be made from this observation?

(iii) Why would the child not become electrically charged if the slide was ma from metal?			s made					
							(Total 7 ma	(1) irks)
A stu	dent uses some every	day ite	ems to inv	estigate/	e static elect	ricity.		
S				Cloth	Plastic strip		Wooden	bc
	strip of plastic is cut a plastic carrier bag	2	The plast witl	ic strip is h a cloth		•	stic strip is hu a wooden rod	ng
(i)	Draw a ring around the	he cor	rect answ	er in the	e box to com	plete each	sentence.	
	Rubbing the plastic s charged.	strip wi	th a cloth	causes	the strip to	become ne	gatively	
			electror	าร				
	This happens because	se	neutron	S	move from	the cloth o	nto the plastic	strip.
			protons					
		a ne	gative]				
	The cloth is left with	a pos		charge) .			
		zero						
								(2)
(ii)	When the plastic strip move equally away for				len rod, the t	two halves	of the strip	
	What two conclusion two halves of the pla			udent m	ake about th	ne forces ac	cting on the	
	1							
	2							

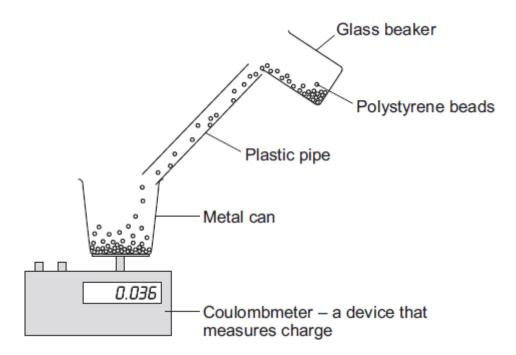

Q4.

(a)

(b)	Electrical charges move more	easily through some ma		(2)
()	materials.	, 0	Ü	
	Through which one of the follo easily?	owing materials would an	electrical charge move most	
	Draw a ring around your answe	er.		
	aluminium	glass	rubber	
				(1)
			(Total 5 mar	(5)
Q5.				
(a)	The diagram shows a negative water. The water is attracted to		ld near to a thin stream of	
	(100)			
	1)		
		M		
		M Los		
)_{		
	Which one of the following stathe water?	tements explains what is	s happening to the charge in	
	Tick (✓) one box.			
	The positive and the negative cl	harges in the water are		
	attracted to the rod.	narges in the water are		
	The positive and the negative cl	harges in the water are		
	repelled by the rod.	naiges in the water are		
	The negative charge in the water	er is repelled by the rod :	and	
	the positive charge is attracted t			
	The negative charge in the water	er is attracted to the rod	and	
	the positive charge is repelled b			
				(1)

(b) A company that produces bottles of mouthwash found a problem with the automatic filling system.

As the bottles go towards the filler, the bottles move around on the conveyor belt and become electrostatically charged. This causes the stream of mouthwash to move sideways, missing the open top of the bottle.



The company came up with an answer to the problem. Before the bottles reach the dfiller, the bottles pass through a stream of ionised air. The ions in the air neutralise the charge on the bottles.

Vh	at happens to the structure of an atom to change the atom into an ion?
	arthing the conveyor belt with a conducting wire would not have solved this blem.

Q6.

(a) Fine powders poured through a pipe can become charged. The diagram shows the apparatus used by a student to investigate this effect.

The student poured 75 cm³ of polystyrene beads down the pipe. The beads fell into a metal can and the charge on them was measured directly using a coulombmeter.

The student repeated this twice more, but each time used 75 cm³ of beads of a different size.

(i)	When they fell through the pipe, the polystyrene beads became negatively
	charged.

Explain how this happened.	
	(
Give one control variable in the student's investigation.	

(1)

(b) The results obtained by the student are shown in the table.

(ii)

Diameter of polystyrene beads in mm	Charge in microcoulombs
1.0	0.080
2.0	0.044

(i)	Describe the connection between the size of the polystyrene beads and the total charge on the beads.
(ii)	Explain how these results might be different if the student had used a shorter pipe.
	ndustry, powders are often pumped through pipes. If the static charge caused a rk, the powder could ignite and cause an explosion.
(i)	
(i)	Is an explosion more likely to happen when pumping very fine powders or when pumping powders that consist of much larger particles? Give a reason for your answer.
(i)	Is an explosion more likely to happen when pumping very fine powders or when pumping powders that consist of much larger particles?
(ii)	Is an explosion more likely to happen when pumping very fine powders or when pumping powders that consist of much larger particles? Give a reason for your answer.

60.00

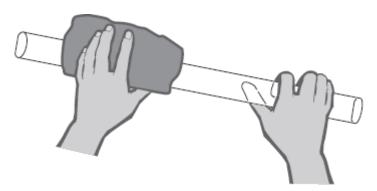
10.00

0.012

3.0

Coal dust

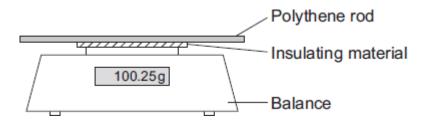
Aluminium powder


Cornstarch dust	0.30
Iron powder	0.12

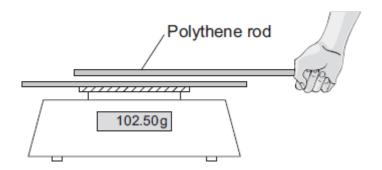
The MIE values for different substances are all measured in the same way and under the same conditions of pressure and temperature.

Why is this important?	

Q7.


(a) The diagram shows a polythene rod being rubbed with a woollen cloth.

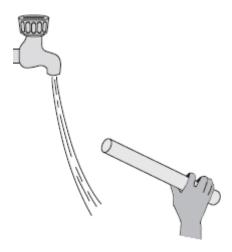
The polythene rod becomes negatively charged.


Explain how this happens.		

(b) A student put the charged polythene rod on to a balance. The rod was separated from the metal pan of the balance by a thin block of insulating material. The student then held a second charged polythene rod above, but **not** touching, the first rod. The reading on the balance increased.

(2)

(Total 10 marks)

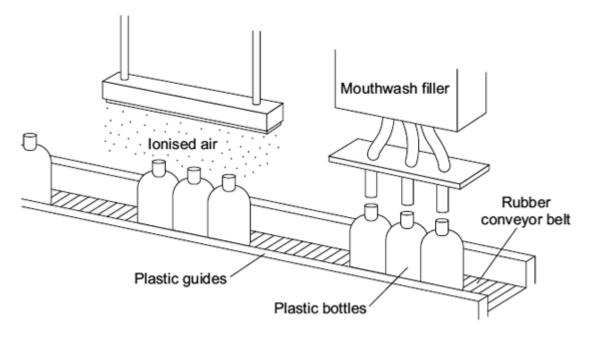

	dent observed that the nearer the two rods are to each other, the the increase in the balance reading.
What sl	hould the student conclude from this observation?

(2)

(Total 6 marks)

Q8.

(a) The diagram shows a negatively charged plastic rod held close to a thin stream of water. The water is attracted towards the rod.

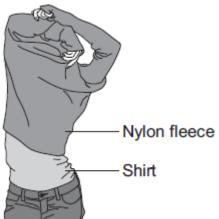

Which **one** of the following statements explains what is happening to the charge in the water?

The positive and the negative charges in the water are attracted to the rod.	
The positive and the negative charges in the water are repelled by the rod.	
The negative charge in the water is repelled by the rod and the positive charge is attracted.	
The negative charge in the water is attracted by the rod and the positive charge is repelled.	

(b) A company that produces bottles of mouthwash found a problem with the automatic filling system.

(1)

As the bottles go towards the filler, they move around on the conveyer belt and become electrostatically charged. This causes the stream of mouthwash to move sideways, missing the open top of the bottle.


The company came up with a solution to the problem. Before the bottles reach the filler, they pass through a stream of ionised air. The ions in the air neutralise the charge on the bottles.

(i) Explain why the plastic bottles become charged.

What i	is an ion?	
Earthir proble	ng the conveyor belt with a conducting wire would not havem.	e solved this
Give a	a reason why.	
		(Total 5
		(Total 5

Q9.

(a)

Explain why the fleece becomes charged.					

Only **two** of the following statements are correct. (b)

(2)

		er.	
	copper	glass	plastic
	Draw a ring around your ans	swer.	
(i)	Which of the materials in the	e list is used to mak	e the lightning conductor?
	e building is struck by lightning ductor.	g, charge flows to ea	arth through the lightning
Ligh		detal plate	
An e	electric current is a flow of elec	strical charge.	
Stati	ic electricity is safe; it never ca	auses any danger.	
Elec	trical charges move easily thro	ough metals.	
	tively charged objects repel ne	egatively charged o	bjects.
Posi			

(c)

Commission the commission		
•		OX.
]	
	the resistance of the building.	
lower than		(4)
		(1)
Suggest a reaso	on why.	
	(Т	(1) otal 8 marks)
diagram shows h	ow static electricity is used to paint a metal car panel.	
Spray gun	Positively charged paint droplets Charged car panel	
words from the bo	ox to complete the following sentences.	
	higher than the same as lower than It is almost important controlled experious Suggest a reasonable diagram shows higher than the same as lower than	the same as lower than It is almost impossible to test different designs of lightning conductor in controlled experiments during a lightning storm. Suggest a reason why. (To diagram shows how static electricity is used to paint a metal car panel. Positively charged paint droplets

Q10.

(a)

attract	opposite	repel	same	
All the paint drople	ts have the same ty	pe of charge. Th	nis makes the paint	droplets
	each o	other and spread	d out.	
The car panel and	the paint droplets h	ave the		type of
charge. This cause	es the car panel to _		the paint	droplets.
The car panel is co	overed by an even la	ayer of paint.		

(3)

(b) In which **one** of the following situations is static electricity dangerous and not useful?

	Put a tick (✓) in the box next to your answer.
	using a photocopier
	refuelling an aircraft
	a smoke precipitator
	Give a reason for your answer.
	(2) (Total 5 marks)
V	The diagram shows a student touching the metal dome of a Van de Graaff generator. When the generator is switched on, the metal dome becomes negatively charged.
	Earthed metal dome Polystyrene box
	Explain why the student's hair stands on end when the generator is switched on.
	(2

(b) When the potential difference between the student and a nearby earthed metal dome reached 15 kV, a spark jumped between the student and the earthed dome. The spark transformed 30 mJ of energy into heat, light and sound. (1 mJ = 0.001 J)

Calculate the charge carried by the spark.

Q11.

(a)

		Charge tra	ansferred =	coulon
) W	/hat name is gi	ven to the rate o	of flow of charge?	
				(Total
urina (car iournevs. th	ne driver will ofte	en become electrostatic	ally charged.
_			nan on damp, humid day	
) E	xplain what ha	ppens to cause	the driver to become ch	narged.
_				
_				
_				
_ _ _				
de	epends on the	type of material		of charge on the driver r's clothes. The results of t
de	epends on the		used to make the driver	
de	epends on the	type of material	used to make the driver	
de	epends on the vestigation are	type of material given in the tab	used to make the driver ble.	r's clothes. The results of t
de	epends on the vestigation are	type of material given in the tab	used to make the driver ble. Temperature in °C	r's clothes. The results of t Charge on the driver in millicoulombs
de	epends on the vestigation are Material Nylon	type of material given in the tab Humidity 48%	used to make the driver ble. Temperature in °C 18	Charge on the driver in millicoulombs 3.0 to 3.2
de in	Material Nylon Wool Cotton	type of material given in the take Humidity 48% 48% 48%	Temperature in °C 18 18	Charge on the driver in millicoulombs 3.0 to 3.2 2.4 to 2.5 1.4 to 1.7
de in	Material Nylon Wool Cotton umidity is a me	Humidity 48% 48% 48% easure of how m	Temperature in °C 18 18 18 uch water vapour the air	Charge on the driver in millicoulombs 3.0 to 3.2 2.4 to 2.5 1.4 to 1.7 ir can hold.
de in	Material Nylon Wool Cotton umidity is a me	Humidity 48% 48% 48% easure of how m	Temperature in °C 18 18	Charge on the driver in millicoulombs 3.0 to 3.2 2.4 to 2.5 1.4 to 1.7 ir can hold.
de in	Material Nylon Wool Cotton umidity is a me	Humidity 48% 48% 48% easure of how m	Temperature in °C 18 18 18 uch water vapour the air	Charge on the driver in millicoulombs 3.0 to 3.2 2.4 to 2.5 1.4 to 1.7 ir can hold.

Q13.

(ii)

(a) A student rubs a nylon comb on the sleeve of his jumper.

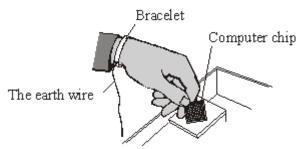
(i) Use words from the box to complete the following sentence.

	electrons	hand	jumper	protons		
TI	ne comb becomes	negatively of	charged because)	move	
fro	om the student's _		to	the comb.		(2)
W	hat type of charge	is left on th	ne jumper?			(2)

(iii) The negatively charged comb is placed close to a charged plastic ruler. The comb and the ruler attract each other.

Complete the following sentence by drawing a ring around the correct line in the box.

negatively charged


The ruler is positively charged

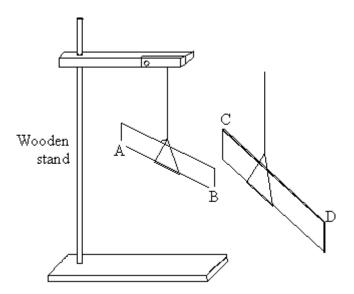
uncharged

(1)

(1)

(b) Electrostatic charge can damage computer chips. People working with computer chips may wear a special bracelet, with a wire joining the bracelet to earth (the earth wire). Any negative charge on the person will flow through the wire to earth.

(i)	Which one of the following materials should the bracelet be made from?
	Draw a ring around your answer.
	copper plastic rubber
	Give a reason for your answer.
(ii)	Which one of the following words is used to describe the rate of flow of charge through a wire?
	Draw a ring around your answer.
	current resistance voltage
	and dry your hair, then comb it with a plastic comb. As you move the comb
ay fron	and dry your hair, then comb it with a plastic comb. As you move the comb your head some hairs are attracted to the comb. at has happened to the comb to make it attract the hairs?
ay fron	and dry your hair, then comb it with a plastic comb. As you move the comb your head some hairs are attracted to the comb.
vay fron Wh	and dry your hair, then comb it with a plastic comb. As you move the comb your head some hairs are attracted to the comb.


(3)

Q15.

A pupil did an experiment following the instructions below.

- 1. Take a polythene rod (AB), hold it at its centre and rub both ends with a cloth.
- 2. Suspend the rod, without touching the ends, from a stand using a stirrup and nylon thread.
- 3. Take a perspex rod (CD) and rub it with another cloth.
- 4. Without touching the ends of the perspex rod bring each end of the perspex rod up to, but without touching, each end of the polythene rod.
- Make notes on what is observed.

The diagram below shows how the apparatus is to be set up.

- (a) When end C was brought near to end B they attracted each other.
 - (i) Explain why they attracted each other.

(ii) What would happen if end C were brought near end A?

- (b) The experiment was repeated with two polythene rods.
 - (i) Describe what you would expect the pupil to observe as the end of one rod was brought near to the end of the other.

(ii)	Explain your answer.
	ain, in terms of electron movement, what happened as the rods were rubbed the cloths.
	(Total 8

Q16.

A student did an experiment with two strips of polythene. She held the strips together at one end. She rubbed down one strip with a dry cloth. Then she rubbed down the other strip with the dry cloth. Still holding the top ends together, she held up the strips.

(a)	(i)	What movement would you expect to see?
	(ii)	Why do the strips move in this way?

(1)

(b)	Con	nplete the four spaces in the passage.			
	Each	n strip has a negative charge. The cloth is left with a			
	char	ge. This is because particles called have been transferred			
	from	the to the			
			(4)		
(c)	The student tried the experiment using two strips of aluminium. The strips did not move.				
	Com	plete each of the sentences.			
	(i)	Materials, such as aluminium, which electricity will pass through easily, are			
		called			
			(1)		
	(ii)	Materials, such as polythene which electricity will not pass through easily, are			
		called			
		(Total 9 ma	(1) rks)		